History of Stereolithographic Processes



This chapter describes the history and development of photolithographic systems, explaining the origins of modern stereolithography and photomask system. It also highlight the importance of a modern prototype and summarizes the techniques currently available to produce prototypes.


Additive Manufacturing Concept Phase Liquid Resin Digital Micromirror Device Engineering Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Wilson, J.F.B. Hawkes. Lasers, principles and applications. Prentice Hall, New York, 1987Google Scholar
  2. 2.
    I. Gibson, D.W. Rosen, B. Stucker. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York, 2009Google Scholar
  3. 3.
    C.K. Chua, K.F. Leong, C.S. Lim. Rapid prototyping – principles and applications. World Scientific Publishing, Singapore, 2003Google Scholar
  4. 4.
    I. Gibson. Rapid prototyping from product development to medicine, Virtual and Physical Prototyping. 1, 31–42, 2006CrossRefGoogle Scholar
  5. 5.
    B. Bidanda, P.J. Bartolo. Virtual prototyping & bio-manufacturing in medical applications. Springer, New York, 2008CrossRefGoogle Scholar
  6. 6.
    S. Kumas, J.P. Kruth. Composites by rapid prototyping technology. Materials and Design, 31, 850–856, 2010CrossRefGoogle Scholar
  7. 7.
    J.P. Kruth, G. Levy, T.H.C. Childs. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals – Manufacturing Technology, 35, 730–759, 2007CrossRefGoogle Scholar
  8. 8.
    P.J. Bartolo, J. Gaspar. Metal filled resin for stereolithography metal part. CIRP Annals – Manufacturing Technology, 57, 235–238, 2008CrossRefGoogle Scholar
  9. 9.
    J. Cryzewski, P. Burzynski, K. Gawel, J. Meisner. Rapid prototyping of electrically conductive components using 3D printing technology. Journal of Materials Processing Technology, 209, 5281–5285, 2009CrossRefGoogle Scholar
  10. 10.
    T. Grimm. User’s guide to rapid prototyping. Society of Manufacturing Engineers, Dearborn, 2004Google Scholar
  11. 11.
    N. Tolochko, S. Mozzharov, T. Laoui, L. Froyen. Selective laser sintering of single- and two-component metal powders. Rapid Prototyping Journal, 9, 68–78, 2003CrossRefGoogle Scholar
  12. 12.
    P.J. Bartolo, G. Mitchell. Stereo-thermal-lithography: a new principle for rapid prototyping. Rapid Prototyping Journal, 9, 150–156, 2003CrossRefGoogle Scholar
  13. 13.
    G.N. Levy, R. Schindel, J.-P. Kruth. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals – Manufacturing Technology, 52(2), 589–609, 2003CrossRefGoogle Scholar
  14. 14.
    D.L. Bourell, J.B. Beaman, M.C. Leu, D.W. Rosen. A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. US-Turkey Workshop on Rapid Technologies, 2009Google Scholar
  15. 15.
    J. Zhao, R. Xia, W. Liu, H. Wang. A computing method for accurate slice contours based on na STL model. Virtual and Physical Prototyping, 4, 29–37, 2009CrossRefGoogle Scholar
  16. 16.
    P.J. Bartolo. Optical approaches to macroscopic and microscopic engineering, PhD Thesis, University of Reading, UK, 2001Google Scholar
  17. 17.
    M. Greulich, M. Greul, T. Pintat. Fast functional prototypes via multiphase jet solidification. Rapid Prototyping Journal, 1, 20–25, 1995CrossRefGoogle Scholar
  18. 18.
    N.P. Karapatis, J.P.S. Van Griethuysen, R. Glardon. Direct rapid tooling. Rapid Prototyping Journal, 4, 77–78, 1998CrossRefGoogle Scholar
  19. 19.
    G.A. Hindson, A.K. Kochhar, P. Cook. Procedures for effective implementation of simultaneous engineering in small to medium enterprises. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 212, 251–258, 1998CrossRefGoogle Scholar
  20. 20.
    P. Krouwel, in Research in design thinking, Edited by N. Cross, C. Dorst and N. Rootenbury, Delft University Press, Delft, 1992Google Scholar
  21. 21.
    D. Kochan, C.K. Chua. State-of-the-art and future trends in advanced rapid prototyping and manufacturing. International Journal of Information Technology, 1, 173–184, 1995Google Scholar
  22. 22.
    S. Azernikov, A. Fischer. Emerging non-contact 3D measurement technologies for shape retrieval and processing. Virtual and Physical Prototyping, 3, 85–91, 2008CrossRefGoogle Scholar
  23. 23.
    S. Rianmora, P. Koomsap, D.P.V. Hai. Selective data acquisition for direct integration of reverse engineering and rapid prototyping. Virtual and Physical Prototyping, 4, 227–239, 2009CrossRefGoogle Scholar
  24. 24.
    F. Laroche, A. Bernard, M. Cotte. Advanced industrial archaeology: a new reverse-engineering process for contextualising and digitising ancient technical objects. Virtual and Physical Prototyping, 3, 105–122, 2008CrossRefGoogle Scholar
  25. 25.
    N.M.F. Alves, P.J.S. Bartolo. Automatic 3D shape recovery for rapid prototyping. Virtual and Physical Prototyping, 3, 123–137, 2008CrossRefGoogle Scholar
  26. 26.
    W. De Vries. Analysis of material removal processes. Springer-Verlag, New York, 1992Google Scholar
  27. 27.
    S. Kalpakjian, S.R. Schmid. Manufacturing engineering and tooling. Prentice Hall, New Jersey, 2000Google Scholar
  28. 28.
    E.M. Malstrom. Manufacturing cost estimating. Marcel Dekker, New York, 1981Google Scholar
  29. 29.
    I. Madrazo, C. Zamorano, E. Magallón, T. Valenzuela, A. Ibarra, H. Salgado-Ceballos, I. Grijalva, R.E. Franco-Bourland, G. Guízar-Sahagún. Stereolithography in spine pathology: a 2-case report. Surgical Neurology, 72, 272–275, 2009CrossRefGoogle Scholar
  30. 30.
    V. Dedoussis, V. Canellidis, K. Mathioudakis. Aerodynamic experimental investigation using stereolithography fabricated test models: the case of a linear compressor blading cascade. Virtual and Physical Prototyping, 3, 151–157, 2008CrossRefGoogle Scholar
  31. 31.
    V. Dedoussis, J. Giannatsis. Stereolithography assisted redesign and optimisation of a dishwasher spraying arm. Rapid Prototyping Journal, 10, 255–260, 2004CrossRefGoogle Scholar
  32. 32.
    J. Giannatsis, V. Dedoussis, D. Karalekas. Architectural scale modelling using stereolithography. Rapid Prototyping Journal, 8, 200–207, 2002CrossRefGoogle Scholar
  33. 33.
    P.J. Bártolo, C.K. Chua, H.A. Almeida, S.M. Chou, A.S.C. Lim. Biomanufacturing for tissue engineering: present and future trends. Virtual and Physical Prototyping, 4, 203–216, 2009CrossRefGoogle Scholar
  34. 34.
    M. Burns. Automated fabrication – improving productivity in manufacturing. Prentice Hall, New Jersey, 1993Google Scholar
  35. 35.
    Y. Morita, T. Noikura, R. Petzold, M. Blank, W. Kalender, S. Hiura, A. Okubo, K. Sugihara, T. Kamiinaba, Y. Izumi. Rapid prototyping for dentistry in Japan. Proceedings of the eighth international conference on rapid prototyping, Edited by T. Nakagawa, Y. Marutani, M. Imamura, M. Agarwala, A. Lightman, D. Klosterman, and R.P. Chartoff, University of Dayton, 2000Google Scholar
  36. 36.
    C.C. An, R.H. Chen. The experimental study on the defects occurrence of SL mold in injection molding. Journal of Materials Processing Technology, 201, 706–709, 2008Google Scholar
  37. 37.
    S. Rahmati, P. Dickens. Rapid tooling analysis of stereolithography injection mould tooling. International Journal of Machine Tools & Manufacture, 47, 740–747, 2007CrossRefGoogle Scholar
  38. 38.
    G. Kakarala, A.D. Toms, J.H. Kuiper. Stereolithography models for biomechanical testing. The Knee, 13, 451–454, 2006CrossRefGoogle Scholar
  39. 39.
    H. Gernsheim, A. Gernsheim. The history of photography: from the camera obscura to the beginning of the modern era. McGraw Hill, New York, 1969Google Scholar
  40. 40.
    W.K. Swainson. Method, medium and apparatus for producing three-dimensional figure product, US Patent 4041476, 1977Google Scholar
  41. 41.
    R.E. Schwerzel, V.E. Wood, V.D. McGinniss, C.M. Verber. 3D photochemical machining with lasers, Applications of lasers to industrial Chemistry. SPIE, 458, 90–97, 1984Google Scholar
  42. 42.
    W.K. Swainson, S.D. Kramer. Three-dimensional pattern making methods, US Patent 4333165, 1982Google Scholar
  43. 43.
    W.K. Swainson, S.D. Kramer. Three-dimensional patterned media, US Patent 4466080, 1984Google Scholar
  44. 44.
    W.K. Swainson, S.D. Kramer. Method and media for accessing data in three dimensions, US Patent 4471470, 1984Google Scholar
  45. 45.
    H. Kodama. Automatic method for fabricating a three-dimensional plastic model with photohardening polymer. Review of Scientific Instruments, 52, 1770–1773, 1981CrossRefGoogle Scholar
  46. 46.
    A.J. Herbert. Solid object generation. Journal of Applied Photographic Engineering, 8, 185–188, 1982Google Scholar
  47. 47.
    C.W. Hull. Apparatus for production of three-dimensional objects by stereolithography, US Patent 4575330, 1986Google Scholar
  48. 48.
    C.W. Hull, S.T. Spence, D.J. Albert, D.R. Smalley, R.A. Harlow, P. Steinbaugh, H.L. Tarnoff, H.D. Nguyen, C.W. Lewis, T.J. Vorgitch, D.Z. Remba. Method and apparatus for production of three-dimensional objects by stereolithography, US Patent 5059359, 1991Google Scholar
  49. 49.
    C.W. Hull, S.T. Spence, D.J. Albert, D.R. Smalley, R.A. Harlow, P. Stinebaugh, H.L. Tarnoff, H.D. Nguyen, C.W. Lewis, T.J. Vorgitch, D.Z. Remba. Method and apparatus for production of high resolution three-dimensional objects by stereolithography, US Patent 5184307, 1993Google Scholar
  50. 50.
    J.C. André, M. Cabrera, J.Y. Jezequel, A. Méhauté. French Pat. 2583333, 1985Google Scholar
  51. 51.
    J.C. André, A. Méhauté, O. Witthe. Dispositif pour realiser un module de piece industrielle, French Pat. 8411241, 1984Google Scholar
  52. 52.
    E.J. Murphy, J.J. Krajewski, R.E. Ansel. Stereolithographic method and apparatus in which a membrane separates phases, US Patent 5011635, 1991Google Scholar
  53. 53.
    T.A. Almquist, D.S. Smalley. Thermal stereolithography, US Patent 5672312, 1997Google Scholar
  54. 54.
    Y. Marutani, T. Kamitani. 3-Dimensional exposure using an air bubble in the resin. Proceedings of the seventh international conference on rapid prototyping, Edited by A.J. Lightman and R.P. Chartoff, University of Dayton, 1997, 213Google Scholar
  55. 55.
    J.-P. Kruth, M.C. Leu, T. Nakagawa. Progress in additive manufacturing and rapid prototyping. CIRP Annals – Manufacturing Technology, 47, 525–549, 1998CrossRefGoogle Scholar
  56. 56.
    B. Swaelens, W. Vancraen. Laser photopolymerisation models based on medical imaging: a development improving the accuracy of surgery. Proceedings of the seventh international conference on rapid prototyping, Edited by A.J. Lightman and R.P. Chartoff, University of Dayton, 1997, 250Google Scholar
  57. 57.
    Y.G. Im, S.I. Chung, J.H. Son, Y.D. Jung, J.G. Jo, H.D. Jeong. Functional prototype development: inner visible multi-color prototype fabrication process using stereo lithography. Journal of Materials Processing Technology, 130–131, 372–377, 2002CrossRefGoogle Scholar
  58. 58.
    T. Murakami, A. Kamimura, N. Nakajima. Refrigerative stereolithography using sol-gel transformable photopolymer resin and direct masking. Solid Freeform and Additive Manufacturing – 2000, Edited by S.C. Danforth, D. Dimos, and F. Pritz, Materials Research Society, Warrendale, 2000Google Scholar
  59. 59.
    T. Murakami, A. Kamimura, N. Nakajima. Refrigerative stereolithography using direct masking. Proceedings of the eigth International Conference on Rapid Prototyping, Japan Society of Die and Molds Technology, Tokyo, Japan, 2000Google Scholar
  60. 60.
    T. Murakami, T. Yada, G. Kobayashi. Positive direct-mask stereolithography with multiple-layer exposure: layered fabrication with stair step reduction. Virtual and Physical Prototyping, 1, 73–81, 2006CrossRefGoogle Scholar
  61. 61.
    I. Pomerantz, J. Cohen-Sabban, A. Bieber, J. Kamir, M. Katz, M. Nagler. Three dimensional modelling apparatus, US Patent 4961154, 1990Google Scholar
  62. 62.
    I. Pomerantz, S. Gilad, Y. Dollberg, B. Ben-Ezra, Y. Sheinman, G. Barequet, M. Katz. Three dimensional modelling apparatus, US Patent 5519816, 1996Google Scholar
  63. 63.
    E.V. Fudim. Method and apparatus for production of three-dimensional objects by photosolidification, US Patent 4801477, 1989Google Scholar
  64. 64.
    E.V. Fudim. Method and apparatus for production of three-dimensional objects by photosolidification, US Patent 4752498, 1988Google Scholar
  65. 65.
    X. Zhang. Dynamic mask projection stereo micro lithography, US Patent 2005/0259785 A1, 2005Google Scholar
  66. 66.
    C. Sun, N. Fang, D.M. Wu, X. Zhang. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A, 121, 113–120, 2005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Rapid and Sustainable ProductPolytechnic Institute of LeiriaLeiriaPortugal

Personalised recommendations