Skip to main content

History of Stereolithographic Processes

  • Chapter
  • First Online:
Stereolithography

Abstract

This chapter describes the history and development of photolithographic systems, explaining the origins of modern stereolithography and photomask system. It also highlight the importance of a modern prototype and summarizes the techniques currently available to produce prototypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wilson, J.F.B. Hawkes. Lasers, principles and applications. Prentice Hall, New York, 1987

    Google Scholar 

  2. I. Gibson, D.W. Rosen, B. Stucker. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York, 2009

    Google Scholar 

  3. C.K. Chua, K.F. Leong, C.S. Lim. Rapid prototyping – principles and applications. World Scientific Publishing, Singapore, 2003

    Google Scholar 

  4. I. Gibson. Rapid prototyping from product development to medicine, Virtual and Physical Prototyping. 1, 31–42, 2006

    Article  Google Scholar 

  5. B. Bidanda, P.J. Bartolo. Virtual prototyping & bio-manufacturing in medical applications. Springer, New York, 2008

    Book  Google Scholar 

  6. S. Kumas, J.P. Kruth. Composites by rapid prototyping technology. Materials and Design, 31, 850–856, 2010

    Article  Google Scholar 

  7. J.P. Kruth, G. Levy, T.H.C. Childs. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals – Manufacturing Technology, 35, 730–759, 2007

    Article  Google Scholar 

  8. P.J. Bartolo, J. Gaspar. Metal filled resin for stereolithography metal part. CIRP Annals – Manufacturing Technology, 57, 235–238, 2008

    Article  Google Scholar 

  9. J. Cryzewski, P. Burzynski, K. Gawel, J. Meisner. Rapid prototyping of electrically conductive components using 3D printing technology. Journal of Materials Processing Technology, 209, 5281–5285, 2009

    Article  Google Scholar 

  10. T. Grimm. User’s guide to rapid prototyping. Society of Manufacturing Engineers, Dearborn, 2004

    Google Scholar 

  11. N. Tolochko, S. Mozzharov, T. Laoui, L. Froyen. Selective laser sintering of single- and two-component metal powders. Rapid Prototyping Journal, 9, 68–78, 2003

    Article  Google Scholar 

  12. P.J. Bartolo, G. Mitchell. Stereo-thermal-lithography: a new principle for rapid prototyping. Rapid Prototyping Journal, 9, 150–156, 2003

    Article  Google Scholar 

  13. G.N. Levy, R. Schindel, J.-P. Kruth. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals – Manufacturing Technology, 52(2), 589–609, 2003

    Article  Google Scholar 

  14. D.L. Bourell, J.B. Beaman, M.C. Leu, D.W. Rosen. A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. US-Turkey Workshop on Rapid Technologies, 2009

    Google Scholar 

  15. J. Zhao, R. Xia, W. Liu, H. Wang. A computing method for accurate slice contours based on na STL model. Virtual and Physical Prototyping, 4, 29–37, 2009

    Article  Google Scholar 

  16. P.J. Bartolo. Optical approaches to macroscopic and microscopic engineering, PhD Thesis, University of Reading, UK, 2001

    Google Scholar 

  17. M. Greulich, M. Greul, T. Pintat. Fast functional prototypes via multiphase jet solidification. Rapid Prototyping Journal, 1, 20–25, 1995

    Article  Google Scholar 

  18. N.P. Karapatis, J.P.S. Van Griethuysen, R. Glardon. Direct rapid tooling. Rapid Prototyping Journal, 4, 77–78, 1998

    Article  Google Scholar 

  19. G.A. Hindson, A.K. Kochhar, P. Cook. Procedures for effective implementation of simultaneous engineering in small to medium enterprises. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 212, 251–258, 1998

    Article  Google Scholar 

  20. P. Krouwel, in Research in design thinking, Edited by N. Cross, C. Dorst and N. Rootenbury, Delft University Press, Delft, 1992

    Google Scholar 

  21. D. Kochan, C.K. Chua. State-of-the-art and future trends in advanced rapid prototyping and manufacturing. International Journal of Information Technology, 1, 173–184, 1995

    Google Scholar 

  22. S. Azernikov, A. Fischer. Emerging non-contact 3D measurement technologies for shape retrieval and processing. Virtual and Physical Prototyping, 3, 85–91, 2008

    Article  Google Scholar 

  23. S. Rianmora, P. Koomsap, D.P.V. Hai. Selective data acquisition for direct integration of reverse engineering and rapid prototyping. Virtual and Physical Prototyping, 4, 227–239, 2009

    Article  Google Scholar 

  24. F. Laroche, A. Bernard, M. Cotte. Advanced industrial archaeology: a new reverse-engineering process for contextualising and digitising ancient technical objects. Virtual and Physical Prototyping, 3, 105–122, 2008

    Article  Google Scholar 

  25. N.M.F. Alves, P.J.S. Bartolo. Automatic 3D shape recovery for rapid prototyping. Virtual and Physical Prototyping, 3, 123–137, 2008

    Article  Google Scholar 

  26. W. De Vries. Analysis of material removal processes. Springer-Verlag, New York, 1992

    Google Scholar 

  27. S. Kalpakjian, S.R. Schmid. Manufacturing engineering and tooling. Prentice Hall, New Jersey, 2000

    Google Scholar 

  28. E.M. Malstrom. Manufacturing cost estimating. Marcel Dekker, New York, 1981

    Google Scholar 

  29. I. Madrazo, C. Zamorano, E. Magallón, T. Valenzuela, A. Ibarra, H. Salgado-Ceballos, I. Grijalva, R.E. Franco-Bourland, G. Guízar-Sahagún. Stereolithography in spine pathology: a 2-case report. Surgical Neurology, 72, 272–275, 2009

    Article  Google Scholar 

  30. V. Dedoussis, V. Canellidis, K. Mathioudakis. Aerodynamic experimental investigation using stereolithography fabricated test models: the case of a linear compressor blading cascade. Virtual and Physical Prototyping, 3, 151–157, 2008

    Article  Google Scholar 

  31. V. Dedoussis, J. Giannatsis. Stereolithography assisted redesign and optimisation of a dishwasher spraying arm. Rapid Prototyping Journal, 10, 255–260, 2004

    Article  Google Scholar 

  32. J. Giannatsis, V. Dedoussis, D. Karalekas. Architectural scale modelling using stereolithography. Rapid Prototyping Journal, 8, 200–207, 2002

    Article  Google Scholar 

  33. P.J. Bártolo, C.K. Chua, H.A. Almeida, S.M. Chou, A.S.C. Lim. Biomanufacturing for tissue engineering: present and future trends. Virtual and Physical Prototyping, 4, 203–216, 2009

    Article  Google Scholar 

  34. M. Burns. Automated fabrication – improving productivity in manufacturing. Prentice Hall, New Jersey, 1993

    Google Scholar 

  35. Y. Morita, T. Noikura, R. Petzold, M. Blank, W. Kalender, S. Hiura, A. Okubo, K. Sugihara, T. Kamiinaba, Y. Izumi. Rapid prototyping for dentistry in Japan. Proceedings of the eighth international conference on rapid prototyping, Edited by T. Nakagawa, Y. Marutani, M. Imamura, M. Agarwala, A. Lightman, D. Klosterman, and R.P. Chartoff, University of Dayton, 2000

    Google Scholar 

  36. C.C. An, R.H. Chen. The experimental study on the defects occurrence of SL mold in injection molding. Journal of Materials Processing Technology, 201, 706–709, 2008

    Google Scholar 

  37. S. Rahmati, P. Dickens. Rapid tooling analysis of stereolithography injection mould tooling. International Journal of Machine Tools & Manufacture, 47, 740–747, 2007

    Article  Google Scholar 

  38. G. Kakarala, A.D. Toms, J.H. Kuiper. Stereolithography models for biomechanical testing. The Knee, 13, 451–454, 2006

    Article  Google Scholar 

  39. H. Gernsheim, A. Gernsheim. The history of photography: from the camera obscura to the beginning of the modern era. McGraw Hill, New York, 1969

    Google Scholar 

  40. W.K. Swainson. Method, medium and apparatus for producing three-dimensional figure product, US Patent 4041476, 1977

    Google Scholar 

  41. R.E. Schwerzel, V.E. Wood, V.D. McGinniss, C.M. Verber. 3D photochemical machining with lasers, Applications of lasers to industrial Chemistry. SPIE, 458, 90–97, 1984

    Google Scholar 

  42. W.K. Swainson, S.D. Kramer. Three-dimensional pattern making methods, US Patent 4333165, 1982

    Google Scholar 

  43. W.K. Swainson, S.D. Kramer. Three-dimensional patterned media, US Patent 4466080, 1984

    Google Scholar 

  44. W.K. Swainson, S.D. Kramer. Method and media for accessing data in three dimensions, US Patent 4471470, 1984

    Google Scholar 

  45. H. Kodama. Automatic method for fabricating a three-dimensional plastic model with photohardening polymer. Review of Scientific Instruments, 52, 1770–1773, 1981

    Article  Google Scholar 

  46. A.J. Herbert. Solid object generation. Journal of Applied Photographic Engineering, 8, 185–188, 1982

    Google Scholar 

  47. C.W. Hull. Apparatus for production of three-dimensional objects by stereolithography, US Patent 4575330, 1986

    Google Scholar 

  48. C.W. Hull, S.T. Spence, D.J. Albert, D.R. Smalley, R.A. Harlow, P. Steinbaugh, H.L. Tarnoff, H.D. Nguyen, C.W. Lewis, T.J. Vorgitch, D.Z. Remba. Method and apparatus for production of three-dimensional objects by stereolithography, US Patent 5059359, 1991

    Google Scholar 

  49. C.W. Hull, S.T. Spence, D.J. Albert, D.R. Smalley, R.A. Harlow, P. Stinebaugh, H.L. Tarnoff, H.D. Nguyen, C.W. Lewis, T.J. Vorgitch, D.Z. Remba. Method and apparatus for production of high resolution three-dimensional objects by stereolithography, US Patent 5184307, 1993

    Google Scholar 

  50. J.C. André, M. Cabrera, J.Y. Jezequel, A. Méhauté. French Pat. 2583333, 1985

    Google Scholar 

  51. J.C. André, A. Méhauté, O. Witthe. Dispositif pour realiser un module de piece industrielle, French Pat. 8411241, 1984

    Google Scholar 

  52. E.J. Murphy, J.J. Krajewski, R.E. Ansel. Stereolithographic method and apparatus in which a membrane separates phases, US Patent 5011635, 1991

    Google Scholar 

  53. T.A. Almquist, D.S. Smalley. Thermal stereolithography, US Patent 5672312, 1997

    Google Scholar 

  54. Y. Marutani, T. Kamitani. 3-Dimensional exposure using an air bubble in the resin. Proceedings of the seventh international conference on rapid prototyping, Edited by A.J. Lightman and R.P. Chartoff, University of Dayton, 1997, 213

    Google Scholar 

  55. J.-P. Kruth, M.C. Leu, T. Nakagawa. Progress in additive manufacturing and rapid prototyping. CIRP Annals – Manufacturing Technology, 47, 525–549, 1998

    Article  Google Scholar 

  56. B. Swaelens, W. Vancraen. Laser photopolymerisation models based on medical imaging: a development improving the accuracy of surgery. Proceedings of the seventh international conference on rapid prototyping, Edited by A.J. Lightman and R.P. Chartoff, University of Dayton, 1997, 250

    Google Scholar 

  57. Y.G. Im, S.I. Chung, J.H. Son, Y.D. Jung, J.G. Jo, H.D. Jeong. Functional prototype development: inner visible multi-color prototype fabrication process using stereo lithography. Journal of Materials Processing Technology, 130–131, 372–377, 2002

    Article  Google Scholar 

  58. T. Murakami, A. Kamimura, N. Nakajima. Refrigerative stereolithography using sol-gel transformable photopolymer resin and direct masking. Solid Freeform and Additive Manufacturing – 2000, Edited by S.C. Danforth, D. Dimos, and F. Pritz, Materials Research Society, Warrendale, 2000

    Google Scholar 

  59. T. Murakami, A. Kamimura, N. Nakajima. Refrigerative stereolithography using direct masking. Proceedings of the eigth International Conference on Rapid Prototyping, Japan Society of Die and Molds Technology, Tokyo, Japan, 2000

    Google Scholar 

  60. T. Murakami, T. Yada, G. Kobayashi. Positive direct-mask stereolithography with multiple-layer exposure: layered fabrication with stair step reduction. Virtual and Physical Prototyping, 1, 73–81, 2006

    Article  Google Scholar 

  61. I. Pomerantz, J. Cohen-Sabban, A. Bieber, J. Kamir, M. Katz, M. Nagler. Three dimensional modelling apparatus, US Patent 4961154, 1990

    Google Scholar 

  62. I. Pomerantz, S. Gilad, Y. Dollberg, B. Ben-Ezra, Y. Sheinman, G. Barequet, M. Katz. Three dimensional modelling apparatus, US Patent 5519816, 1996

    Google Scholar 

  63. E.V. Fudim. Method and apparatus for production of three-dimensional objects by photosolidification, US Patent 4801477, 1989

    Google Scholar 

  64. E.V. Fudim. Method and apparatus for production of three-dimensional objects by photosolidification, US Patent 4752498, 1988

    Google Scholar 

  65. X. Zhang. Dynamic mask projection stereo micro lithography, US Patent 2005/0259785 A1, 2005

    Google Scholar 

  66. C. Sun, N. Fang, D.M. Wu, X. Zhang. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A, 121, 113–120, 2005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Jorge Bártolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bártolo, P.J., Gibson, I. (2011). History of Stereolithographic Processes. In: Bártolo, P. (eds) Stereolithography. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92904-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92904-0_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92903-3

  • Online ISBN: 978-0-387-92904-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics