Photonic and Biomedical Applications of the Two-Photon Polymerization Technique

  • Aleksandr Ovsianikov
  • Maria Farsari
  • Boris N. Chichkov


Since first experimental demonstration of microstructuring using two-photon polymerization (2PP) [1], the technology has experienced rapid development. The unique capability of this technique to create complex 3D structures with resolution, reproducibility, and speed superior to other approaches paved its way to applications in many areas. Figure 11.1a shows some SEM images of structures fabricated by 2PP for demonstrational purposes. Microvenus statues fabricated from negative photoresist SU8 [2] material are presented in comparison to the human hair. Each statue is about 50 μm tall and 20 μm wide, the overall fabrication time is just few minutes. Figure 11.1b shows an array of microspiders fabricated on a glass slide. Each structure is about 50 μm wide and the spider’s body is supported by eight 2 μm thick legs. Finally, a fragment of a windmill array (Fig. 11.1c), produced by 2PP using Ormocore [3] is shown. Fabricated in a single step, the structure consists of two physically separate parts – windmill body and propeller, which are interlocked in such way that the propeller can be rotated around the shaft. Therefore, using 2PP microfabrication it is possible to produce functional micromechanical components in a single step, without the necessity of tedious assembly procedure. Looking at these images, one can see the strength of 2PP technology and envision many potential applications.


Photonic Crystal Photonic Crystal Structure Microneedle Array Average Laser Power Photosensitive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge very important contribution from their colleagues, who have been involved in different part of this work: R. Kiyan, S. Schlie, A. Ngezahayo, M. Vamvakaki, and C.Fotakis. Biomedical applications have been studied in cooperation with A. Doraiswamy, T. Patz, R. Narayan, R. Modi, R. Auyeung, and O. Adunka. This work has been supported by the Excellence Cluster ReBirth, and DFG Transregio project TR37.


  1. 1.
    S. Maruo, O. Nakamura, S. Kawata, Opt. Lett., 22, 132 (1997).Google Scholar
  2. 2.
  3. 3.
  4. 4.
    H. B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett., 74, 786 (1999).Google Scholar
  5. 5.
    B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. Wu, S. Marder, J. Perry, Nature, 398, 51–54 (1999).Google Scholar
  6. 6.
    M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, Nat. Mater., 3, 444 (2004).Google Scholar
  7. 7.
    M. Straub, L. H. Nguyen, A. Fazlic, M. Gu, Opt. Mater., 27, 359 (2004).Google Scholar
  8. 8.
    K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa, Adv. Mater., 17, 541 (2005).Google Scholar
  9. 9.
    S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, K. Dorkenoo, Appl. Phys. Lett., 86, 211118 (2005).Google Scholar
  10. 10.
    R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, W. Huang, Opt. Express, 14, 810 (2006).Google Scholar
  11. 11.
    F. C. Wippermann, D. Radtke, U. Zeitner, J. W. Duparre, A. Tunnermann, M. Amberg, S. Sinzinger, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, Proc. SPIE Vol. 6288, “Current developments in lens design and optical engineering VII”, San Diego, 14–15. 8 (2006).Google Scholar
  12. 12.
    T. Yokoyama et al., Appl. Phys. Lett., 82, 3221 (2003).Google Scholar
  13. 13.
    H. Sun, T. Kawakami, Y. Xu, J. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, Opt. Lett., 25, 1110 (2000).Google Scholar
  14. 14.
    C. Reinhardt, S. Passinger, B. Chichkov, C. Marquart, I. Radko, and S. Bozhevolnyi, Opt. Lett., 31, 1307 (2006).Google Scholar
  15. 15.
    A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, B. Chichkov, Acta Biomater., 2, 267–275 (2006).Google Scholar
  16. 16.
    S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.-A. Kolb, H. Haferkamp, B. N. Chichkov, J. Biomater. Appl., 22, 275–287 (2007).Google Scholar
  17. 17.
    J. D. Pitts, P. J. Campagnola, G. A. Epling, S. L. Goodman, Macromolecules, 33, 151 (2000).Google Scholar
  18. 18.
    S. Basu, P. J. Campagnola, Biomacromolecules, 5, 572 (2004).Google Scholar
  19. 19.
    V. Dinca, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, Nano Lett., 8, 538–543 (2008).Google Scholar
  20. 20.
    S. Maruo, K. Ikuta, H. Korogi, Appl. Phys. Lett., 82, 133 (2003).Google Scholar
  21. 21.
    S. Maruo, Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 94, 101 (2006).Google Scholar
  22. 22.
    F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata, Opt. Express, 14, 800 (2006).Google Scholar
  23. 23.
    F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata, Appl. Phys. Lett., 88, 083110 (2006).Google Scholar
  24. 24.
    Y.-S. Chen, A. Tal, D. B. Torrance, S. M. Kuebler, Adv. Funct. Mater., 16, 1739 (2006).Google Scholar
  25. 25.
    V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, and H. Misawa, Opt. Express, 15, 8454–8464 (2007).Google Scholar
  26. 26.
    R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, J. T. Fourkas, J. Am. Chem. Soc., 128, 1796 (2006).Google Scholar
  27. 27.
    E. Yablonovitch, Phys. Rev. Lett., 58, 2059–2062 (1987).Google Scholar
  28. 28.
    S. John, Phys. Rev. Lett., 58, 2486–2489 (1987).Google Scholar
  29. 29.
    K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals, Wiley, Berlin (2004).Google Scholar
  30. 30.
    J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Berlin and Heidelberg (2005).Google Scholar
  31. 31.
    S. G. Johnson, J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, Springer, Berlin (2001).Google Scholar
  32. 32.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Edition, Princeton University Press, Princeton (2008).MATHGoogle Scholar
  33. 33.
    K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin (2005).Google Scholar
  34. 34.
    K. Inoue and K. Ohtaka (eds.), Photonic Crystals, Physics, Fabrication and Applications, Springer, Berlin (2004).Google Scholar
  35. 35.
    S. Noda and T. Baba (eds.), Roadmap on Photonic Crystals, Kluwer Academic Publishers, Boston (2003).Google Scholar
  36. 36.
    J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature, 386, 143–149 (1997).Google Scholar
  37. 37.
    S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science, 289, 604–606 (2000).Google Scholar
  38. 38.
    A. Chutinan, S. John, and O. Toader, Phys. Rev. Lett., 90, 123901 (2003).Google Scholar
  39. 39.
    P. Markowicz, Ch. Friend, Y. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd., Opt. Lett., 27, 351 (2002).Google Scholar
  40. 40.
    M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, Phys. Rev. Lett., 86, 1526 (2001).Google Scholar
  41. 41.
    J. Maddox, “Photonic band-gaps bite the dust,” Nature, 348, 481 (1990).Google Scholar
  42. 42.
    S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature, 394, 251–253 (1998).Google Scholar
  43. 43.
    N. Yamamoto, S. Noda, and A. Sasaki, Jpn. J. Appl. Phys., 36, 1907 (1997).Google Scholar
  44. 44.
    S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano, J. Lightwave Technol., 17, 1948 (1999).Google Scholar
  45. 45.
    F. García-Santamaría, H. T. Miyazaki, A. Urquía, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, C. López, Adv. Mat., 14, 1144 (2002).Google Scholar
  46. 46.
    P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater., 11, 2132 (1999).Google Scholar
  47. 47.
    J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, Phys. Rev. Lett., 83, 300 (1999).Google Scholar
  48. 48.
    R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, Phys. Rev. B, 57, 3701 (1998).Google Scholar
  49. 49.
    K. Busch and S. John, Phys. Rev. E, 58, 3896 (1998).Google Scholar
  50. 50.
    D. J. Norris, Y. A. Vlasov, Adv. Mat., 13, 371–376 (2001).Google Scholar
  51. 51.
    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondla, G. A. Ozin, O. Toader, and H. M. van Driel, Nature, 45, 437 (2000).Google Scholar
  52. 52.
    W. M. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater., 14, 271 (2002).Google Scholar
  53. 53.
    Y. Yin and Y. Xia, Adv. Mater., 14, 605 (2002).Google Scholar
  54. 54.
    H. Míguez, S. M. Yang, N. Tétreault, and G. A. Ozin, Adv. Mater., 14, 1805 (2002).Google Scholar
  55. 55.
    M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature (London), 404, 53 (2000).Google Scholar
  56. 56.
    S. Shoji and S. Kawata, Appl. Phys. Lett., 76, 2668 (2000).Google Scholar
  57. 57.
    S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett., 83, 608 (2003).Google Scholar
  58. 58.
    Y. Miklyaev, D. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, Appl. Phys. Lett., 82, 1284 (2003).Google Scholar
  59. 59.
    X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, Appl. Phys. Lett., 82, 2212–2214 (2003).Google Scholar
  60. 60.
    H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, Appl. Phys. Lett., 79, 1 (2001).Google Scholar
  61. 61.
    K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, Appl. Phys. Lett., 83, 2091 (2003).Google Scholar
  62. 62.
    A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, G. von Freymann, Nat. Mater., 5, 942 (2006).Google Scholar
  63. 63.
    N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, G. A. Ozin, Adv. Mat., 18, 457 (2006).Google Scholar
  64. 64.
    M. Straub and M. Gu, Opt. Lett., 27, 1824–1826 (2002).Google Scholar
  65. 65.
    J. Serbin, A. Ovsianikov, and B. Chichkov, Opt. Express, 12, 5221–5228 (2004).Google Scholar
  66. 66.
    A. Chutinan, S. Noda, Phys. Rev B, 57, R2006 (1998).Google Scholar
  67. 67.
    M. Maldovan and E. L. Thomas, Nat. Mater., 3 593–600 (2004).Google Scholar
  68. 68.
    A. Ovsianikov, J. Viertl, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, and B. Chichkov, ACS Nano, 2, 2257–2262 (2008).Google Scholar
  69. 69.
    M. Deubel, M. Wegener, S. Linden, and G. von Freymann, Appl. Phys. Lett., 87, 221104 (2005).Google Scholar
  70. 70.
    S. Romanov et al., Phys. Rev. E, 63 056603–056605 (2001).Google Scholar
  71. 71.
    S. Romanov et al., Appl. Phys. Lett., 90 133101–133103 (2007).Google Scholar
  72. 72.
    A. Lavrinenko, S. Romanov, PECS-VII Monterey, USA, April 8–11 (2007).Google Scholar
  73. 73.
    H. X. Zhang, D. Lu, N. Peyghambarian, M. Fallahi, J. D. Luo, B. Q. Chen, and A. K.-Y. Jen, Opt. Lett., 30, 117–119 (2004).MATHGoogle Scholar
  74. 74.
    H. Goudket, M. Canva, Y. Levy, F. Chaput, and J. P. Boilot, J. Appl. Phys., 90, 6044–6047 (2001).Google Scholar
  75. 75.
    Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, Nat. Photonics, 1, 180–185 (2007).Google Scholar
  76. 76.
    H. X. Zhang, D. Lu, T. Liu, M. Mansuripur, and M. Fallahi, Appl. Phys. Lett., 85, 4275–4277 (2004).Google Scholar
  77. 77.
    H. X. Zhang, D. Lu, M. Fallahi, Opt. Mater., 28, 992–999 (2006).Google Scholar
  78. 78.
    M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, Appl. Phys. A, 93, 11–15 (2008).Google Scholar
  79. 79.
    D. H. Choi, J. H. Park, T. H. Rhee, N. Kim, and S.-D. Lee, Chem. Mater., 10, 705–709 (1998).Google Scholar
  80. 80.
    D. Riehl, F. Chaput, Y. Levy, J. P. Boilot, F. Kajzar, and P. A. Chollet, Chem. Phys. Lett., 245, 36–40 (1995).Google Scholar
  81. 81.
    V. G. Zarnitsyn, M. R. Prausnitz, Y. A. Chizmadzhev, Biol. Membr., 21, 355–373 (2004).Google Scholar
  82. 82.
    G. J. Opiteck, J. E. Scheffler, Expert Rev. Proteomics, 1, 57–66 (2004).Google Scholar
  83. 83.
    R. O. P. Potts, R. A. Lobo, Obstet. Gynecol., 105, 953–961 (2005).Google Scholar
  84. 84.
    M. R. Prausnitz, Adv. Drug Deliv. Rev., 56, 581–587 (2004).Google Scholar
  85. 85.
    M. R. Prausnitz, S. Mitragotri, R. Langer, Nat. Rev. Drug Discov., 3, 115–124 (2004).Google Scholar
  86. 86.
    S. Chong, H. L. Fung, “Transdermal Drug Delivery Systems: Pharmacokinetics, Clinical Efficacy, and Tolerance Development”. In: J. Hadgraft, R. H. Guy (eds.), Transdermal Drug Delivery: Developmental Issues and Research Initiatives, Dekker, New York, 135 (1989).Google Scholar
  87. 87.
    G. L. Flynn, “Cutaneous and Transdermal Delivery: Processes and Systems of Delivery”, In: G. S. Banker, C. T. Rhodes (eds.), Modern Pharmaceutics. Dekker, New York, 239–299 (1996).Google Scholar
  88. 88.
    R. K. Sivamani, B. Stoeber, G. C. Wu, H. Zhai, D. Liepmann, H. Maibach, Skin Res. Technol., 11, 152–156 (2005).Google Scholar
  89. 89.
    S. Mitragotri, J Control. Release, 71, 23–29 (2001).Google Scholar
  90. 90.
    B. W. Barry, Eur. J. Pharm. Sci., 14, 101–114 (2001).Google Scholar
  91. 91.
    P. Griss, G. Stemme, J. Microelectromech. Syst., 12, 296–301 (2003).Google Scholar
  92. 92.
    R. L. Daniels et al., Laryngoscope, 108, 1674–1681 (1998).Google Scholar
  93. 93.
    A. De la Cruz et al., Otolaryngol. Clin. North Am., 27, 799–811 (1994).Google Scholar
  94. 94.
    S. Albu et al., Am. J. Otolaryngol., 19, 136–140 (1998).Google Scholar
  95. 95.
    A. Y. Bayazit, Laryngoscope, 110, 176–177 (2000).Google Scholar
  96. 96.
    R. L. Goode et al., Otolaryngol. Clin. North Am., 27, 663–675 (1994).Google Scholar
  97. 97.
    V. Colletti et al., Otolaryngol. Head Neck Surg., 120, 437–444 (1999).Google Scholar
  98. 98.
    O. Cura et al., Rev. Laryngol. Otol. Rhinol., 121, 87–90 (2000).Google Scholar
  99. 99.
    M. Glasscock et al., Arch. Otolaryngol. Head Neck Surg., 114, 1252–1255 (1988).Google Scholar
  100. 100.
    K. Jahnke et al., Biomaterials, 4, 137 (1983).Google Scholar
  101. 101.
    K. Schwager, Eur. Arch. Otorhinolaryngol., 255, 396–401 (1998).Google Scholar
  102. 102.
    C. Stupp et al., Laryngorhinootologie, 78, 299–303 (1999).Google Scholar
  103. 103.
    S. Schmerber et al., Eur. Arch. Otorhinolaryngol., 263, 347–354 (2006).Google Scholar
  104. 104.
    X. Wang et al., Otolaryngol. Head Neck Surg., 121, 606–609 (1999).Google Scholar
  105. 105.
    T. Zahnert et al., Am. J. Otol., 21, 322–328 (2000).Google Scholar
  106. 106.
    J. Grote et al., Ann. Otol. Rhinol. Laryngol., 123, 1–5 (1986).Google Scholar
  107. 107.
    J. Grote, Am. J. Otol., 6, 269–271 (1985).Google Scholar
  108. 108.
    C. van Blitterswijk et al., J. Biomed. Mater. Res., 20, 1197–1217 (1986).Google Scholar
  109. 109.
    C. Mangham et al., Ann. Otol. Rhinol. Laryngol., 99, 112–116 (1990).Google Scholar
  110. 110.
    R. Goldenberg et al., Otolaryngol. Head Neck Surg., 122, 635–642 (2000).Google Scholar
  111. 111.
    S. Merchant et al., Am. J. Otol., 18, 139–154 (1999).Google Scholar
  112. 112.
    W. Moretz, Laryngoscope, 108, 1–12 (1998).Google Scholar
  113. 113.
    E. Murugasu et al., Otol. neurotol., 26, 572–582 (2005).Google Scholar
  114. 114.
    D. Mahoney, Comput. Graph. World, 18, 42–48 (1995).Google Scholar
  115. 115.
    C. Lim et al., Int. J. Adv. Manuf. Technol., 20, 44–49 (2002).Google Scholar
  116. 116.
    A. Ovsianikov, B. N. Chichkov, O. Adunka, H. Pillsbury, A. Doraiswamy, R. J. Narayan, Appl. Surf. Sci., 253, 6603 (2007).Google Scholar
  117. 117. Wikipedia® is a registered trademark of the Wikimedia Foundation.
  118. 118.
    D. W. Hutmacher, J. Biomater. Sci. Polym. Ed., 12, 107–124 (2001).Google Scholar
  119. 119.
    B. Harley, H.-D. Kim, M. Zaman, I. Yannas, D. Lauffenburger, L. Gibson, Biophys. Biophys. J., online first (2008).Google Scholar
  120. 120.
    D.-M. Liu, J. of Mater. Sci. Lett., 15, 419–421 (1996).Google Scholar
  121. 121.
    T. Roy, J. Simon, J. Ricci, E. Rekow, V. Thompson, J. Parsons, J. Biomed. Mater. Res., 66A, 283–291 (2003).Google Scholar
  122. 122.
    S. Seyfert, A. Vogt, D. Kabbeck-Kupijai, Biomaterials, 16, 201–207 (1995).Google Scholar
  123. 123.
    K. Fujimoto, A. Nagafuch, S. Tsukita, A. Kuraoka, A. Ohokuma, Y. Shibata, J. Cell Sci., 110, 311–322 (1997).Google Scholar
  124. 124.
    A. Ngezahayo, B. Altmann, M. Steffens, H. Kolb, J. Membr. Biol., 204 137–144 (2005).Google Scholar
  125. 125.
    A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, J. Tissue Eng. Regen. Med., 1, 443–449 (2007).Google Scholar
  126. 126.
    W. Haske, V. Chen, J. Hales, W. Dong, S. Barlow, S. Marder, and J. Perry, Opt. Express, 15, 3426–3436 (2007).Google Scholar
  127. 127.
    M. Martinez-Corral, C. Ibáñez-López, G. Saavedra, and M. Caballero, Opt. Express, 11, 1740–1745 (2003).Google Scholar
  128. 128.
    S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, Appl. Phys. Lett., 64, 1335–1338 (1994).Google Scholar
  129. 129.
    T. A. Klar, E. Engel, and S. W. Hell, Phys. Rev. E, 64, 066611–066619 (2001).MathSciNetGoogle Scholar
  130. 130.
    T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, Proc. Natl. Acad. Sci. U S A, 97, 8206 (2000).Google Scholar
  131. 131.
    J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, Appl. Phys. Lett., 90, 131106 (2007).Google Scholar
  132. 132.
    C. A. Leatherdale, R. J. DeVoe, Proc. SPIE Int. Soc. Opt. Eng., 5211, 112 (2003).Google Scholar
  133. 133.
    K. Takada, H.-B. Sun, and S. Kawata, Appl. Phys. Lett., 86, 071122 (2005).Google Scholar
  134. 134.
    A. Ostendorf and B. N. Chichkov, Photonics Spectra, 40, 72 (2006).Google Scholar
  135. 135.
    S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. A, 80, 683–685 (2005).Google Scholar
  136. 136.
    J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, Appl. Phys. Lett., 86, 044102 (2005).Google Scholar
  137. 137.
    Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science, 273, 347–349 (1996).Google Scholar
  138. 138.
    C. LaFratta, L. Li, J. Fourkas, Proc. Natl. Acad. Sci. U S A, 103, 8589 (2006).Google Scholar
  139. 139.
    R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, J. B. Shear, J. Am. Chem. Soc., 127, 10707 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Aleksandr Ovsianikov
  • Maria Farsari
  • Boris N. Chichkov
    • 1
    • 2
  1. 1.Laser Zentrum HannoverHannoverGermany
  2. 2.Institute of Electronic Structures & Laser (IESL)HeraklionGreece

Personalised recommendations