Skip to main content

Photonic and Biomedical Applications of the Two-Photon Polymerization Technique

  • Chapter
  • First Online:
Stereolithography

Abstract

Since first experimental demonstration of microstructuring using two-photon polymerization (2PP) [1], the technology has experienced rapid development. The unique capability of this technique to create complex 3D structures with resolution, reproducibility, and speed superior to other approaches paved its way to applications in many areas. Figure 11.1a shows some SEM images of structures fabricated by 2PP for demonstrational purposes. Microvenus statues fabricated from negative photoresist SU8 [2] material are presented in comparison to the human hair. Each statue is about 50 μm tall and 20 μm wide, the overall fabrication time is just few minutes. Figure 11.1b shows an array of microspiders fabricated on a glass slide. Each structure is about 50 μm wide and the spider’s body is supported by eight 2 μm thick legs. Finally, a fragment of a windmill array (Fig. 11.1c), produced by 2PP using Ormocore [3] is shown. Fabricated in a single step, the structure consists of two physically separate parts – windmill body and propeller, which are interlocked in such way that the propeller can be rotated around the shaft. Therefore, using 2PP microfabrication it is possible to produce functional micromechanical components in a single step, without the necessity of tedious assembly procedure. Looking at these images, one can see the strength of 2PP technology and envision many potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Maruo, O. Nakamura, S. Kawata, Opt. Lett., 22, 132 (1997).

    Google Scholar 

  2. http://www.michrochem.com

  3. http://www.microresist.de

  4. H. B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett., 74, 786 (1999).

    Google Scholar 

  5. B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. Wu, S. Marder, J. Perry, Nature, 398, 51–54 (1999).

    Google Scholar 

  6. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, Nat. Mater., 3, 444 (2004).

    Google Scholar 

  7. M. Straub, L. H. Nguyen, A. Fazlic, M. Gu, Opt. Mater., 27, 359 (2004).

    Google Scholar 

  8. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa, Adv. Mater., 17, 541 (2005).

    Google Scholar 

  9. S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, K. Dorkenoo, Appl. Phys. Lett., 86, 211118 (2005).

    Google Scholar 

  10. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, W. Huang, Opt. Express, 14, 810 (2006).

    Google Scholar 

  11. F. C. Wippermann, D. Radtke, U. Zeitner, J. W. Duparre, A. Tunnermann, M. Amberg, S. Sinzinger, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, Proc. SPIE Vol. 6288, “Current developments in lens design and optical engineering VII”, San Diego, 14–15. 8 (2006).

    Google Scholar 

  12. T. Yokoyama et al., Appl. Phys. Lett., 82, 3221 (2003).

    Google Scholar 

  13. H. Sun, T. Kawakami, Y. Xu, J. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, Opt. Lett., 25, 1110 (2000).

    Google Scholar 

  14. C. Reinhardt, S. Passinger, B. Chichkov, C. Marquart, I. Radko, and S. Bozhevolnyi, Opt. Lett., 31, 1307 (2006).

    Google Scholar 

  15. A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, B. Chichkov, Acta Biomater., 2, 267–275 (2006).

    Google Scholar 

  16. S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.-A. Kolb, H. Haferkamp, B. N. Chichkov, J. Biomater. Appl., 22, 275–287 (2007).

    Google Scholar 

  17. J. D. Pitts, P. J. Campagnola, G. A. Epling, S. L. Goodman, Macromolecules, 33, 151 (2000).

    Google Scholar 

  18. S. Basu, P. J. Campagnola, Biomacromolecules, 5, 572 (2004).

    Google Scholar 

  19. V. Dinca, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, Nano Lett., 8, 538–543 (2008).

    Google Scholar 

  20. S. Maruo, K. Ikuta, H. Korogi, Appl. Phys. Lett., 82, 133 (2003).

    Google Scholar 

  21. S. Maruo, Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 94, 101 (2006).

    Google Scholar 

  22. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata, Opt. Express, 14, 800 (2006).

    Google Scholar 

  23. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata, Appl. Phys. Lett., 88, 083110 (2006).

    Google Scholar 

  24. Y.-S. Chen, A. Tal, D. B. Torrance, S. M. Kuebler, Adv. Funct. Mater., 16, 1739 (2006).

    Google Scholar 

  25. V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, and H. Misawa, Opt. Express, 15, 8454–8464 (2007).

    Google Scholar 

  26. R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, J. T. Fourkas, J. Am. Chem. Soc., 128, 1796 (2006).

    Google Scholar 

  27. E. Yablonovitch, Phys. Rev. Lett., 58, 2059–2062 (1987).

    Google Scholar 

  28. S. John, Phys. Rev. Lett., 58, 2486–2489 (1987).

    Google Scholar 

  29. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals, Wiley, Berlin (2004).

    Google Scholar 

  30. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Berlin and Heidelberg (2005).

    Google Scholar 

  31. S. G. Johnson, J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, Springer, Berlin (2001).

    Google Scholar 

  32. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Edition, Princeton University Press, Princeton (2008).

    MATH  Google Scholar 

  33. K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin (2005).

    Google Scholar 

  34. K. Inoue and K. Ohtaka (eds.), Photonic Crystals, Physics, Fabrication and Applications, Springer, Berlin (2004).

    Google Scholar 

  35. S. Noda and T. Baba (eds.), Roadmap on Photonic Crystals, Kluwer Academic Publishers, Boston (2003).

    Google Scholar 

  36. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature, 386, 143–149 (1997).

    Google Scholar 

  37. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science, 289, 604–606 (2000).

    Google Scholar 

  38. A. Chutinan, S. John, and O. Toader, Phys. Rev. Lett., 90, 123901 (2003).

    Google Scholar 

  39. P. Markowicz, Ch. Friend, Y. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd., Opt. Lett., 27, 351 (2002).

    Google Scholar 

  40. M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, Phys. Rev. Lett., 86, 1526 (2001).

    Google Scholar 

  41. J. Maddox, “Photonic band-gaps bite the dust,” Nature, 348, 481 (1990).

    Google Scholar 

  42. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature, 394, 251–253 (1998).

    Google Scholar 

  43. N. Yamamoto, S. Noda, and A. Sasaki, Jpn. J. Appl. Phys., 36, 1907 (1997).

    Google Scholar 

  44. S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano, J. Lightwave Technol., 17, 1948 (1999).

    Google Scholar 

  45. F. García-Santamaría, H. T. Miyazaki, A. Urquía, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, C. López, Adv. Mat., 14, 1144 (2002).

    Google Scholar 

  46. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater., 11, 2132 (1999).

    Google Scholar 

  47. J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, Phys. Rev. Lett., 83, 300 (1999).

    Google Scholar 

  48. R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, Phys. Rev. B, 57, 3701 (1998).

    Google Scholar 

  49. K. Busch and S. John, Phys. Rev. E, 58, 3896 (1998).

    Google Scholar 

  50. D. J. Norris, Y. A. Vlasov, Adv. Mat., 13, 371–376 (2001).

    Google Scholar 

  51. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondla, G. A. Ozin, O. Toader, and H. M. van Driel, Nature, 45, 437 (2000).

    Google Scholar 

  52. W. M. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater., 14, 271 (2002).

    Google Scholar 

  53. Y. Yin and Y. Xia, Adv. Mater., 14, 605 (2002).

    Google Scholar 

  54. H. Míguez, S. M. Yang, N. Tétreault, and G. A. Ozin, Adv. Mater., 14, 1805 (2002).

    Google Scholar 

  55. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature (London), 404, 53 (2000).

    Google Scholar 

  56. S. Shoji and S. Kawata, Appl. Phys. Lett., 76, 2668 (2000).

    Google Scholar 

  57. S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett., 83, 608 (2003).

    Google Scholar 

  58. Y. Miklyaev, D. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, Appl. Phys. Lett., 82, 1284 (2003).

    Google Scholar 

  59. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, Appl. Phys. Lett., 82, 2212–2214 (2003).

    Google Scholar 

  60. H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, Appl. Phys. Lett., 79, 1 (2001).

    Google Scholar 

  61. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, Appl. Phys. Lett., 83, 2091 (2003).

    Google Scholar 

  62. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, G. von Freymann, Nat. Mater., 5, 942 (2006).

    Google Scholar 

  63. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, G. A. Ozin, Adv. Mat., 18, 457 (2006).

    Google Scholar 

  64. M. Straub and M. Gu, Opt. Lett., 27, 1824–1826 (2002).

    Google Scholar 

  65. J. Serbin, A. Ovsianikov, and B. Chichkov, Opt. Express, 12, 5221–5228 (2004).

    Google Scholar 

  66. A. Chutinan, S. Noda, Phys. Rev B, 57, R2006 (1998).

    Google Scholar 

  67. M. Maldovan and E. L. Thomas, Nat. Mater., 3 593–600 (2004).

    Google Scholar 

  68. A. Ovsianikov, J. Viertl, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, and B. Chichkov, ACS Nano, 2, 2257–2262 (2008).

    Google Scholar 

  69. M. Deubel, M. Wegener, S. Linden, and G. von Freymann, Appl. Phys. Lett., 87, 221104 (2005).

    Google Scholar 

  70. S. Romanov et al., Phys. Rev. E, 63 056603–056605 (2001).

    Google Scholar 

  71. S. Romanov et al., Appl. Phys. Lett., 90 133101–133103 (2007).

    Google Scholar 

  72. A. Lavrinenko, S. Romanov, PECS-VII Monterey, USA, April 8–11 (2007).

    Google Scholar 

  73. H. X. Zhang, D. Lu, N. Peyghambarian, M. Fallahi, J. D. Luo, B. Q. Chen, and A. K.-Y. Jen, Opt. Lett., 30, 117–119 (2004).

    MATH  Google Scholar 

  74. H. Goudket, M. Canva, Y. Levy, F. Chaput, and J. P. Boilot, J. Appl. Phys., 90, 6044–6047 (2001).

    Google Scholar 

  75. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, Nat. Photonics, 1, 180–185 (2007).

    Google Scholar 

  76. H. X. Zhang, D. Lu, T. Liu, M. Mansuripur, and M. Fallahi, Appl. Phys. Lett., 85, 4275–4277 (2004).

    Google Scholar 

  77. H. X. Zhang, D. Lu, M. Fallahi, Opt. Mater., 28, 992–999 (2006).

    Google Scholar 

  78. M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, Appl. Phys. A, 93, 11–15 (2008).

    Google Scholar 

  79. D. H. Choi, J. H. Park, T. H. Rhee, N. Kim, and S.-D. Lee, Chem. Mater., 10, 705–709 (1998).

    Google Scholar 

  80. D. Riehl, F. Chaput, Y. Levy, J. P. Boilot, F. Kajzar, and P. A. Chollet, Chem. Phys. Lett., 245, 36–40 (1995).

    Google Scholar 

  81. V. G. Zarnitsyn, M. R. Prausnitz, Y. A. Chizmadzhev, Biol. Membr., 21, 355–373 (2004).

    Google Scholar 

  82. G. J. Opiteck, J. E. Scheffler, Expert Rev. Proteomics, 1, 57–66 (2004).

    Google Scholar 

  83. R. O. P. Potts, R. A. Lobo, Obstet. Gynecol., 105, 953–961 (2005).

    Google Scholar 

  84. M. R. Prausnitz, Adv. Drug Deliv. Rev., 56, 581–587 (2004).

    Google Scholar 

  85. M. R. Prausnitz, S. Mitragotri, R. Langer, Nat. Rev. Drug Discov., 3, 115–124 (2004).

    Google Scholar 

  86. S. Chong, H. L. Fung, “Transdermal Drug Delivery Systems: Pharmacokinetics, Clinical Efficacy, and Tolerance Development”. In: J. Hadgraft, R. H. Guy (eds.), Transdermal Drug Delivery: Developmental Issues and Research Initiatives, Dekker, New York, 135 (1989).

    Google Scholar 

  87. G. L. Flynn, “Cutaneous and Transdermal Delivery: Processes and Systems of Delivery”, In: G. S. Banker, C. T. Rhodes (eds.), Modern Pharmaceutics. Dekker, New York, 239–299 (1996).

    Google Scholar 

  88. R. K. Sivamani, B. Stoeber, G. C. Wu, H. Zhai, D. Liepmann, H. Maibach, Skin Res. Technol., 11, 152–156 (2005).

    Google Scholar 

  89. S. Mitragotri, J Control. Release, 71, 23–29 (2001).

    Google Scholar 

  90. B. W. Barry, Eur. J. Pharm. Sci., 14, 101–114 (2001).

    Google Scholar 

  91. P. Griss, G. Stemme, J. Microelectromech. Syst., 12, 296–301 (2003).

    Google Scholar 

  92. R. L. Daniels et al., Laryngoscope, 108, 1674–1681 (1998).

    Google Scholar 

  93. A. De la Cruz et al., Otolaryngol. Clin. North Am., 27, 799–811 (1994).

    Google Scholar 

  94. S. Albu et al., Am. J. Otolaryngol., 19, 136–140 (1998).

    Google Scholar 

  95. A. Y. Bayazit, Laryngoscope, 110, 176–177 (2000).

    Google Scholar 

  96. R. L. Goode et al., Otolaryngol. Clin. North Am., 27, 663–675 (1994).

    Google Scholar 

  97. V. Colletti et al., Otolaryngol. Head Neck Surg., 120, 437–444 (1999).

    Google Scholar 

  98. O. Cura et al., Rev. Laryngol. Otol. Rhinol., 121, 87–90 (2000).

    Google Scholar 

  99. M. Glasscock et al., Arch. Otolaryngol. Head Neck Surg., 114, 1252–1255 (1988).

    Google Scholar 

  100. K. Jahnke et al., Biomaterials, 4, 137 (1983).

    Google Scholar 

  101. K. Schwager, Eur. Arch. Otorhinolaryngol., 255, 396–401 (1998).

    Google Scholar 

  102. C. Stupp et al., Laryngorhinootologie, 78, 299–303 (1999).

    Google Scholar 

  103. S. Schmerber et al., Eur. Arch. Otorhinolaryngol., 263, 347–354 (2006).

    Google Scholar 

  104. X. Wang et al., Otolaryngol. Head Neck Surg., 121, 606–609 (1999).

    Google Scholar 

  105. T. Zahnert et al., Am. J. Otol., 21, 322–328 (2000).

    Google Scholar 

  106. J. Grote et al., Ann. Otol. Rhinol. Laryngol., 123, 1–5 (1986).

    Google Scholar 

  107. J. Grote, Am. J. Otol., 6, 269–271 (1985).

    Google Scholar 

  108. C. van Blitterswijk et al., J. Biomed. Mater. Res., 20, 1197–1217 (1986).

    Google Scholar 

  109. C. Mangham et al., Ann. Otol. Rhinol. Laryngol., 99, 112–116 (1990).

    Google Scholar 

  110. R. Goldenberg et al., Otolaryngol. Head Neck Surg., 122, 635–642 (2000).

    Google Scholar 

  111. S. Merchant et al., Am. J. Otol., 18, 139–154 (1999).

    Google Scholar 

  112. W. Moretz, Laryngoscope, 108, 1–12 (1998).

    Google Scholar 

  113. E. Murugasu et al., Otol. neurotol., 26, 572–582 (2005).

    Google Scholar 

  114. D. Mahoney, Comput. Graph. World, 18, 42–48 (1995).

    Google Scholar 

  115. C. Lim et al., Int. J. Adv. Manuf. Technol., 20, 44–49 (2002).

    Google Scholar 

  116. A. Ovsianikov, B. N. Chichkov, O. Adunka, H. Pillsbury, A. Doraiswamy, R. J. Narayan, Appl. Surf. Sci., 253, 6603 (2007).

    Google Scholar 

  117. http://en.wikipedia.org/wiki/Tissue_engineering Wikipedia® is a registered trademark of the Wikimedia Foundation.

  118. D. W. Hutmacher, J. Biomater. Sci. Polym. Ed., 12, 107–124 (2001).

    Google Scholar 

  119. B. Harley, H.-D. Kim, M. Zaman, I. Yannas, D. Lauffenburger, L. Gibson, Biophys. Biophys. J., online first (2008).

    Google Scholar 

  120. D.-M. Liu, J. of Mater. Sci. Lett., 15, 419–421 (1996).

    Google Scholar 

  121. T. Roy, J. Simon, J. Ricci, E. Rekow, V. Thompson, J. Parsons, J. Biomed. Mater. Res., 66A, 283–291 (2003).

    Google Scholar 

  122. S. Seyfert, A. Vogt, D. Kabbeck-Kupijai, Biomaterials, 16, 201–207 (1995).

    Google Scholar 

  123. K. Fujimoto, A. Nagafuch, S. Tsukita, A. Kuraoka, A. Ohokuma, Y. Shibata, J. Cell Sci., 110, 311–322 (1997).

    Google Scholar 

  124. A. Ngezahayo, B. Altmann, M. Steffens, H. Kolb, J. Membr. Biol., 204 137–144 (2005).

    Google Scholar 

  125. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, J. Tissue Eng. Regen. Med., 1, 443–449 (2007).

    Google Scholar 

  126. W. Haske, V. Chen, J. Hales, W. Dong, S. Barlow, S. Marder, and J. Perry, Opt. Express, 15, 3426–3436 (2007).

    Google Scholar 

  127. M. Martinez-Corral, C. Ibáñez-López, G. Saavedra, and M. Caballero, Opt. Express, 11, 1740–1745 (2003).

    Google Scholar 

  128. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, Appl. Phys. Lett., 64, 1335–1338 (1994).

    Google Scholar 

  129. T. A. Klar, E. Engel, and S. W. Hell, Phys. Rev. E, 64, 066611–066619 (2001).

    MathSciNet  Google Scholar 

  130. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, Proc. Natl. Acad. Sci. U S A, 97, 8206 (2000).

    Google Scholar 

  131. J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, Appl. Phys. Lett., 90, 131106 (2007).

    Google Scholar 

  132. C. A. Leatherdale, R. J. DeVoe, Proc. SPIE Int. Soc. Opt. Eng., 5211, 112 (2003).

    Google Scholar 

  133. K. Takada, H.-B. Sun, and S. Kawata, Appl. Phys. Lett., 86, 071122 (2005).

    Google Scholar 

  134. A. Ostendorf and B. N. Chichkov, Photonics Spectra, 40, 72 (2006).

    Google Scholar 

  135. S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. A, 80, 683–685 (2005).

    Google Scholar 

  136. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, Appl. Phys. Lett., 86, 044102 (2005).

    Google Scholar 

  137. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science, 273, 347–349 (1996).

    Google Scholar 

  138. C. LaFratta, L. Li, J. Fourkas, Proc. Natl. Acad. Sci. U S A, 103, 8589 (2006).

    Google Scholar 

  139. R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, J. B. Shear, J. Am. Chem. Soc., 127, 10707 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge very important contribution from their colleagues, who have been involved in different part of this work: R. Kiyan, S. Schlie, A. Ngezahayo, M. Vamvakaki, and C.Fotakis. Biomedical applications have been studied in cooperation with A. Doraiswamy, T. Patz, R. Narayan, R. Modi, R. Auyeung, and O. Adunka. This work has been supported by the Excellence Cluster ReBirth, and DFG Transregio project TR37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris N. Chichkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ovsianikov, A., Farsari, M., Chichkov, B.N. (2011). Photonic and Biomedical Applications of the Two-Photon Polymerization Technique. In: Bártolo, P. (eds) Stereolithography. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92904-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92904-0_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92903-3

  • Online ISBN: 978-0-387-92904-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics