Transport of Steroids in Soil Under Field Conditions

Part of the Emerging Topics in Ecotoxicology book series (ETEP, volume 1)


Although the behavior of soils in batch experiments has been extensively described, there is little field work on actual soils. After amendment with animal manures, nearly all of the estrogen is found bound to the topsoil. In contrast, testo­sterone readily penetrates the vadose zone and reaches the groundwater. However, in some situations like water saturated soils or karst formation, estrogen also can reach the groundwater.


Vadose Zone Preferential Flow Testosterone Concentration Lysimeter Water Fecal Coliform Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnon S, Ofer D, Elhananni S, Cohen K, Pankratov I, Gross A, et al. Transport of testosterone and estrogen from dairy farms waste lagoons to groundwater. Environ Sci Technol. 2008;42: 5521–5526CrossRefGoogle Scholar
  2. Boll J, Steenhuis TS, Selker JS. Fiberglass wicks for sampling of water and solutes in the vadose zone. Soil Sci Soc Am J. 1992;56:701–707CrossRefGoogle Scholar
  3. Casey FXM, Logsdon SD, Horton R, Jaynes DB. Immobile water content and mass exchange coefficient of a field soil. Soil Sci Soc Am J. 1997;61:1030–1036CrossRefGoogle Scholar
  4. Casey, FXM, Larsen G, Hakk HH, Šimůnek J. Fate and transport of 17β-estradiol in soil-water systems. Environ Sci Technol. 2003;37:2400–2409CrossRefGoogle Scholar
  5. Casey, FXM, Hakk H, Šimůnek J, Larsen GL. Fate and transport of testosterone in agricultural soils. Environ Sci Technol. 2004;38:790–798CrossRefGoogle Scholar
  6. Casey FXM, Šimůnek J, Lee J, Hakk H, Larsen GL. Sorption, mobility, and transformation of estrogenic hormones in natural soil. J Environ Qual. 2005;34:1372–1379CrossRefGoogle Scholar
  7. Casey FXM, Oduor P, Hakk H, Larsen GL, DeSutter TM. Transport of 17β-estradiol and testosterone in a field lysimeter. Soil Sci. 2008;173:456–467CrossRefGoogle Scholar
  8. Fan Z, Casey FXM, Hakk H, Larsen GL (2008) Modeling coupled degradation, sorption, and transport of 17β-estradiol in undisturbed soil. Water Resour. Res 44:W08424, DOI 10.1029/2007WR006407Google Scholar
  9. Fan Z, Casey FXM, Larsen GL, Hakk H. Persistence and fate of 17β-estradiol and testosterone in agricultural soils. Chemosphere. 2007;67:886–895CrossRefGoogle Scholar
  10. Finlay-Moore O, Hartel PG, Cabrera ML. 17β-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter. J Environ Qual. 2000;29:1604–1611CrossRefGoogle Scholar
  11. Herman JS, Mills AL. Biological and hydrogeological interactions affect the persistence of 17β-estradiol in an agricultural watershed. Geobiology. 2003;1:141–151CrossRefGoogle Scholar
  12. Holder M, Brown KW, Thomas JC, Zabcik D, Murray HE. Capillary wick unsaturated zone pore water sampler. Soil Sci Soc Am J. 1991;55:1195–1202CrossRefGoogle Scholar
  13. Jenkins MB, Endale DM, Schomberg HH, Sharpe RR. Fecal bacteria and sex hormones in soil and runoff from cropped watersheds amended with poultry litter. Sci Total Environ. 2006; 358:164–177CrossRefGoogle Scholar
  14. Joss A, Andersen H, Ternes T, Richle PR, Siegrist H. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol. 2004;38:3047–3055CrossRefGoogle Scholar
  15. Layton AC, Gregory BW, Seward JR, Schultz TW, Sayler GS. Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee USA. Environ Sci Technol. 2000;34:3925–3931CrossRefGoogle Scholar
  16. Liu R, Wilding A, Hibberd A, Zhou JL. Partition of endocrine-disrupting chemicals between colloids and dissolved phase as determined by cross-flow ultrafiltration. Environ Sci Technol. 2005;39:2753–2761CrossRefGoogle Scholar
  17. Peterson EW, Davis RK, Orndorff HA. 17β-Estradiol as an indicator of animal waste contamination in mantled karst aquifers. J Environ Qual. 2000;29:826–834CrossRefGoogle Scholar
  18. Peterson EW, Wicks CM, Kelley CA. Persistence of 17β-estradiol in water and sediment-pore water from cave streams in central Missouri. Environ Eng Geosci. 2005;11:221–228.CrossRefGoogle Scholar
  19. Schmitt MA (1999) Manure management in Minnesota (FO-3553-GO), vol (FO-3553-GO). Minnesota Extension Service, St. Paul, MNGoogle Scholar
  20. Schiffer B, Totsche KU, Jann S, Kögel-Knabner I, Meyer K, Meyer HHD. Mobility of the growth promoters trenbolone and melengestrol acetate in agricultural soil: column studies. Sci Total Environ. 2004;326:225–237CrossRefGoogle Scholar
  21. Shore L, Kapulnik Y, Ben-Dov B, Fridman Y, Weninger S, Shemesh M. Effects of estrone and 17β-estradiol on vegetative growth of Medicago sativa. Physiol Plant. 1992;84:217–222.CrossRefGoogle Scholar
  22. Shore L, Gurevich M, Shemesh M. Estrogen as an environmental pollutant. Bull Environ Contam Toxicol. 1993;51:361–366CrossRefGoogle Scholar
  23. Shore LS, Hall DW, Shemesh M. Estrogen and testosterone in ground water in the Chesapeake Bay Watershed. , Dahlia Greidinger International Symposium on Fertilization and the EnvironmentHaifa, Israel: Technion; 1997. p. 250–255Google Scholar
  24. Shore LS, Reichman O, Shemesh M, Wenzel A, Litaor M. Washout of accumulated testosterone in a watershed. Sci Total Environ. 2004;332:193–202CrossRefGoogle Scholar
  25. Stumpe B, Marschner B. Long-term sewage sludge application and wastewater irrigation on the mineralization and sorption of 17β-estradiol and testosterone in soils. Sci Total Environ. 2007;374:282–291CrossRefGoogle Scholar
  26. Thompson ML, Casey FXM, Khan E, Hakk H, Larsen GL, DeSutter TM (2009) Occurrence and pathways of manure-borne 17β-estradiol in vadose zone water. Chemosphere DOI 10.1016/j.chemosphere.2009.03.037Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.North Dakota State UniversityFargoUSA

Personalised recommendations