Effects of Steroid Hormones on Aquatic and Soil Organisms

Part of the Emerging Topics in Ecotoxicology book series (ETEP, volume 1)


The naturally occurring steroid hormones are evolutionary old compounds and have documented effects in most phyla. The problem for environmental effects is therefore a matter of determining which effects may have an environmental impact at concentrations released from CAFOs. Of primary concern are the suspected effects on fish reproduction. The effects of steroids on soil organisms may actually increase biomass as steroids can serve as a carbon source.


Beta Proteobacteria Soil Organism Legume Plant Fish Reproduction Estrogen Responsive Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alon G, Shore LS, Steinberger Y (2007) Correlation between levels of sex hormones (progesterone, testosterone, estrogen) and ecophysiological behavior stages in two species of desert snails (Sphincterochila zonata and Sphincterochila prophetarum) in the northern Negev Desert. Gen Comp Endo 151:122–127CrossRefGoogle Scholar
  2. Breskvar K, Ferenčak Z, Hudnik-Plevnik T (1995) The role of cytochrome P45011α in detoxification of steroids in the filamentous fungus Rhizopus nigricans. J Steroid Biochem Mol Biol 52:271–275CrossRefGoogle Scholar
  3. Brian JV, Harris CA, Scholze M, Backhaus T, Booy P, Lamoree M, Pojana G, Jonkers N, Runnalls T, Bonfà A, Marcomini A, Sumpter JP (2005) Prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environ Health Perspect 113:721–728CrossRefGoogle Scholar
  4. Chun S, Lee J, Geyer R, White DC, Raman DR (2005) Effect of agricultural antibiotics on the persistence and transformation of 17β-estradiol in a Sequatchie loam. J Environ Sci Health B 40:741–751CrossRefGoogle Scholar
  5. Chun S, Lee J, Radosevich M, White DC, Geyer RJ (2006) Influence of agricultural antibiotics and 17β-estradiol on the microbial community of soil. Environ Sci Health B 41:923–935CrossRefGoogle Scholar
  6. Clemons KV, Stover EP, Schar G, Stathis PA, Chan K, Tokes L, Stevens DA, Feldman D (1989) Steroid metabolism as a mechanism of escape from progesterone-mediated growth inhibition in Trichophyton mentagrophytes. J Biol Chem 264:11186–11192Google Scholar
  7. Custodia N, Won SJ, Novillo A, Wieland M, Li C, Callard IP (2001) Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann NY Acad Sci 948:32–42CrossRefGoogle Scholar
  8. Degani G, Boker R, Jackson K (1998) Growth hormone, sexual maturity and steroids in male carp (Cyprinus carpio). Comp Biochem Physiol C 120:433–440Google Scholar
  9. Denslow ND, Leeb HS, Bowmanc CJ, Hemmerd MJ, Folmard LC (2001) Multiple responses in gene expression in fish treated with estrogen. Comp Biochem Physiol B 129:277–282CrossRefGoogle Scholar
  10. Dropkin VH, Lower WR, Acedo J (1971) Growth inhibition of Caenorhabditis elegans and Panagrellus redivivus by selected mammalian and insect hormones. J Nematol 3:349–355Google Scholar
  11. Folmar LC, Hemmer M, Hemmer R, Bowman C, Kroll K, Denslow ND (2000) Comparative estrogenicity of estradiol, ethynylestradiol and diethylstilbestrol in an in vivo, male sheepshead minnow (Cyprinodon variegatus), vitellogenin bioassay. Aquat Toxicol 49:77–88CrossRefGoogle Scholar
  12. Fox JE, Starcevic M, Jones PE, Burow ME, McLachlan JA (2004) Phytoestrogen signaling and symbiotic gene activation are disrupted by endocrine-disrupting chemicals. Environ Health Perspect 112:672–677CrossRefGoogle Scholar
  13. Hoshi H, Kamata Y, Uemura T (2003) Effects of 17β-estradiol, bisphenol A and tributyltin chloride on germ cells of Caenorhabditis elegans. J Vet Med Sci 65:881–885CrossRefGoogle Scholar
  14. Höss S, Weltje L (2007) Endocrine disruption in nematodes: effects and mechanisms Ecotoxicology 16:15–28Google Scholar
  15. Howell WM, Black DA, Bortone SA (1980) Abnormal expression of secondary sex characters in a population of mosquitofish, Gambusia affinis holbrooki: evidence for environmentally-induced masculinization. Copeia 1980:676–681CrossRefGoogle Scholar
  16. Huggert DB, Ericson JF, Cook JC, Williams RT (2004) In: Kümmerer K (ed) Pharmaceuticals in the environment. Sources, fate, effects and risks, 2nd edn. Springer-Verlag, Heidelberg Berlin pp 373–386Google Scholar
  17. Jobling S, Nolan M, Tyler CR, Brighty GC, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506CrossRefGoogle Scholar
  18. Koger CS, Teh SJ, Hinton DE (2000) Determining the sensitive developmental stages of intersex induction in medaka (Oryzias latipes) exposed to 17ß-estradiol or testosterone. Marine Environ Res 50:201–206CrossRefGoogle Scholar
  19. Kramer VJ, Miles-Richardson S, Pierens SL, Giesy GP (1998) Reproductive impairment and induction of alkaline-labile phosphate, a biomarker of estrogen exposure, in fathead minnows (Pimephales promelas) exposed to waterborne 17β-estradiol. Aquat Toxicol 40:335–360CrossRefGoogle Scholar
  20. Krisfalusi M, Nagler JJ (2000) Induction of gonadal intersex in genotypic male rainbow trout (Oncorhynchus mykiss) embryos following immersion in estradiol-17ß. Mol Reprod Dev 56:495–501CrossRefGoogle Scholar
  21. Larsson DGJ, Erici MA, Parkkonen J, Pettersson M, Berg AH, Olsson PE, Forlin L (1999) Ethinyloestradiol - An undesired fish contraceptive? Aquat Toxicol 45:91–97CrossRefGoogle Scholar
  22. Markman S, Guschina IA, Barnsley S, Buchanan KL, Pascoe D, Müller CT (2007) Endocrine disrupting chemicals accumulate in earthworms exposed to sewage effluent. Chemosphere 70:119–125CrossRefGoogle Scholar
  23. Metcalfe CD, Metcalfe TL, Kiparissis Y, Koenig BG, Khan C, Hughes RJ, Croley TR, March RE, Potter T (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem 20:297–308Google Scholar
  24. Mimoto A, Fujii M, Usami M, Shimamura M, Hirabayashi N, Kaneko T, Sasagawa N, Ishiura S (2007) Identification of an estrogenic hormone receptor in Caenorhabditis elegans. Biochem Biophy Res Commun 364:883–888CrossRefGoogle Scholar
  25. Möbus E, Jahn M, Schmid R, Jahn D, Maser E (1997) Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J Bacteriol 179:5951–5955Google Scholar
  26. Nakamura M (1984) Effects of estradiol-17β on gonadal sex differentiation in two species of salmonids, the masu salmon, Oncorhynchus masou, and the chum salmon. O. keta. Aquaculture 43:83–90CrossRefGoogle Scholar
  27. Nash JP, Kime DE, Van der Ven LTM, Wester PW, Brion F, Maack G (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112:1725–1733CrossRefGoogle Scholar
  28. Oehlmann J, Schulte-Oehlmann U (2003) Endocrine disruption in invertebrates. Pure Appl Chem 75:2207–2218CrossRefGoogle Scholar
  29. Oehlmann J, Di Benedetto P, Tillmann M, Duft M, Oetken M, Schulte-Oehlmann U (2007) Endocrine disruption in prosobranch molluscs: evidence and ecological relevance. Ecotoxicology 16:29–43CrossRefGoogle Scholar
  30. Panter GH, Thompson RS, Sumpter JP (1998) Adverse reproductive effects in male fathead minnows (Pimephles promelas) exposed to environmentally relevant concentrations of the natural oestrogens, oestradiol and oestrone. Aquat Toxicol 42:243–253CrossRefGoogle Scholar
  31. Purdam CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Estrogenic effects of effluent from sewage treatment works. Chem Ecol 8:275–285CrossRefGoogle Scholar
  32. Rose J, Holbech H, Lindholst C, Norum U, Povlsen A, Korsgaard B, Bjerregaard P (2000) Vitellogenin induction by 17β-estradiol and 17α-ethinylestradiol in male zebrafish (Danio rerio). Comp Biochem Physiol C 131:531–539Google Scholar
  33. Routledge EJ, Sheahan D, Desbrow GC, Brighty M, Waldock M, Sumpter JP (1998) Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32:1559–1565CrossRefGoogle Scholar
  34. Shore LS, Kapulnik Y, Ben-Dov B, Fridman Y, Wininger S, Shemesh M (1992) Effects of estrone and 17ß-estradiol on vegetative growth of Medicago sativa. Physiol Plant 84:217–222CrossRefGoogle Scholar
  35. Shore LS, Gurevich M, Shemesh M, (1993) Estrogen as an environmental pollutant. Bull Environ Contam Toxicol 51:361–366CrossRefGoogle Scholar
  36. Shore LS, Kapulnik Y, Gurevich M, Wininger S, Badamy H, Shemesh M (1995) Induction of phytoestrogens production in Medicago sativa leaves by irrigation with sewage water. Environ Exp Bot 35:363–369CrossRefGoogle Scholar
  37. Shore LS, Cuneah O, Barel-Cohen K (2007) Concentrations of androstenedione and testosterone in manure, effluent, soil and surface water. In:Proceedings of the 6th international conference on pharmaceuticals and EDC chemicals in water. http://ngwa.confex.com/ngwa/pharm6/techprogram/S2007.HTM
  38. Sumpter JP (1995) Feminized responses in fish to environmental estrogens. Toxicol Lett 82(83):737–742CrossRefGoogle Scholar
  39. Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103:173–178Google Scholar
  40. Thong CHS, Webster JM (1971) The effect of gonadotrophins on the in vitro growth of the free-living nematode Cephalobus sp. Bastian. Can J Zool 49:1059–1061CrossRefGoogle Scholar
  41. Thorpe KL, Benstead R, Hutchinson TH, Cummings RI, Tyler CR (2003) Reproductive effects of exposure to oestrone in the fathead minnow. Fish Physiol Biochem 28:451–452CrossRefGoogle Scholar
  42. Tominaga N, Tomoeda M, Kohra S, Takao Y, Nagae M, Ueda K, Ishibashi H, Kai T, Arizono K (2002) A convenient sublethal assay of alkylphenol and organotin compounds using the nematode Caenorhabditis elegans. J Health Sci 48:555–559CrossRefGoogle Scholar
  43. Van den Belt K, Berckmans P, Vangenechten C, Verheyen R, Witters H (2004) Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquat Toxicol 66:183–195CrossRefGoogle Scholar
  44. Vitas M, Smith KE, Plavec J, Kesselmeier J, Pajič T, Ferlan A, Žigon D, Kelly SL, Komel R (1999) Induction of steroidal hydroxylase activity by plant defence compounds in the filamentous fungus Cochliobolus lunatus. Chemosphere 38:853–863CrossRefGoogle Scholar
  45. Wang R, Belosevic M (1994) Estradiol increases susceptibility of goldfish to Trypanosoma danilewskyi. Dev Comp Immunol 18:377–387CrossRefGoogle Scholar
  46. Webb SF (2004) A data based perspective on the environmental risk assessment of human pharmaceuticals III- indirect human exposure. In: Kümmerer K (ed) Pharmaceuticals in the environment. Sources, fate, effects and risks, 2nd edn. Springer-Verlag, Heidelberg Berlin pp 373–386Google Scholar
  47. Woo NYS, Chung ASB, Ng TB (1993) Influence of oral administration of estradiol-17β and testosterone on growth, digestion, food conservation and metabolism in the underyearling red sea bream, Chrysophrys major. Fish Physiol Biochem 10:377–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Endocrinology and ToxicologyKimron Veterinary InstituteBet DaganIsrael

Personalised recommendations