Advertisement

Characterization of Starch and Composite Edible Films and Coatings

  • María A. García
  • Adriana Pinotti
  • Miriam N. Martino
  • Noemí E. Zaritzky
Chapter

Abstract

Starch-based and composite edible films and coatings can enhance food quality, safety and stability. They can control mass transfer between components within a product, as well as between product and environment. They can improve performance of the product through the addition of antioxidants, antimicrobial agents, and other food additives. Unique advantages of edible films and coatings can lead to the development of new products, such as individual packaging for particular foods, carriers for various food additives, and nutrient supplements. Film materials and their properties have been reviewed extensively in this book and previously (Guilbert 1986; Kester and Fennema 1986; Krochta and De Mulder-Johnson 1997).

Composite films can be formulated to combine the advantages of each component. Biopolymers, such as proteins and polysaccharides, provide the supporting matrix for most composite films, and generally offer good barrier properties to gases, with hydrocolloid components providing a selective barrier to oxygen and carbon dioxide (Guilbert 1986; Kester and Fennema 1986; Drake et al. 1987, 1991; Baldwin 1994; Wong et al. 1992; Baldwin et al. 1997). Lipids provide a good barrier to water vapour (Nisperos-Carriedo 1994; Baldwin et al. 1997), while plasticizers are necessary to enhance flexibility and improve film’s mechanical properties.

Keywords

Composite Film Water Vapour Permeability Edible Film Potassium Sorbate Starch Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial support provided by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Agencia Nacional de Promoción Científica y Tecnológica and Universidad Nacional de La Plata is gratefully acknowledged.

References

  1. Ahvenainen R (2003) Novel food packaging techniques. Boca Raton, FL: CRC Press LLCGoogle Scholar
  2. Albertsson AC, Karlsson S (1995) Degradable polymers for the future. Acta Polymers, 46, 114–123Google Scholar
  3. Arvanitoyannis I, Kalichevsky M, Blanshard JMV, Psomiadou E (1994) Study of diffusion and permeation of gases in undrawn and uniaxially drawn films made from potato and rice starch conditioned at different relative humidities. Carbohydr. Polym. 24, 1–15Google Scholar
  4. ASTM (1996a) Standard test methods for water vapour transmission of material, E96 – 95. Annual book of ASTM. Philadelphia, PA: American Society for Testing and MaterialsGoogle Scholar
  5. ASTM (1996b) Standard test methods for tensile properties of thin plastic sheeting, D882-91. Annual Book of ASTM. Philadelphia, PA: American Society for Testing and MaterialsGoogle Scholar
  6. Avena-Bustillos RJ, Cisneros-Zeballos LA, Krochta JM, Saltveit ME (1993) Optimization of edible coatings on minimally processed carrots using response surface methodology. Am. Soc. Agric. Eng. , 36 3, 801–805Google Scholar
  7. Avena-Bustillos RJ, Krochta JM, Saltveit ME, Rojas-Villegas RJ, Sauceda-Pérez JA (1994) Optimization of edible coating formulations on Zucchini to reduce water loss. J. Food Eng. 21, 197–214Google Scholar
  8. Avena-Bustillos RJ, Krochta JM, Saltveit ME (1997) Water vapour resistance of red delicious apples and celery sticks coated with edible caseinate-acetylated mono-glyceride films. J. Food Sci. 62, 2, 351–354Google Scholar
  9. Avena-Bustillos RJ, Olsen CW, Olson DA, Chiou B, Yee E, Bechtel PJ, McHugh TH (2006) Water vapour permeability of mammalian and fish gelatin films. J. Food Sci. 71, 4, 202–207Google Scholar
  10. Bader HG, Göritz D (1994a) Investigations on high amylose corn starch films. Part 1: wide angle X-ray scattering (WAXS). Starch/Stärke 46, 6, 229–232Google Scholar
  11. Bader HG, Göritz D (1994b) Investigations on high amylose corn starch films. Part 2: water vapour sorption. Starch/Stärke 46, 7, 249–252Google Scholar
  12. Bader HG, Göritz D (1994c) Investigations on high amylose corn starch films. Part 3: stress strain behaviour. Starch/Stärke 46, 11, 435–439Google Scholar
  13. Baker RA, Baldwin EA, Nisperos-Carriedo MO (1994) Edible coatings for processed foods. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 89–104Google Scholar
  14. Baldwin EA (1994) Edible coatings for fruits and vegetables, past, present and future. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 25–64Google Scholar
  15. Baldwin EA, Nisperos-Carriedo MO, Hagenmaier RD, Baker RA (1997) Use of lipids in coatings for food products. Food Technol. 51, 6, 56–64Google Scholar
  16. Banker GS (1966) Film coating, theory and practice. J. Pharm. Sci. 55, 81Google Scholar
  17. Banks NH (1984) Some effects of TAL Pro-Long coatings on ripening bananas. J. Exp. Bot. 35, 127Google Scholar
  18. Brown WE (1992) Plastics in Food Packaging. Properties, Design, and Fabrication. New York, NY: Marcel DekkerGoogle Scholar
  19. Butler B, Vergano R, Testin R, Bunn J, Wiles J (1996) Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci. 61, 5, 953–961Google Scholar
  20. Caner C, Vergano P, Wiles J (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J. Food Sci. 63, 6, 1049–1053Google Scholar
  21. Chang BS, Randall CS (1992) Use of subambient thermal analysis of optimize protein lyophilization. Cryobiology 29, 632–656Google Scholar
  22. Chang YP, Cheah PB, Seow CC (2000) Plasticizing – antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J. Food Sci. 65, 3, 445–451Google Scholar
  23. Chen RH, Lin JH (1994) Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr. Polym. 24, 41–46Google Scholar
  24. Chen M, Yeh H, Chiang B (1996) Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J. Food Process Preserv. 20, 379–390Google Scholar
  25. Chen M, Deng J, Yang F, Gong Y, Zhao N, Zhang X (2003) Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24, 2871–2880Google Scholar
  26. Cherian G, Gennadios A, Weller C, Chinachoti P (1995) Thermomechanical behavior of gluten films; effect of sucrose, glycerin and sorbitol. Cereal Chem. 72, 1, 1–6Google Scholar
  27. Coles R, McDowell D, Kirwan MJ (2003) Food packaging technology. Oxford, UK: Blackwell Publishing LtdGoogle Scholar
  28. Cunningham P, Ogale A, Dawson P, Acton J (2000) Tensile properties of soy protein isolate films produced by a thermal compaction technique. J. Food Sci. 65, 4, 668–671Google Scholar
  29. Cuppet SL (1994) Edible coatings as carriers of food additives, fungicides and naturals antagonists. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 121–137Google Scholar
  30. Cuq B, Gontard N, Guilbert S (1995) Edible films and coatings as active layers. In: Rooney ML (Ed.) Active Food Packaging. Chapman & Hall, UK, pp. 111–142Google Scholar
  31. Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem. 75, 1, 1–9Google Scholar
  32. Dhalla R, Hanson SW (1988) Effect of permeability coatings on the storage life of fruits. II. Pro-long treatments of mangoes (Mangifera indica L. cv. Julie). Int. J. Food Sci. Technol. 23, 107–112Google Scholar
  33. Debeaufort F, Voilley A (1997) Methylcellulose-based edible films and coatings: 2. Mechanical and thermal properties as a function of plasticizer content. J. Agric. Food Chem. 45, 685–689Google Scholar
  34. Donhowe IG, Fennema OR (1993a) Water vapour and oxygen permeability of wax films. J. Am. Oil Chem. Soc. 70 (9), 867–873Google Scholar
  35. Donhowe IG, Fennema O (1993b) The effects of solution composition and drying temperature on crystallinity, permeability and mechanical properties of methylcellulose films. J. Food Process Preserv. 17, 231–246Google Scholar
  36. Donhowe IG, Fennema O (1993c) The effects of plasticizers on crystallinity, permeability and mechanical properties of methylcellulose films. J. Food Process Preserv. 17, 247–258Google Scholar
  37. Donhowe IG, Fennema OR (1994) Edible films and coatings: characteristics, formation, definitions and testing methods. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality, Technomic Pub. Co., Lancaster, PA, pp. 1–21Google Scholar
  38. Drake SR, Fellman JK, Nelson JW (1987) Post-harvest use of sucrose polyesters for extending the shelf-life of stored Golden Delicious apples. J. Food Sci. 52, 5, 1283–1285Google Scholar
  39. Drake SR, Nelson JW (1990) Storage quality of waxed and nonwaxed “Delicious” and “Golden Delicious” apples. J. Food Qual. 13, 331–334Google Scholar
  40. Drake SR, Cavalieri R, Kupferman EM (1991) Quality attributes of “D’Anjou pears after different wax drying and refrigerated storage. J. Food Qual. 14, 455–465Google Scholar
  41. El Gaouth A, Arul J, Ponnampalam R, Boulet M (1991a) Chitosan coating effect on storability and quality of fresh strawberry. J. Food Sci. 56, 6, 1618–1620Google Scholar
  42. El Gaouth A, Arul J, Ponnampalam R, Boulet M (1991b) Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits. J. Food Process Preserv. 15, 339–368Google Scholar
  43. Even WR, Carr SH (1978) Micromechanical fracture analysis of amylose. Polymer 19, 583–588Google Scholar
  44. Galietta G, Giola DD, Guilbert S, Cuq B (1998) Mechanical and thermomechanical properties of films based on whey protein as affect by plasticizer and crosslinking agents. J. Dairy Sci. 81, 3123–3130Google Scholar
  45. García MA, Martino MN, Zaritzky NE (1998a) Starch-based coatings: effect on refrigerated strawberry (Fragaria× Ananassa) quality. J. Sci. Food Agric. 76, 411–420Google Scholar
  46. García MA, Martino MN, Zaritzky NE (1998b) Plasticizer effect on starch-based coatings applied to strawberries (Fragaria × Ananassa). J. Agric. Food Chem. 46, 3758–3767Google Scholar
  47. García MA, Martino MN, Zaritzky NE (1999) Edible starch films and coatings characterization: sem, water vapour and gas permeabilities. J. Scanning Microsc. 21, 5, 348–353Google Scholar
  48. García MA, Martino MN, Zaritzky NE (2000a) Microstructural characterization of plasticized starch-based films. Starch/ Stärke 52, 4, 118–124Google Scholar
  49. García MA, Martino MN, Zaritzky NE (2000b) Lipid addition to improve barrier properties of edible starch-based films and coatings. J. Food Sci. 65, 6, 941–947Google Scholar
  50. García MA , Martino MN, Zaritzky NE (2001) Composite starch-based coatings applied to strawberries (Fragaria × ananassa). Nahrung/Food 45, 4, 267–272Google Scholar
  51. García MA, Ferrero C, Bértola N, Martino MN, Zaritzky NE (2002) Edible coatings from cellulose derivatives to reduce oil uptake in fried products. Innov. Food Sci. Emerg. Technol. 3–4, 391–397Google Scholar
  52. García MA, Ferrero C, Campana A, Bértola N, Martino M, Zaritzky N (2004a). Methylcellulose coatings reduce oil uptake in fried products. Food Sci. Technol. Int. 10, 5, 339–346Google Scholar
  53. García MA, Martino MN, Zaritzky NE (2004b) Research advances in edible coatings and films from starch. In: Mohan RM (Ed.) Research Advances In Food Science. Global Research Network. Research Advances in Food Science 4, 107–128Google Scholar
  54. García MA, Pinotti A, Martino MN, Zaritzky NE (2004c) Characterization of composite hydrocolloid films. Carbohydr. Polym. 56, 3, 339–345Google Scholar
  55. García MA, Pinotti A, Zaritzky NE (2006) Physicochemical, water vapour barrier and mechanical properties of corn starch and chitosan composite films. Starch/Starke 58, 9, 453–463Google Scholar
  56. Gennadios A, Weller CL, Gooding CH (1994) Measurement errors in water vapour permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21, 395–409Google Scholar
  57. Ghanbarzadeh B, Musavi M, Oromiehie AR, Rezayi K, Razmi E, Milani J (2007) Effect of plasticizing sugars on water vapour permeability, surface energy and microstructure properties of zein films. LWT 40, 1191–1197Google Scholar
  58. Giles GA, Bain DA (2001) Technology of Plastics Packaging for the Consumer Market. Boca Raton, FL: CRC Press LLCGoogle Scholar
  59. Gonera A, Cornillon P (2002) Gelatinization of starch/gum/sugar system studied by using DSC, NMR and CSLM. Starch/Sta¨rke, 54, 508–516Google Scholar
  60. Gontard N, Guilbert S, Cuq B (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J. Food Sci. 57, 1, 190–199Google Scholar
  61. Gontard N, Guilbert S, Cuq JL (1993) Water and glycerol as plasticizers affect mechanical and water vapour barrier properties of an edible wheat gluten film. J. Food Sci. 58, 1, 206–211Google Scholar
  62. Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Int. J. Food Sci. Technol. 19: 39–50Google Scholar
  63. Greener IK, Fennema OR (1989) Evaluation of edible, bilayer films for use as moisture barriers for foods. J. Food Sci. 54, 1400–1406Google Scholar
  64. Guilbert S (1986) Technology and application of edible protective films. In: Mathlouthi M (Ed.) Food Packaging and Preservation. Theory and Practice. Elsevier Applied Science Publishing Co. London, UK, pp. 371–394Google Scholar
  65. Guilbert S, Gontard N (1995) Technology and applications of edible protective films. In: VII Biotechnology and Food Research – “New Shelf-Life Technologies and Safety Assessments”. Helsink, Finland, pp. 49–60Google Scholar
  66. Guilbert S, Cuq B, Gontard N (1997) Recent innovations in edible and/or biodegradable packaging materials. Food Addit. Contam. 14, 6, 741–751Google Scholar
  67. Hagenmaier RD, Baker RA (1994) Wax microemulsions and emulsions as citrus coatings. J. Agric. Food Chem. 42, 899–902.Google Scholar
  68. Hardenburg RE (1967) Wax and related coatings for horticultural products – a bibliography. Agric. Res. Serv. Bull. 965. Cornell University, Ithaca, NYGoogle Scholar
  69. Hernandez E (1994) Edible coatings for lipids and resins. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 279–304Google Scholar
  70. Hernandez R, Selke SEM, Cultler J (2000) Plastics Packaging: Properties, Processing, Applications, Regulations. Munich, Germany: Hanser Gardner PublicationsGoogle Scholar
  71. Hershko V, Nussinovitch A (1998) Relationship between hydrocolloid coating and mushroom structure. J. Agric. Food Chem. 46, 8, 2988–2997Google Scholar
  72. Iijimaa M, Nakamura K, Hatakeyama T, Hatakeyamab H (2000) Phase transition of pectin with sorbed water. Carbohydr. Polym. 41, 101–106Google Scholar
  73. Kester JJ, Fennema OR (1986) Edible films and coatings: a review. Food Technol. 12, 47–59Google Scholar
  74. Kim M, Pometto III OR (1994) Food packaging potential of some novel degradable starchepolyethylene plastics. J. Food Prot., 57, 1007–1012Google Scholar
  75. Klug HP, Alexander LE (1974) Crystallite size and lattice strains from line broadening. In: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York, USA: Wiley-Intersciences, pp. 618–708Google Scholar
  76. Köksel H, ahbaz F Özboy Ö (1983) Influence of wheat-drying temperatures on the birefringence and X-ray diffraction patterns of wet-harvested wheat starch. Cereal Chem. 70, 4, 481–483Google Scholar
  77. Krochta JM, De Mulder-Johnson C (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol. 51, 2, 61–77Google Scholar
  78. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct. Polym. 46, 1–27Google Scholar
  79. Laohakunjit N, Noomhorm A (2004) Effect of plasticizers on mechanical properties of rice starch film. Starch/Stärke 5, 8, 348–356Google Scholar
  80. Mali S, Grossmann MVE (2003) Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). J. Agric. Food Chem. 51, 24, 7005–7011Google Scholar
  81. Mali S, Grossmann MV, García MA, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr. Polym. 50, 4, 379–386Google Scholar
  82. Mali S, Grossmann MV, García MA, Martino M, Zaritzky N (2005a) Mechanical and thermal properties of yam starch films. Food Hydrocol. 19, 157–164Google Scholar
  83. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005b) Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 60, 283–289Google Scholar
  84. Mallikarjunan P, Chinnan MS, Balasubramaniam VM, Phillips RD (1997) Edible coatings for deep-fat frying of starchy products. LWT 30, 709–714Google Scholar
  85. Manning K (1993) Soft fruits. In: Seymour GB, Taylor JE, Tucker GA (Eds.) Biochemistry of Fruit Ripenning. Chapman & Hall, London, pp. 347–373Google Scholar
  86. McHugh TH, Krochta JM (1994a) Milk-protein-based edible films and coatings. Food Technol. 48, 1, 97–103Google Scholar
  87. McHugh TH, Krochta JM (1994b) Sorbitol- vs glycerol- plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J. Agric. Food Chem. 42, 4, 841–845.Google Scholar
  88. McHugh TH, Krochta JM (1994c) Permeability properties of edible films. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp 139–187Google Scholar
  89. McHugh TH, Aujard JF, Krochta JM (1994) Plasticized whey protein edible films: water vapour permeability properties. J. Food Sci. 59, 2, 416–419Google Scholar
  90. Miles MJ, Morris VJ, Ring SG (1985a) Gelation of amylose. Carbohydr. Res. 135, 257–269Google Scholar
  91. Miles MJ, Morris VJ, Orford PD, Ring SG (1985b) The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135, 271–281Google Scholar
  92. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9, 3, 247–252Google Scholar
  93. Neto CGT, Giacomettib JA, Jobb AE, Ferreirab FC, Fonsecaa JLC, Pereiraa MR (2005) Thermal analysis of chitosan based networks. Carbohydr. Polym. 62, 97–103Google Scholar
  94. Nisperos-Carriedo MO (1994) Edible coatings and films based on polysaccharides. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 305–330Google Scholar
  95. Noel TR, Ring SG, Whittman MA (1992) The structure and gelatinization of starch [Review]. Food Sci. Technol. Today, 6, 159Google Scholar
  96. Oh JH, Wang B, Field PD, Aglan HA (2004) Characteristics of edible films made from dairy proteins and zein hydrolysate cross-linked with transglutaminase. Int. J. Food Sci. Technol. 39, 1–8Google Scholar
  97. Olorunda AO, Aworh OC (1984) Effects of Pro-long, a surface coating agent, on the shelf-life and quality attributes of plantain. J. Sci. Food Agric. 35, 573–578Google Scholar
  98. Park H, Weller C, Vergano P, Testin R (1993) Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 58, 6, 1361–1364, 1370Google Scholar
  99. Park HJ, Bunn JM, Weller CL, Vergano PJ, Testin RF (1994) Water vapour permeability and mechanical properties of grain protein-based films as affected by mixtures of polyethylene glycol and glycerin plasticizers. Trans ASAE 37, 4, 1281–1285Google Scholar
  100. Parra DF, Tadini CC, Ponce P, Lugão AB (2004) Mechanical properties and water vapour transmission in some blends of cassava starch edible films. Carbohydr. Polym. 58, 475–481Google Scholar
  101. Parris N, Coffin DR, Joubran RF, Pessen H (1995) Composition factors affecting the water vapour permeability and tensile properties of hydrophilic films. J. Agric. Food Chem. 43, 1432–1435Google Scholar
  102. Paull RE, Chen NJ (1989) Waxing and plastic wraps influence water loss from papaya fruit during storage and ripening. J. Am. Soc. Hortic. Sci. 114, 937–942Google Scholar
  103. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396, 153–166Google Scholar
  104. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilssonk NH (1999) Potential of biobased materials for food packaging. Trends Food Sci. Technol. 10, 52–68Google Scholar
  105. Pinotti A, García MA, Martino MN, Zaritzky NE (2007) Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocol. 21, 1, 66–72Google Scholar
  106. Pommet M, Redl A, Guilbert S, Morel MH (2005) Intrinsic influence of various plasticizers on functional properties and reactivity of wheat gluten thermoplastic materials. J. Cereal Sci. 42, 81–91Google Scholar
  107. Robertson GL (1993) Food Packaging. Principles and Practice. New York, NY: Marcel DekkerGoogle Scholar
  108. Romero-Bastida CA, Bello-Pérez LA, García MA, Martino MN, Solorza-Feria J, Zaritzky NE (2005) Mechanical and microstructural characterization of films prepared by thermal or cold gelatinization of non-conventional starches. Carbohydr. Polym. 60, 2, 235–244Google Scholar
  109. Roos YH (1995) Phase Transitions in Foods. Taylor, S.L. Academic Press San Diego, CA, USAGoogle Scholar
  110. Sarantopoulos C, de Oliveira M, Padula Coltro L, Vercelino Alves RM, Correa García E (2002) Embalagens Plásticas Flexíveis. Centro de Tecnología de Embalagem. Campinas, BrasilGoogle Scholar
  111. Shellhammer TH, Krochta JM (1997) Whey protein emulsion film performance as affected by lipid type amount. J. Food Sci. 62, 2, 390–394Google Scholar
  112. Sionkowska A, Wisniewski J, Skopinska J, Kennedy CJ, Wess TJ (2004) Molecular interactions in collagen and chitosan blends. Biomaterials, 25, 795–801Google Scholar
  113. Smith SA (1986) Polyethylene, low density. In: Bakker M. (Ed.) The Wiley Encyclopedia of Packaging Technology. John Wiley & Sons, New York, pp. 514–523Google Scholar
  114. Smith JP, Hoshino J, Abe Y (1995) Interactive packaging involving sachet technology. In: Rooney ML (Ed.) Active Food Packaging. Blackie Academic and Professional, Glasgow, pp. 143–173Google Scholar
  115. Smits ALM, Ruhnau FC, Vliegenthart JFG (1998) Ageing of starch based systems as observed by FT-IR and solid state NMR spectroscopy. Starch/Starke, 50, 11–12, 478–483Google Scholar
  116. Snyder RL, Bish DL (1989) Quantitative analysis. In: Bish DL, Post JE (Eds.) Modern Powder Diffraction. Mineralogical Society of America, Washington, DC, pp. 101–144Google Scholar
  117. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA (2001) Mechanical, water vapour barrier and thermal properties of gelatin based edible films. Food Hydrocol. 15, 423–432Google Scholar
  118. Sohail SS, Wang B, Biswas MAS, Oh JH (2006) Physical, morphological, and barrier properties of edible casein films with wax applications. J. Food Sci. 71, 4, 255–259Google Scholar
  119. Spiess WEL, Wolf WR (1993) The results of the COST 90 project on water activity. In: Jowitt R, Escher F, Hallstrom FB, Meffert MF, Spiess WEL, Vos G (Eds.) Physical Properties of Foods. Applied Science Publishers, London, pp. 65–91Google Scholar
  120. Stepto RFT, Tomka I (1987) Injection moulding of natural hydrophilic polymers in the presence of water. Chimia 41, 3, 76–81Google Scholar
  121. Stewart CM, Tompkin RB, Cole MB (2002) Food safety: new concepts for the new millennium. Innov. Food Sci. Emerg. Technol. 3, 105–112Google Scholar
  122. Tharanathan NR, Kittur SF (2003) Chitin-the undisputed biomolecule of great potential. Crit. Rev. Food Sci. 43, 61–83Google Scholar
  123. Trezza TA Krochta JM (2000a) The gloss of edible coatings as affected by surfactants, lipids, relative humidity and time. J. Food Sci. 65, 4, 658–662Google Scholar
  124. Trezza TA, Krochta JM (200b) Color stability of edible coatings during prolonged storage. J. Food Sci. 65, 7, 1166–1169Google Scholar
  125. Trznadel M (1995) Biodegradable polymer materials. Int. Polym. Sci. Technol. 22, 12, 58–65Google Scholar
  126. Van Soest JJG, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol. 15, 208–213Google Scholar
  127. Van Soest JJG, Hulleman SHD, de Wit D, Vliegenthart JFG (1996) Crystallinity in starch bioplastics. Ind. Crops Prod. 5, 11–22Google Scholar
  128. Vermeiren L, Devlieghere F, van Beest M, de Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci. Technol. 10, 77–86Google Scholar
  129. Viña SZ, Mugridge A, García MA, Ferreyra RM, Martino MN, Chaves AR, Zaritzky NE (2007) Quality of refrigerated Brussels sprouts. Effect of plastic packaging film and edible starch coatings. Food Chem. 103, 701–709Google Scholar
  130. Vojdani F, Torres JA (1989a) Potassium sorbate permeability of methylcellulose and hydroxypropylmethylcellulose multi-layer films. J. Food Process. Preserv. 13, 417–430Google Scholar
  131. Vojdani F, Torres JA (1989b) Potassium sorbate permeability of polysaccharide films: chitosan, methylcellulose and hydroxypro-pylmethylcellulose. J. Food Process. Eng. 12, 33–48Google Scholar
  132. Vojdani F, Torres JA (1990) Potassium sorbate permeability of methylcellulose and hydroxypropylmethylcellulose coatings: effect of fatty acids. J. Food Sci. 55, 3, 841–846Google Scholar
  133. Wanchoo RK, Sharma PK (2003) Viscometric study on the compatibility of some water-soluble polymer-polymer mixtures. Eur. Polym. J. 39, 1481–1490Google Scholar
  134. Were L, Hettiarachachy NS, Coleman M (1999) Properties of cysteine-added soy protein-wheat gluten films. J. Food Sci. 64, 3, 514–518Google Scholar
  135. Williams R, Mittal GS (1999a) Water and fat transfer properties of polysaccharide films on fried pastry mix. LWT, 32, 440–445Google Scholar
  136. Williams R, Mittal GS (1999b) Low-fat fried foods with edible coatings: modeling and simulation. J. Food Sci. 64(2), 317–322Google Scholar
  137. Wong DWS, Gastineau FA, Gregorski KS, Tillin SJ, Pavlath AE (1992) Chitosan-lipids films: microstructure and surface energy. J. Agric. Food Chem. 40, 540–544Google Scholar
  138. Wu T, Zivanovic S, Draughon FA Conway WS, Sams CE (2005) Physicochemical properties and bioactivity of fungal chitin and chitosan. J. Agric. Food Chem. 53, 3888–3894Google Scholar
  139. Young AH (1984) Fractionation of Starch. In: Whistler RL, Be Miller JN, Paschall EF (Eds.) Starch, Chemistry and Technology, 2nd edn. Academic Press, Orlando, FL, USA, pp. 249–283Google Scholar
  140. Zaccaron C, Oliveira R, Guiotoku M, Pires A, Soldi V (2005). Blends of hydroxypropyl methylcellulose and poly(1-vinylpyrrolidone-co-vinyl acetate): miscibility and thermal stability. Polym. Degrad. Stab. 90, 1, 21–27Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • María A. García
    • 1
  • Adriana Pinotti
    • 1
  • Miriam N. Martino
    • 1
  • Noemí E. Zaritzky
    • 1
  1. 1.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA),CONICET47 y 116 La Plata (1900), Argentina

Personalised recommendations