Skip to main content

Characterization of Starch and Composite Edible Films and Coatings

  • Chapter
  • First Online:
Edible Films and Coatings for Food Applications

Abstract

Starch-based and composite edible films and coatings can enhance food quality, safety and stability. They can control mass transfer between components within a product, as well as between product and environment. They can improve performance of the product through the addition of antioxidants, antimicrobial agents, and other food additives. Unique advantages of edible films and coatings can lead to the development of new products, such as individual packaging for particular foods, carriers for various food additives, and nutrient supplements. Film materials and their properties have been reviewed extensively in this book and previously (Guilbert 1986; Kester and Fennema 1986; Krochta and De Mulder-Johnson 1997).

Composite films can be formulated to combine the advantages of each component. Biopolymers, such as proteins and polysaccharides, provide the supporting matrix for most composite films, and generally offer good barrier properties to gases, with hydrocolloid components providing a selective barrier to oxygen and carbon dioxide (Guilbert 1986; Kester and Fennema 1986; Drake et al. 1987, 1991; Baldwin 1994; Wong et al. 1992; Baldwin et al. 1997). Lipids provide a good barrier to water vapour (Nisperos-Carriedo 1994; Baldwin et al. 1997), while plasticizers are necessary to enhance flexibility and improve film’s mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahvenainen R (2003) Novel food packaging techniques. Boca Raton, FL: CRC Press LLC

    Google Scholar 

  • Albertsson AC, Karlsson S (1995) Degradable polymers for the future. Acta Polymers, 46, 114–123

    CAS  Google Scholar 

  • Arvanitoyannis I, Kalichevsky M, Blanshard JMV, Psomiadou E (1994) Study of diffusion and permeation of gases in undrawn and uniaxially drawn films made from potato and rice starch conditioned at different relative humidities. Carbohydr. Polym. 24, 1–15

    CAS  Google Scholar 

  • ASTM (1996a) Standard test methods for water vapour transmission of material, E96 – 95. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials

    Google Scholar 

  • ASTM (1996b) Standard test methods for tensile properties of thin plastic sheeting, D882-91. Annual Book of ASTM. Philadelphia, PA: American Society for Testing and Materials

    Google Scholar 

  • Avena-Bustillos RJ, Cisneros-Zeballos LA, Krochta JM, Saltveit ME (1993) Optimization of edible coatings on minimally processed carrots using response surface methodology. Am. Soc. Agric. Eng. , 36 3, 801–805

    CAS  Google Scholar 

  • Avena-Bustillos RJ, Krochta JM, Saltveit ME, Rojas-Villegas RJ, Sauceda-Pérez JA (1994) Optimization of edible coating formulations on Zucchini to reduce water loss. J. Food Eng. 21, 197–214

    Google Scholar 

  • Avena-Bustillos RJ, Krochta JM, Saltveit ME (1997) Water vapour resistance of red delicious apples and celery sticks coated with edible caseinate-acetylated mono-glyceride films. J. Food Sci. 62, 2, 351–354

    Google Scholar 

  • Avena-Bustillos RJ, Olsen CW, Olson DA, Chiou B, Yee E, Bechtel PJ, McHugh TH (2006) Water vapour permeability of mammalian and fish gelatin films. J. Food Sci. 71, 4, 202–207

    Google Scholar 

  • Bader HG, Göritz D (1994a) Investigations on high amylose corn starch films. Part 1: wide angle X-ray scattering (WAXS). Starch/Stärke 46, 6, 229–232

    CAS  Google Scholar 

  • Bader HG, Göritz D (1994b) Investigations on high amylose corn starch films. Part 2: water vapour sorption. Starch/Stärke 46, 7, 249–252

    CAS  Google Scholar 

  • Bader HG, Göritz D (1994c) Investigations on high amylose corn starch films. Part 3: stress strain behaviour. Starch/Stärke 46, 11, 435–439

    CAS  Google Scholar 

  • Baker RA, Baldwin EA, Nisperos-Carriedo MO (1994) Edible coatings for processed foods. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 89–104

    Google Scholar 

  • Baldwin EA (1994) Edible coatings for fruits and vegetables, past, present and future. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 25–64

    Google Scholar 

  • Baldwin EA, Nisperos-Carriedo MO, Hagenmaier RD, Baker RA (1997) Use of lipids in coatings for food products. Food Technol. 51, 6, 56–64

    CAS  Google Scholar 

  • Banker GS (1966) Film coating, theory and practice. J. Pharm. Sci. 55, 81

    CAS  Google Scholar 

  • Banks NH (1984) Some effects of TAL Pro-Long coatings on ripening bananas. J. Exp. Bot. 35, 127

    CAS  Google Scholar 

  • Brown WE (1992) Plastics in Food Packaging. Properties, Design, and Fabrication. New York, NY: Marcel Dekker

    Google Scholar 

  • Butler B, Vergano R, Testin R, Bunn J, Wiles J (1996) Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci. 61, 5, 953–961

    CAS  Google Scholar 

  • Caner C, Vergano P, Wiles J (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J. Food Sci. 63, 6, 1049–1053

    CAS  Google Scholar 

  • Chang BS, Randall CS (1992) Use of subambient thermal analysis of optimize protein lyophilization. Cryobiology 29, 632–656

    CAS  Google Scholar 

  • Chang YP, Cheah PB, Seow CC (2000) Plasticizing – antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J. Food Sci. 65, 3, 445–451

    CAS  Google Scholar 

  • Chen RH, Lin JH (1994) Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr. Polym. 24, 41–46

    CAS  Google Scholar 

  • Chen M, Yeh H, Chiang B (1996) Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J. Food Process Preserv. 20, 379–390

    CAS  Google Scholar 

  • Chen M, Deng J, Yang F, Gong Y, Zhao N, Zhang X (2003) Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24, 2871–2880

    Google Scholar 

  • Cherian G, Gennadios A, Weller C, Chinachoti P (1995) Thermomechanical behavior of gluten films; effect of sucrose, glycerin and sorbitol. Cereal Chem. 72, 1, 1–6

    CAS  Google Scholar 

  • Coles R, McDowell D, Kirwan MJ (2003) Food packaging technology. Oxford, UK: Blackwell Publishing Ltd

    Google Scholar 

  • Cunningham P, Ogale A, Dawson P, Acton J (2000) Tensile properties of soy protein isolate films produced by a thermal compaction technique. J. Food Sci. 65, 4, 668–671

    CAS  Google Scholar 

  • Cuppet SL (1994) Edible coatings as carriers of food additives, fungicides and naturals antagonists. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 121–137

    Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1995) Edible films and coatings as active layers. In: Rooney ML (Ed.) Active Food Packaging. Chapman & Hall, UK, pp. 111–142

    Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem. 75, 1, 1–9

    CAS  Google Scholar 

  • Dhalla R, Hanson SW (1988) Effect of permeability coatings on the storage life of fruits. II. Pro-long treatments of mangoes (Mangifera indica L. cv. Julie). Int. J. Food Sci. Technol. 23, 107–112

    Google Scholar 

  • Debeaufort F, Voilley A (1997) Methylcellulose-based edible films and coatings: 2. Mechanical and thermal properties as a function of plasticizer content. J. Agric. Food Chem. 45, 685–689

    CAS  Google Scholar 

  • Donhowe IG, Fennema OR (1993a) Water vapour and oxygen permeability of wax films. J. Am. Oil Chem. Soc. 70 (9), 867–873

    CAS  Google Scholar 

  • Donhowe IG, Fennema O (1993b) The effects of solution composition and drying temperature on crystallinity, permeability and mechanical properties of methylcellulose films. J. Food Process Preserv. 17, 231–246

    CAS  Google Scholar 

  • Donhowe IG, Fennema O (1993c) The effects of plasticizers on crystallinity, permeability and mechanical properties of methylcellulose films. J. Food Process Preserv. 17, 247–258

    CAS  Google Scholar 

  • Donhowe IG, Fennema OR (1994) Edible films and coatings: characteristics, formation, definitions and testing methods. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality, Technomic Pub. Co., Lancaster, PA, pp. 1–21

    Google Scholar 

  • Drake SR, Fellman JK, Nelson JW (1987) Post-harvest use of sucrose polyesters for extending the shelf-life of stored Golden Delicious apples. J. Food Sci. 52, 5, 1283–1285

    CAS  Google Scholar 

  • Drake SR, Nelson JW (1990) Storage quality of waxed and nonwaxed “Delicious” and “Golden Delicious” apples. J. Food Qual. 13, 331–334

    Google Scholar 

  • Drake SR, Cavalieri R, Kupferman EM (1991) Quality attributes of “D’Anjou pears after different wax drying and refrigerated storage. J. Food Qual. 14, 455–465

    Google Scholar 

  • El Gaouth A, Arul J, Ponnampalam R, Boulet M (1991a) Chitosan coating effect on storability and quality of fresh strawberry. J. Food Sci. 56, 6, 1618–1620

    Google Scholar 

  • El Gaouth A, Arul J, Ponnampalam R, Boulet M (1991b) Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits. J. Food Process Preserv. 15, 339–368

    Google Scholar 

  • Even WR, Carr SH (1978) Micromechanical fracture analysis of amylose. Polymer 19, 583–588

    CAS  Google Scholar 

  • Galietta G, Giola DD, Guilbert S, Cuq B (1998) Mechanical and thermomechanical properties of films based on whey protein as affect by plasticizer and crosslinking agents. J. Dairy Sci. 81, 3123–3130

    CAS  Google Scholar 

  • García MA, Martino MN, Zaritzky NE (1998a) Starch-based coatings: effect on refrigerated strawberry (Fragaria× Ananassa) quality. J. Sci. Food Agric. 76, 411–420

    Google Scholar 

  • García MA, Martino MN, Zaritzky NE (1998b) Plasticizer effect on starch-based coatings applied to strawberries (Fragaria × Ananassa). J. Agric. Food Chem. 46, 3758–3767

    Google Scholar 

  • García MA, Martino MN, Zaritzky NE (1999) Edible starch films and coatings characterization: sem, water vapour and gas permeabilities. J. Scanning Microsc. 21, 5, 348–353

    Google Scholar 

  • García MA, Martino MN, Zaritzky NE (2000a) Microstructural characterization of plasticized starch-based films. Starch/ Stärke 52, 4, 118–124

    Google Scholar 

  • García MA, Martino MN, Zaritzky NE (2000b) Lipid addition to improve barrier properties of edible starch-based films and coatings. J. Food Sci. 65, 6, 941–947

    Google Scholar 

  • García MA , Martino MN, Zaritzky NE (2001) Composite starch-based coatings applied to strawberries (Fragaria × ananassa). Nahrung/Food 45, 4, 267–272

    Google Scholar 

  • García MA, Ferrero C, Bértola N, Martino MN, Zaritzky NE (2002) Edible coatings from cellulose derivatives to reduce oil uptake in fried products. Innov. Food Sci. Emerg. Technol. 3–4, 391–397

    Google Scholar 

  • García MA, Ferrero C, Campana A, Bértola N, Martino M, Zaritzky N (2004a). Methylcellulose coatings reduce oil uptake in fried products. Food Sci. Technol. Int. 10, 5, 339–346

    Google Scholar 

  • García MA, Martino MN, Zaritzky NE (2004b) Research advances in edible coatings and films from starch. In: Mohan RM (Ed.) Research Advances In Food Science. Global Research Network. Research Advances in Food Science 4, 107–128

    Google Scholar 

  • García MA, Pinotti A, Martino MN, Zaritzky NE (2004c) Characterization of composite hydrocolloid films. Carbohydr. Polym. 56, 3, 339–345

    Google Scholar 

  • García MA, Pinotti A, Zaritzky NE (2006) Physicochemical, water vapour barrier and mechanical properties of corn starch and chitosan composite films. Starch/Starke 58, 9, 453–463

    Google Scholar 

  • Gennadios A, Weller CL, Gooding CH (1994) Measurement errors in water vapour permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21, 395–409

    Google Scholar 

  • Ghanbarzadeh B, Musavi M, Oromiehie AR, Rezayi K, Razmi E, Milani J (2007) Effect of plasticizing sugars on water vapour permeability, surface energy and microstructure properties of zein films. LWT 40, 1191–1197

    CAS  Google Scholar 

  • Giles GA, Bain DA (2001) Technology of Plastics Packaging for the Consumer Market. Boca Raton, FL: CRC Press LLC

    Google Scholar 

  • Gonera A, Cornillon P (2002) Gelatinization of starch/gum/sugar system studied by using DSC, NMR and CSLM. Starch/Sta¨rke, 54, 508–516

    CAS  Google Scholar 

  • Gontard N, Guilbert S, Cuq B (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J. Food Sci. 57, 1, 190–199

    CAS  Google Scholar 

  • Gontard N, Guilbert S, Cuq JL (1993) Water and glycerol as plasticizers affect mechanical and water vapour barrier properties of an edible wheat gluten film. J. Food Sci. 58, 1, 206–211

    CAS  Google Scholar 

  • Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Int. J. Food Sci. Technol. 19: 39–50

    Google Scholar 

  • Greener IK, Fennema OR (1989) Evaluation of edible, bilayer films for use as moisture barriers for foods. J. Food Sci. 54, 1400–1406

    CAS  Google Scholar 

  • Guilbert S (1986) Technology and application of edible protective films. In: Mathlouthi M (Ed.) Food Packaging and Preservation. Theory and Practice. Elsevier Applied Science Publishing Co. London, UK, pp. 371–394

    Google Scholar 

  • Guilbert S, Gontard N (1995) Technology and applications of edible protective films. In: VII Biotechnology and Food Research – “New Shelf-Life Technologies and Safety Assessments”. Helsink, Finland, pp. 49–60

    Google Scholar 

  • Guilbert S, Cuq B, Gontard N (1997) Recent innovations in edible and/or biodegradable packaging materials. Food Addit. Contam. 14, 6, 741–751

    CAS  Google Scholar 

  • Hagenmaier RD, Baker RA (1994) Wax microemulsions and emulsions as citrus coatings. J. Agric. Food Chem. 42, 899–902.

    CAS  Google Scholar 

  • Hardenburg RE (1967) Wax and related coatings for horticultural products – a bibliography. Agric. Res. Serv. Bull. 965. Cornell University, Ithaca, NY

    Google Scholar 

  • Hernandez E (1994) Edible coatings for lipids and resins. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 279–304

    Google Scholar 

  • Hernandez R, Selke SEM, Cultler J (2000) Plastics Packaging: Properties, Processing, Applications, Regulations. Munich, Germany: Hanser Gardner Publications

    Google Scholar 

  • Hershko V, Nussinovitch A (1998) Relationship between hydrocolloid coating and mushroom structure. J. Agric. Food Chem. 46, 8, 2988–2997

    CAS  Google Scholar 

  • Iijimaa M, Nakamura K, Hatakeyama T, Hatakeyamab H (2000) Phase transition of pectin with sorbed water. Carbohydr. Polym. 41, 101–106

    Google Scholar 

  • Kester JJ, Fennema OR (1986) Edible films and coatings: a review. Food Technol. 12, 47–59

    Google Scholar 

  • Kim M, Pometto III OR (1994) Food packaging potential of some novel degradable starchepolyethylene plastics. J. Food Prot., 57, 1007–1012

    CAS  Google Scholar 

  • Klug HP, Alexander LE (1974) Crystallite size and lattice strains from line broadening. In: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York, USA: Wiley-Intersciences, pp. 618–708

    Google Scholar 

  • Köksel H, ahbaz F Özboy Ö (1983) Influence of wheat-drying temperatures on the birefringence and X-ray diffraction patterns of wet-harvested wheat starch. Cereal Chem. 70, 4, 481–483

    Google Scholar 

  • Krochta JM, De Mulder-Johnson C (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol. 51, 2, 61–77

    Google Scholar 

  • Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct. Polym. 46, 1–27

    CAS  Google Scholar 

  • Laohakunjit N, Noomhorm A (2004) Effect of plasticizers on mechanical properties of rice starch film. Starch/Stärke 5, 8, 348–356

    Google Scholar 

  • Mali S, Grossmann MVE (2003) Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). J. Agric. Food Chem. 51, 24, 7005–7011

    CAS  Google Scholar 

  • Mali S, Grossmann MV, García MA, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr. Polym. 50, 4, 379–386

    CAS  Google Scholar 

  • Mali S, Grossmann MV, García MA, Martino M, Zaritzky N (2005a) Mechanical and thermal properties of yam starch films. Food Hydrocol. 19, 157–164

    CAS  Google Scholar 

  • Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005b) Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 60, 283–289

    CAS  Google Scholar 

  • Mallikarjunan P, Chinnan MS, Balasubramaniam VM, Phillips RD (1997) Edible coatings for deep-fat frying of starchy products. LWT 30, 709–714

    CAS  Google Scholar 

  • Manning K (1993) Soft fruits. In: Seymour GB, Taylor JE, Tucker GA (Eds.) Biochemistry of Fruit Ripenning. Chapman & Hall, London, pp. 347–373

    Google Scholar 

  • McHugh TH, Krochta JM (1994a) Milk-protein-based edible films and coatings. Food Technol. 48, 1, 97–103

    CAS  Google Scholar 

  • McHugh TH, Krochta JM (1994b) Sorbitol- vs glycerol- plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J. Agric. Food Chem. 42, 4, 841–845.

    CAS  Google Scholar 

  • McHugh TH, Krochta JM (1994c) Permeability properties of edible films. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp 139–187

    Google Scholar 

  • McHugh TH, Aujard JF, Krochta JM (1994) Plasticized whey protein edible films: water vapour permeability properties. J. Food Sci. 59, 2, 416–419

    CAS  Google Scholar 

  • Miles MJ, Morris VJ, Ring SG (1985a) Gelation of amylose. Carbohydr. Res. 135, 257–269

    CAS  Google Scholar 

  • Miles MJ, Morris VJ, Orford PD, Ring SG (1985b) The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135, 271–281

    CAS  Google Scholar 

  • Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9, 3, 247–252

    CAS  Google Scholar 

  • Neto CGT, Giacomettib JA, Jobb AE, Ferreirab FC, Fonsecaa JLC, Pereiraa MR (2005) Thermal analysis of chitosan based networks. Carbohydr. Polym. 62, 97–103

    CAS  Google Scholar 

  • Nisperos-Carriedo MO (1994) Edible coatings and films based on polysaccharides. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (Eds.) Edible Coatings and Films to Improve Food Quality. Technomic Pub. Co., Lancaster, PA, pp. 305–330

    Google Scholar 

  • Noel TR, Ring SG, Whittman MA (1992) The structure and gelatinization of starch [Review]. Food Sci. Technol. Today, 6, 159

    Google Scholar 

  • Oh JH, Wang B, Field PD, Aglan HA (2004) Characteristics of edible films made from dairy proteins and zein hydrolysate cross-linked with transglutaminase. Int. J. Food Sci. Technol. 39, 1–8

    Google Scholar 

  • Olorunda AO, Aworh OC (1984) Effects of Pro-long, a surface coating agent, on the shelf-life and quality attributes of plantain. J. Sci. Food Agric. 35, 573–578

    CAS  Google Scholar 

  • Park H, Weller C, Vergano P, Testin R (1993) Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 58, 6, 1361–1364, 1370

    CAS  Google Scholar 

  • Park HJ, Bunn JM, Weller CL, Vergano PJ, Testin RF (1994) Water vapour permeability and mechanical properties of grain protein-based films as affected by mixtures of polyethylene glycol and glycerin plasticizers. Trans ASAE 37, 4, 1281–1285

    CAS  Google Scholar 

  • Parra DF, Tadini CC, Ponce P, Lugão AB (2004) Mechanical properties and water vapour transmission in some blends of cassava starch edible films. Carbohydr. Polym. 58, 475–481

    CAS  Google Scholar 

  • Parris N, Coffin DR, Joubran RF, Pessen H (1995) Composition factors affecting the water vapour permeability and tensile properties of hydrophilic films. J. Agric. Food Chem. 43, 1432–1435

    CAS  Google Scholar 

  • Paull RE, Chen NJ (1989) Waxing and plastic wraps influence water loss from papaya fruit during storage and ripening. J. Am. Soc. Hortic. Sci. 114, 937–942

    Google Scholar 

  • Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396, 153–166

    CAS  Google Scholar 

  • Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilssonk NH (1999) Potential of biobased materials for food packaging. Trends Food Sci. Technol. 10, 52–68

    CAS  Google Scholar 

  • Pinotti A, García MA, Martino MN, Zaritzky NE (2007) Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocol. 21, 1, 66–72

    CAS  Google Scholar 

  • Pommet M, Redl A, Guilbert S, Morel MH (2005) Intrinsic influence of various plasticizers on functional properties and reactivity of wheat gluten thermoplastic materials. J. Cereal Sci. 42, 81–91

    CAS  Google Scholar 

  • Robertson GL (1993) Food Packaging. Principles and Practice. New York, NY: Marcel Dekker

    Google Scholar 

  • Romero-Bastida CA, Bello-Pérez LA, García MA, Martino MN, Solorza-Feria J, Zaritzky NE (2005) Mechanical and microstructural characterization of films prepared by thermal or cold gelatinization of non-conventional starches. Carbohydr. Polym. 60, 2, 235–244

    CAS  Google Scholar 

  • Roos YH (1995) Phase Transitions in Foods. Taylor, S.L. Academic Press San Diego, CA, USA

    Google Scholar 

  • Sarantopoulos C, de Oliveira M, Padula Coltro L, Vercelino Alves RM, Correa García E (2002) Embalagens Plásticas Flexíveis. Centro de Tecnología de Embalagem. Campinas, Brasil

    Google Scholar 

  • Shellhammer TH, Krochta JM (1997) Whey protein emulsion film performance as affected by lipid type amount. J. Food Sci. 62, 2, 390–394

    CAS  Google Scholar 

  • Sionkowska A, Wisniewski J, Skopinska J, Kennedy CJ, Wess TJ (2004) Molecular interactions in collagen and chitosan blends. Biomaterials, 25, 795–801

    CAS  Google Scholar 

  • Smith SA (1986) Polyethylene, low density. In: Bakker M. (Ed.) The Wiley Encyclopedia of Packaging Technology. John Wiley & Sons, New York, pp. 514–523

    Google Scholar 

  • Smith JP, Hoshino J, Abe Y (1995) Interactive packaging involving sachet technology. In: Rooney ML (Ed.) Active Food Packaging. Blackie Academic and Professional, Glasgow, pp. 143–173

    Google Scholar 

  • Smits ALM, Ruhnau FC, Vliegenthart JFG (1998) Ageing of starch based systems as observed by FT-IR and solid state NMR spectroscopy. Starch/Starke, 50, 11–12, 478–483

    Google Scholar 

  • Snyder RL, Bish DL (1989) Quantitative analysis. In: Bish DL, Post JE (Eds.) Modern Powder Diffraction. Mineralogical Society of America, Washington, DC, pp. 101–144

    Google Scholar 

  • Sobral PJA, Menegalli FC, Hubinger MD, Roques MA (2001) Mechanical, water vapour barrier and thermal properties of gelatin based edible films. Food Hydrocol. 15, 423–432

    CAS  Google Scholar 

  • Sohail SS, Wang B, Biswas MAS, Oh JH (2006) Physical, morphological, and barrier properties of edible casein films with wax applications. J. Food Sci. 71, 4, 255–259

    Google Scholar 

  • Spiess WEL, Wolf WR (1993) The results of the COST 90 project on water activity. In: Jowitt R, Escher F, Hallstrom FB, Meffert MF, Spiess WEL, Vos G (Eds.) Physical Properties of Foods. Applied Science Publishers, London, pp. 65–91

    Google Scholar 

  • Stepto RFT, Tomka I (1987) Injection moulding of natural hydrophilic polymers in the presence of water. Chimia 41, 3, 76–81

    CAS  Google Scholar 

  • Stewart CM, Tompkin RB, Cole MB (2002) Food safety: new concepts for the new millennium. Innov. Food Sci. Emerg. Technol. 3, 105–112

    Google Scholar 

  • Tharanathan NR, Kittur SF (2003) Chitin-the undisputed biomolecule of great potential. Crit. Rev. Food Sci. 43, 61–83

    CAS  Google Scholar 

  • Trezza TA Krochta JM (2000a) The gloss of edible coatings as affected by surfactants, lipids, relative humidity and time. J. Food Sci. 65, 4, 658–662

    Google Scholar 

  • Trezza TA, Krochta JM (200b) Color stability of edible coatings during prolonged storage. J. Food Sci. 65, 7, 1166–1169

    Google Scholar 

  • Trznadel M (1995) Biodegradable polymer materials. Int. Polym. Sci. Technol. 22, 12, 58–65

    Google Scholar 

  • Van Soest JJG, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol. 15, 208–213

    CAS  Google Scholar 

  • Van Soest JJG, Hulleman SHD, de Wit D, Vliegenthart JFG (1996) Crystallinity in starch bioplastics. Ind. Crops Prod. 5, 11–22

    CAS  Google Scholar 

  • Vermeiren L, Devlieghere F, van Beest M, de Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci. Technol. 10, 77–86

    CAS  Google Scholar 

  • Viña SZ, Mugridge A, García MA, Ferreyra RM, Martino MN, Chaves AR, Zaritzky NE (2007) Quality of refrigerated Brussels sprouts. Effect of plastic packaging film and edible starch coatings. Food Chem. 103, 701–709

    Google Scholar 

  • Vojdani F, Torres JA (1989a) Potassium sorbate permeability of methylcellulose and hydroxypropylmethylcellulose multi-layer films. J. Food Process. Preserv. 13, 417–430

    CAS  Google Scholar 

  • Vojdani F, Torres JA (1989b) Potassium sorbate permeability of polysaccharide films: chitosan, methylcellulose and hydroxypro-pylmethylcellulose. J. Food Process. Eng. 12, 33–48

    Google Scholar 

  • Vojdani F, Torres JA (1990) Potassium sorbate permeability of methylcellulose and hydroxypropylmethylcellulose coatings: effect of fatty acids. J. Food Sci. 55, 3, 841–846

    CAS  Google Scholar 

  • Wanchoo RK, Sharma PK (2003) Viscometric study on the compatibility of some water-soluble polymer-polymer mixtures. Eur. Polym. J. 39, 1481–1490

    CAS  Google Scholar 

  • Were L, Hettiarachachy NS, Coleman M (1999) Properties of cysteine-added soy protein-wheat gluten films. J. Food Sci. 64, 3, 514–518

    CAS  Google Scholar 

  • Williams R, Mittal GS (1999a) Water and fat transfer properties of polysaccharide films on fried pastry mix. LWT, 32, 440–445

    CAS  Google Scholar 

  • Williams R, Mittal GS (1999b) Low-fat fried foods with edible coatings: modeling and simulation. J. Food Sci. 64(2), 317–322

    CAS  Google Scholar 

  • Wong DWS, Gastineau FA, Gregorski KS, Tillin SJ, Pavlath AE (1992) Chitosan-lipids films: microstructure and surface energy. J. Agric. Food Chem. 40, 540–544

    CAS  Google Scholar 

  • Wu T, Zivanovic S, Draughon FA Conway WS, Sams CE (2005) Physicochemical properties and bioactivity of fungal chitin and chitosan. J. Agric. Food Chem. 53, 3888–3894

    CAS  Google Scholar 

  • Young AH (1984) Fractionation of Starch. In: Whistler RL, Be Miller JN, Paschall EF (Eds.) Starch, Chemistry and Technology, 2nd edn. Academic Press, Orlando, FL, USA, pp. 249–283

    Google Scholar 

  • Zaccaron C, Oliveira R, Guiotoku M, Pires A, Soldi V (2005). Blends of hydroxypropyl methylcellulose and poly(1-vinylpyrrolidone-co-vinyl acetate): miscibility and thermal stability. Polym. Degrad. Stab. 90, 1, 21–27

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Agencia Nacional de Promoción Científica y Tecnológica and Universidad Nacional de La Plata is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

García, M.A., Pinotti, A., Martino, M.N., Zaritzky, N.E. (2009). Characterization of Starch and Composite Edible Films and Coatings. In: Huber, K., Embuscado, M. (eds) Edible Films and Coatings for Food Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92824-1_6

Download citation

Publish with us

Policies and ethics