Advertisement

Normal Distribution, Variants, Pitfalls, and Artifacts

  • Ora Israel
  • Dominique Delbeke
Chapter

Abstract

18F-FDG is an analog of glucose and therefore has a similar biodistribution. 18F-FDG enters the cells by the same transport mechanism as glucose and is intracellularly phosphorylated by a hexokinase into 18F-FDG-6-phosphate (18F-FDG-6-P). As an indicator of glucose metabolism, 18F-FDG is not taken up only by malignant cells. In tissues with a low concentration of glucose-6-phosphatase, such as the brain, the myocardium, and most malignant cells, 18F-FDG-6-P does not follow further enzymatic pathways and accumulates proportionally to the glycolytic cellular rate.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Brown Adipose Tissue Tracer Uptake Papillary Thyroid Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cook GJR, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron emission tomography scanning: Potential for error in interpretation. Semin Nucl Med 1996;26:308–314.CrossRefPubMedGoogle Scholar
  2. 2.
    Engel H, Steinert H, Buck A, Berthold T, Boni RAH, von Schulthess GK. Whole body PET: Physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996;37:441–446.PubMedGoogle Scholar
  3. 3.
    Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 1998;28:352–358.CrossRefPubMedGoogle Scholar
  4. 4.
    Kang KW, Kim SK, Kang HS, Lee ES, Sim JS, Lee IG, Jeong S-Y, Kim SW. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. Clin Endocrinol Metab 2003;88:4100–4104.CrossRefGoogle Scholar
  5. 5.
    Israel O, Weiler-Sagie M, Rispler S, Bar-Shalom R, Frenkel A, Keidar Z, Bar-Shalev A, Strauss HW. PET/CT quantitation of the effect of patient-related factors on cardiac 18F-Fluoro-deoxyglucose uptake. J Nucl Med 2007;48:234–239.PubMedGoogle Scholar
  6. 6.
    Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999;19:61–77.PubMedGoogle Scholar
  7. 7.
    Kim S, Chung JK, Kim BT, Kim SJ, Jeong JM, Lee DS, Lee MC. Relationship between gastrointestinal F-18- fluorodeoxyglucose accumulation of gastrointestinal symptoms in whole-body PET. Clin Posit Imaging1999;2:273–280.CrossRefGoogle Scholar
  8. 8.
    Bar-Shalom R, Gaitini D, Keidar Z, Israel O. Non-malignant FDG uptake in infradiaphragmatic adipose tissue – A new site of physiologic tracer biodistribution characterized by PET/CT. Eur J Nucl Med 2004;31:1105–1113.CrossRefGoogle Scholar
  9. 9.
    Noci I, Borri P, Scarselli G, Chieffi O, Bucciantini S, Biagiotti R, Paglierani M, Moncini D, Taddei G. Morphological and functional aspects of the endometrium of asymptomatic post-menopausal women: does the endometrium really age? Hum Reprod 1996;11:2246–2250.PubMedGoogle Scholar
  10. 10.
    Kim SK, Kang KW, Roh JW, Sim JS, Lee ES, Park SY. Incidental ovarian F-18 FDG accumulation on PET: correlation with the menstrual cycle. Eur J Nucl Med Mol Imaging 2005;32:757–763.CrossRefPubMedGoogle Scholar
  11. 11.
    Bakheet SMB, Powe J, Ezzat A, Rostom Al. F-18-FDG uptake in tuberculosis. Clin Nucl Med 1998;23:739–742.CrossRefPubMedGoogle Scholar
  12. 12.
    Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med 1994;35:1647–1649.PubMedGoogle Scholar
  13. 13.
    Love C, Tomas MB, Tronco GG, Palestro CJ. FDG PET of infection and inflammation. Radiographics 2005;25:1357–1368.CrossRefPubMedGoogle Scholar
  14. 14.
    Saksena MA, Blake MA, Brachtel E, Harisinghani MG, Mueller PR. Uterine fibroid 18F-fluorodeoxyglucose (FDG) uptake on combined PET-CT: genitourinary- imaging the male and female pelvis with CT, MRI, and ultrasound. AJR Am J Roentgenol 2006;186 (suppl 4): A20–A24.Google Scholar
  15. 15.
    Agress H, Cooper BZ. Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG PET: Histopathologic comparison. Radiology 2004;230:417–422.CrossRefPubMedGoogle Scholar
  16. 16.
    Kamel EM, Thumshirn M, Truninger K, Schiesser M, Fried M, Padberg B, Schneiter D, Stoeckli SJ, von Schulthess GK, Stumpe KDM. Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: Correlation with endoscopic and histopathological results. J Nucl Med 2004;45:1804–1810.PubMedGoogle Scholar
  17. 17.
    Gutman F, Alberini JL, Wartski M, Vilain D, Stanc EL, Sarandi F, Corone C, Tainturier C, Pecking AP. Incidental colonic focal lesions detected by FDG PET/CT. Am J Roentgenol 2005;185:495–500.CrossRefGoogle Scholar
  18. 18.
    Israel O, Yefremov N, Bar-Shalom R, Kagana O, Frenkel A, Keidar Z, Fischer D. PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: Incidence, localization patterns, and clinical significance. J Nucl Med 2005;46:758–762.PubMedGoogle Scholar
  19. 19.
    Ferdinand B, Gupta P, Kramer EL. Spectrum of thymic uptake at 18F-FDG PET. Radiographics 2004;24:1611–1616.CrossRefPubMedGoogle Scholar
  20. 20.
    Kawano T, Suzuki A, Ishida A, Takahashi N, Lee J, Tayama Y, Oka T, Yokota S, Inoue T. The clinical relevance of thymic fluorodeoxyglucose uptake in pediatric patients after chemotherapy. Eur J Nucl Med Mol Imaging 2004;31:831–836.CrossRefPubMedGoogle Scholar
  21. 21.
    Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998;16:173–180.PubMedGoogle Scholar
  22. 22.
    Bang S, Baug CA. Topographical distribution of fluoride in iliac bone of a fluoride-treated osteoporotic patient. J Bone Miner Res 1990;5:S87–S89.CrossRefPubMedGoogle Scholar
  23. 23.
    Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28–49.Google Scholar
  24. 24.
    Even-Sapir E, Mester U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, Ron I, Mishani E. Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med 2004;45:272–278.Google Scholar
  25. 25.
    Higashi K, Clavo AC , Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine, and thymidine as agents to monitor early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 1993;34:773–780.PubMedGoogle Scholar
  26. 26.
    Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, Wehrmann M, Machulla HJ, Bares R. [(18)F]FLT PET for diagnosis and staging of thoracic tumors. Eur J Nucl Med Mol Imaging 2003;30:1407–1417.CrossRefPubMedGoogle Scholar
  27. 27.
    Bendaly E, Sloan A, Dohmen B, Mangner TJ, Machulla HJ, Bares R, Muzik O, Shields AF. Use of 18F-FLT-PET to assess the metabolic activity of primary and metastatic brain disease. J Nucl Med 2002;43:111P–112P.Google Scholar
  28. 28.
    Munch-Petersen B, Cloos L, Tyrsted G, Eriksson S. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem 1991;266:9032–9038.PubMedGoogle Scholar
  29. 29.
    Dohmen BM, Shields AF, Dittman H, Fersis N, Eschmann SM, Philip P, Reimold M, Machulla HJ, Bares R. Use of [18F]FLT for breast cancer imaging. J Nucl Med 2001;42:29P.Google Scholar
  30. 30.
    Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations – A pilot study. Cancer Biother Radiopharm 2004;19:436–442.PubMedGoogle Scholar
  31. 31.
    van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, Jager PL, Hoekstra HJ, Elsinga PH. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 2004;45:695–700.PubMedGoogle Scholar
  32. 32.
    Troost EG, Vogel WV, Merkx MA, Slootweg PJ, Marres HA, Peeters WJ, Bussink J, van der Kogel AJ, Oyen WJ, Kaanders JH.18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med 2007;48:726–735.CrossRefPubMedGoogle Scholar
  33. 33.
    DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, Reiman R, Price DT, Coleman RE. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42:1805–1814.PubMedGoogle Scholar
  34. 34.
    DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2002;43:92–96.PubMedGoogle Scholar
  35. 35.
    Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E, Bertaccini A, Manferrari F, Castellucci P, Fanti S. 11C-choline positron emission tomography/computed tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 2006;176:954–960.CrossRefPubMedGoogle Scholar
  36. 36.
    Price DT, Coleman RE, Liao RP, Robertson C, Polascik T, Degrado T. Comparison of 18Fluorocholine and 18Fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002;168:273–280.CrossRefPubMedGoogle Scholar
  37. 37.
    Shreve PD, Gross MD. Imaging of the pancreas and related diseases with PET carbon-11 acetate. J Nucl Med 1997;38:1305–1310.PubMedGoogle Scholar
  38. 38.
    Fricke E, Machtens S, Hofmann M, Van Den Hoff J, Bergh S, Brunkhorst T, Meyer GJ, Karstens JH, Knapp WH, Boerner AR. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 2003;30:607–611.CrossRefPubMedGoogle Scholar
  39. 39.
    Toth G, Lengyel Z, Balkay L, Salah MA, Tron L, Toth C. Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 2005;173:66–69.CrossRefPubMedGoogle Scholar
  40. 40.
    Vallabhajosula S. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 2007;37:400–419.CrossRefPubMedGoogle Scholar
  41. 41.
    Taïeb D, Tessonnier L, Sebag F, Niccoli-Sire P, Morange I, Colavolpe C, De Micco C, Barlier A, Palazzo FF, Henry JF, Mundler O. The role of (18)F-FDOPA and (18)F-FDG-PET in the management of malignant and multifocal pheochromocytomas. Clin Endocrinol (Oxf) 2008;69:580–586.Google Scholar
  42. 42.
    Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, Gutman F, Grangé J-D, Lotz J-P, Talbot J-N. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 2006;47:1455–1462.PubMedGoogle Scholar
  43. 43.
    Graham MM, Peterson LM, Link JM, Evans ML, Rasey JS, Koh W-J, Caldwell JH, Krohn KA. Fluorine-18-fluoromisonidazole radiation dosimetry in imaging studies. J Nucl Med 1997;38:1631–1636.PubMedGoogle Scholar
  44. 44.
    Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med 2007;37:4151–4161.CrossRefGoogle Scholar
  45. 45.
    Tharp K, Israel O, Hausmann J,  Bettman L, Martin LH, Daitzchman M,  Sandler MP,  Delbeke D. Impact of I-131 SPECT/CT images obtained with an integrated system in the follow up of patients with thyroid carcinoma. Eur J Nucl Med 2004, 31:1435–1442.CrossRefGoogle Scholar
  46. 46.
    Shapiro B, Rufini V, Jarwan A, Geatti O, Kearfott KJ, Fig LM, Kirkwood ID, Gross MD. Artifacts, anatomical and physiological variants, and unrelated diseases that might cause false-positive whole-body 131-I scans in patients with thyroid cancer. Semin Nucl Med 2000;30:115–132.CrossRefPubMedGoogle Scholar
  47. 47.
    Bonnin F, Lumbroso J, Tenenbaum F, Harymann O, Parmentier C. Refining interpretation of MIBG scans in children. J Nucl Med 1994;35:803–810.PubMedGoogle Scholar
  48. 48.
    Even-Sapir E, Keidar Z, Sachs J, Engel A, Bettman L, Gaitini D, Guralnik L, Werbin N, Iosilevsky G, Israel O. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 2001;42:998–1004.PubMedGoogle Scholar
  49. 49.
    Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, Klein M. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol 2008;190:1085–1090.CrossRefGoogle Scholar
  50. 50.
    Krausz Y, Shibley N, de Jong RBJ, Jaffe S, Glaser B. Gallbladder visualization with 111In-labeled Octreotide. Clin Nucl Med 1994;19:133–135.CrossRefPubMedGoogle Scholar
  51. 51.
    Krausz Y, Keidar Z, Kogan, Even-Sapir E, Bar-Shalom R, Engel A, Rubinstein R, Sachs J, Bocher M, Agranovicz S, Chisin R, Israel O. SPECT/CT hybrid imaging with In111-Pentetreotide in assessment of neuroendocrine tumors. Clin Endocrinol 2003;59:565–573.CrossRefGoogle Scholar
  52. 52.
    Kamel EM, Goerres GW, Burger C, von Schulthess GK, Steinert HC. Recurrent laryngeal nerve palsy in patients with lung cancer: detection with PET-CT image fusion – report of six cases. Radiology 2002;224:153–156.CrossRefPubMedGoogle Scholar
  53. 53.
    Kostakoglu L, Wong JCH, Barrington SF, Cronin BF, Dynes AM, Maisey MN. Speech-related visualization of laryngeal muscles with Fluorine-18-FDG. J Nucl Med 1996;37:1711–1713.Google Scholar
  54. 54.
    Barrington SF, Maisey MN. Skeletal muscle uptake of Fluorine-18-FDG: Effect of oral Diazepam. J Nucl Med 1996;37:1127–1129.PubMedGoogle Scholar
  55. 55.
    Barnard RJ, Youngren JF. Regulation of glucose transport in skeletal muscle. FASEB J 1992;6:3238–3244.PubMedGoogle Scholar
  56. 56.
    Huitink JM, Visser FC, van Leeuwen GR,  van Lingen A,  Bax JJ, Heine RJ, Teule GJJ, Visser CA. Influence of high and low plasma insulin levels on the uptake of fluorine-18 fluorodeoxyglucose in myocardium and femoral muscle, assessed by planar imaging. Eur J Nucl Med 1995;22:1141–1148.CrossRefPubMedGoogle Scholar
  57. 57.
    Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer – a PET study. J Nucl Med 1993;34:1–6PubMedGoogle Scholar
  58. 58.
    Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Standardized uptake values of normal breast tissue with 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography: variations with age, breast density, and menopausal status. Mol Imaging Biol 2006;8:355–362.CrossRefPubMedGoogle Scholar
  59. 59.
    Hicks RJ, Binns D, Stabin MG. Pattern of uptake and excretion of 18F-FDG in the lactating breast. J Nucl Med 2001;42:1238–1242.PubMedGoogle Scholar
  60. 60.
    Yeung HW, Grewal RK, Gonen M, Schöder H, Larson SM. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 2003;44:1789–1796.PubMedGoogle Scholar
  61. 61.
    Gelfand MJ, O'Hara SM, Curtwright LA, Maclean JR. Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 2005;35:984–990.CrossRefPubMedGoogle Scholar
  62. 62.
    Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol 2008;190:1406–1409CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Nuclear MedicineRambam Health Care CampusHaifaIsrael
  2. 2.R. Rappaport School of Medicine, TechnionIsrael Institute of TechnologyHaifaIsrael
  3. 3.Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations