Hybrid Imaging of Benign Skeletal Diseases

  • Einat Even-Sapir
  • Hedva Lerman
  • Gideon Flusser
  • Arye Blachar


99mTc-methylene diphosphonate (99mTc-MDP) is the most commonly used bone radiopharmaceutical for scintigraphic assessment of skeletal abnormalities. The compound, an analogue of pyrophosphate, is chemisorbed onto bone surface. Its uptake depends on local blood flow and bone turnover. As little as 5–10% change in lesion to normal bone uptake ratio is required to detect pathology on bone scintigraphy (BS) preceding their detection on plain radiographs or CT by 2–18 months.1 Based on these characteristics, BS with 99mTc-MDP is highly sensitive for the detection of various benign skeletal abnormalities associated with increased bone turnover including trauma, osteomyelitis, osteoporosis, metabolic skeletal disease, degenerative changes, etc.


Positron Emission Tomography Single Photon Emission Compute Tomography Bone Scintigraphy 18FDG Positron Emission Tomography Fibrous Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Gates GF. SPECT bone scanning of the spine. Semin Nucl Med 1998;28:78–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med 2006;36:286–294.CrossRefPubMedGoogle Scholar
  4. 4.
    Even-Sapir E, Martin RH, Barnes DC, Pringle CR, Iles SE, Mitchell MJ. Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology 1993;187:193–198.PubMedGoogle Scholar
  5. 5.
    Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004;22:2942–2953.CrossRefPubMedGoogle Scholar
  6. 6.
    Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005; 46:1356–1367.PubMedGoogle Scholar
  7. 7.
    Horger M, Eschmann SM, Pfannenberg C, Vonthein R, Besenfelder H, Claussen CD, Bares R. Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR 2004;183:655–661.PubMedGoogle Scholar
  8. 8.
    Horger M, Eschmann SM, Pfannenberg C, Storek D, Vonthein R, Claussen CD, Bares R. Added value of SPECT/CT in patients suspected of having bone infection: preliminary results. Arch Orthop Trauma Surg 2007;127:211–221.CrossRefPubMedGoogle Scholar
  9. 9.
    Even-Sapir E, Flusser G, Lerman H, Lievshitz G, Metser U. SPECT/multislice low-dose CT: A clinically relevant constituent in the imaging algorithm of non-oncologic patients referred for BS. J Nucl Med 2007;48:319–324.PubMedGoogle Scholar
  10. 10.
    Römer W, Nomayr A, Uder M, Bautz W, Kuwert T. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 2006; 47:1102–1106.PubMedGoogle Scholar
  11. 11.
    Horger M, Claussen CD, Bross-Bach U, Vonthein R, Trabold T, Heuschmid M, and Pfannenberg C. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol 2005;54:289–297.CrossRefPubMedGoogle Scholar
  12. 12.
    Utsunomiya D, Shiraishi S, Imuta M, Tomiguchi S, Kawanaka K, Morishita S, Awai K, Yamashita Y. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 2006;238:264–271.CrossRefPubMedGoogle Scholar
  13. 13.
    Strobel K, Burger C, Seifert B, Husarik DB, Soyka JD, Hany TF. Characterization of focal bone lesions in the axial skeleton: performance of planar BS compared with SPECT and SPECT fused with CT. AJR 2007;188:467–474.CrossRefPubMedGoogle Scholar
  14. 14.
    McDonald M, Cooper R, Wang MY. Use of computed tomography-single-photon emission computed tomography fusion for diagnosing painful facet arthropathy. Technical note. Neurosurg Focus 2007;15:22:E2.Google Scholar
  15. 15.
    Langsteger W, Heinisch M, Fogelman I. The role of 18F-fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73–92CrossRefPubMedGoogle Scholar
  16. 16.
    Schirrmeister H. Detection of bone metastases in breast cancer by positron emission tomography. Radiol Clin North Am 2007;45:669–676.CrossRefPubMedGoogle Scholar
  17. 17.
    Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, Ron I, Mishani E. Assessment of malignant skeletal disease: Initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 2004; 45:272–278PubMedGoogle Scholar
  18. 18.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar BS, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47:287–297.PubMedGoogle Scholar
  19. 19.
    Even-Sapir E, Mishani E, Flusser G, Metser U. 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 2007;37:462–469.CrossRefPubMedGoogle Scholar
  20. 20.
    Ovadia D, Metser U, Lievshitz G, Yaniv M, Wientroub S, Even-Sapir E. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop 2007;27:90–93.PubMedGoogle Scholar
  21. 21.
    Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 2007;27:277–282.PubMedGoogle Scholar
  22. 22.
    Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002;43:510–518.PubMedGoogle Scholar
  23. 23.
    Metser U, Even-Sapir E. Increased (18)F-fluorodeoxyglucose uptake in benign, non-physiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): Accumulated data from four years of experience with PET/CT. Semin Nucl Med 2007;37:206–222.CrossRefPubMedGoogle Scholar
  24. 24.
    Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KD. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 2007;34:704–714.CrossRefPubMedGoogle Scholar
  25. 25.
    Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O. The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med 2005;46:444–449.PubMedGoogle Scholar
  26. 26.
    Beckers C, Jeukens X, Ribbens C, André B, Marcelis S, Leclercq P, Kaiser MJ, Foidart J, Hustinx R, Malaise MG. (18)F-FDG PET imaging of rheumatoid knee synovitis correlates with dynamic magnetic resonance and sonographic assessment as well as with the serum level of metalloproteinase-3.Eur J Nucl Med Mol Imaging 2006; 33:275–280.CrossRefPubMedGoogle Scholar
  27. 27.
    Mahfouz T, Miceli MH, Saghafifar F, Stroud S, Jones-Jackson L, Walker R, Grazziutti ML, Purnell G, Fassas A, Tricot G, Barlogie B, Anaissie E. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: A study of 165 infectious episodes. J Clin Oncol 2005; 23:7857–7863.CrossRefPubMedGoogle Scholar
  28. 28.
    Kransdorf MJ, Moser RP Jr, Gilkey FW. Fibrous dysplasia. Radiographics 1990;10:519–537.PubMedGoogle Scholar
  29. 29.
    Val-Bernal JF, Val D, Garijo MF, Vega A, González-Vela MC. Subcutaneous ossifying lipoma: case report and review of the literature. J Cutan Pathol 2007;34:788–792.CrossRefPubMedGoogle Scholar
  30. 30.
    Peh WC, Koh WL, Kwek JW, Htoo MM, Tan PH. Imaging of painful solitary lesions of the sacrum. Australas Radiol 2007;51:507–515.CrossRefPubMedGoogle Scholar
  31. 31.
    Diel J, Ortiz O, Losada RA, Price DB, Hayt MW, Katz DS. The sacrum: pathologic spectrum, multimodality imaging, and subspecialty approach. Radiographics 2001;21:83–104.PubMedGoogle Scholar
  32. 32.
    Jurriaans E, Singh N, Finlay K, Friedman L. Imaging of chronic recurrent multifocal osteomyelitis. Radiol Clin North Am 2001;39:305–327. CrossRefPubMedGoogle Scholar
  33. 33.
    Jurik AG. Chronic recurrent multifocal osteomyelitis. Semin Musculoskelet Radiol 2004;8:243–253.CrossRefPubMedGoogle Scholar
  34. 34.
    Sawicka-Zukowska M, Kajdas L, Muszynska-Roslan K, Krawczuk-Rybak M, Sonta-Jakimczyk D, Szczepanski T. Avascular necrosis – an antineoplastic-treatment-related toxicity: the experiences of two institutions. Pediatr Hematol Oncol 2006;23:625–629.CrossRefPubMedGoogle Scholar
  35. 35.
    Enrici RM, Anselmo AP, Donato V, Santoro M, Tombolini V. Avascular osteonecrosis in patients treated for Hodgkin's disease. Eur J Haematol 1998;61:204–209.CrossRefPubMedGoogle Scholar
  36. 36.
    Cruess RL. Osteonecrosis of bone. Current concepts as to etiology and pathogenesis. Clin Orthop Relat Res 1986;208:30–33.PubMedGoogle Scholar
  37. 37.
    Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: Ten years later. J Bone Joint Surg Am 2006;88:1117–1132.CrossRefPubMedGoogle Scholar
  38. 38.
    Grigolon MV, Delbeke D. F-18 FDG uptake in a bone infarct: a case report. Clin Nucl Med 2001;26:613–614.CrossRefPubMedGoogle Scholar
  39. 39.
    Sohn MH, Jeong HJ, Lim ST, Song SH, Yim CY. FDG uptake in osteonecrosis mimicking bone metastasis on PET/CT images. Clin Nucl Med 2007;32:496–497.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Einat Even-Sapir
    • 1
  • Hedva Lerman
    • 2
  • Gideon Flusser
    • 3
  • Arye Blachar
    • 4
  1. 1.Department of Nuclear MedicineTel Aviv Sourasky Medical Center, Tel Aviv UniversityTel AvivIsrael
  2. 2.Department of Nuclear MedicineTel Aviv Sourasky Medical CenterTel AvivIsrael
  3. 3.Department of RadiologyTel Aviv Sourasky Medical CenterTel AvivIsrael
  4. 4.Department of Radiology, Sackler School of MedicineTel Aviv Sourasky Medical Center, Tel Aviv UniversityTel AvivIsrael

Personalised recommendations