Skip to main content

Hybrid Imaging of Benign Skeletal Diseases

  • Chapter
  • First Online:
Hybrid PET/CT and SPECT/CT Imaging

Abstract

99mTc-methylene diphosphonate (99mTc-MDP) is the most commonly used bone radiopharmaceutical for scintigraphic assessment of skeletal abnormalities. The compound, an analogue of pyrophosphate, is chemisorbed onto bone surface. Its uptake depends on local blood flow and bone turnover. As little as 5–10% change in lesion to normal bone uptake ratio is required to detect pathology on bone scintigraphy (BS) preceding their detection on plain radiographs or CT by 2–18 months.1 Based on these characteristics, BS with 99mTc-MDP is highly sensitive for the detection of various benign skeletal abnormalities associated with increased bone turnover including trauma, osteomyelitis, osteoporosis, metabolic skeletal disease, degenerative changes, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28–49.

    Article  CAS  PubMed  Google Scholar 

  2. Gates GF. SPECT bone scanning of the spine. Semin Nucl Med 1998;28:78–94.

    Article  CAS  PubMed  Google Scholar 

  3. Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med 2006;36:286–294.

    Article  PubMed  Google Scholar 

  4. Even-Sapir E, Martin RH, Barnes DC, Pringle CR, Iles SE, Mitchell MJ. Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology 1993;187:193–198.

    CAS  PubMed  Google Scholar 

  5. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004;22:2942–2953.

    Article  PubMed  Google Scholar 

  6. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005; 46:1356–1367.

    PubMed  Google Scholar 

  7. Horger M, Eschmann SM, Pfannenberg C, Vonthein R, Besenfelder H, Claussen CD, Bares R. Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR 2004;183:655–661.

    PubMed  Google Scholar 

  8. Horger M, Eschmann SM, Pfannenberg C, Storek D, Vonthein R, Claussen CD, Bares R. Added value of SPECT/CT in patients suspected of having bone infection: preliminary results. Arch Orthop Trauma Surg 2007;127:211–221.

    Article  PubMed  Google Scholar 

  9. Even-Sapir E, Flusser G, Lerman H, Lievshitz G, Metser U. SPECT/multislice low-dose CT: A clinically relevant constituent in the imaging algorithm of non-oncologic patients referred for BS. J Nucl Med 2007;48:319–324.

    PubMed  Google Scholar 

  10. Römer W, Nomayr A, Uder M, Bautz W, Kuwert T. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 2006; 47:1102–1106.

    PubMed  Google Scholar 

  11. Horger M, Claussen CD, Bross-Bach U, Vonthein R, Trabold T, Heuschmid M, and Pfannenberg C. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol 2005;54:289–297.

    Article  PubMed  Google Scholar 

  12. Utsunomiya D, Shiraishi S, Imuta M, Tomiguchi S, Kawanaka K, Morishita S, Awai K, Yamashita Y. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 2006;238:264–271.

    Article  PubMed  Google Scholar 

  13. Strobel K, Burger C, Seifert B, Husarik DB, Soyka JD, Hany TF. Characterization of focal bone lesions in the axial skeleton: performance of planar BS compared with SPECT and SPECT fused with CT. AJR 2007;188:467–474.

    Article  PubMed  Google Scholar 

  14. McDonald M, Cooper R, Wang MY. Use of computed tomography-single-photon emission computed tomography fusion for diagnosing painful facet arthropathy. Technical note. Neurosurg Focus 2007;15:22:E2.

    Google Scholar 

  15. Langsteger W, Heinisch M, Fogelman I. The role of 18F-fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73–92

    Article  PubMed  Google Scholar 

  16. Schirrmeister H. Detection of bone metastases in breast cancer by positron emission tomography. Radiol Clin North Am 2007;45:669–676.

    Article  PubMed  Google Scholar 

  17. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, Ron I, Mishani E. Assessment of malignant skeletal disease: Initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 2004; 45:272–278

    PubMed  Google Scholar 

  18. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar BS, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47:287–297.

    PubMed  Google Scholar 

  19. Even-Sapir E, Mishani E, Flusser G, Metser U. 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 2007;37:462–469.

    Article  PubMed  Google Scholar 

  20. Ovadia D, Metser U, Lievshitz G, Yaniv M, Wientroub S, Even-Sapir E. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop 2007;27:90–93.

    PubMed  Google Scholar 

  21. Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 2007;27:277–282.

    PubMed  Google Scholar 

  22. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002;43:510–518.

    PubMed  Google Scholar 

  23. Metser U, Even-Sapir E. Increased (18)F-fluorodeoxyglucose uptake in benign, non-physiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): Accumulated data from four years of experience with PET/CT. Semin Nucl Med 2007;37:206–222.

    Article  PubMed  Google Scholar 

  24. Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KD. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 2007;34:704–714.

    Article  PubMed  Google Scholar 

  25. Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O. The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med 2005;46:444–449.

    PubMed  Google Scholar 

  26. Beckers C, Jeukens X, Ribbens C, André B, Marcelis S, Leclercq P, Kaiser MJ, Foidart J, Hustinx R, Malaise MG. (18)F-FDG PET imaging of rheumatoid knee synovitis correlates with dynamic magnetic resonance and sonographic assessment as well as with the serum level of metalloproteinase-3.Eur J Nucl Med Mol Imaging 2006; 33:275–280.

    Article  PubMed  Google Scholar 

  27. Mahfouz T, Miceli MH, Saghafifar F, Stroud S, Jones-Jackson L, Walker R, Grazziutti ML, Purnell G, Fassas A, Tricot G, Barlogie B, Anaissie E. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: A study of 165 infectious episodes. J Clin Oncol 2005; 23:7857–7863.

    Article  CAS  PubMed  Google Scholar 

  28. Kransdorf MJ, Moser RP Jr, Gilkey FW. Fibrous dysplasia. Radiographics 1990;10:519–537.

    CAS  PubMed  Google Scholar 

  29. Val-Bernal JF, Val D, Garijo MF, Vega A, González-Vela MC. Subcutaneous ossifying lipoma: case report and review of the literature. J Cutan Pathol 2007;34:788–792.

    Article  PubMed  Google Scholar 

  30. Peh WC, Koh WL, Kwek JW, Htoo MM, Tan PH. Imaging of painful solitary lesions of the sacrum. Australas Radiol 2007;51:507–515.

    Article  CAS  PubMed  Google Scholar 

  31. Diel J, Ortiz O, Losada RA, Price DB, Hayt MW, Katz DS. The sacrum: pathologic spectrum, multimodality imaging, and subspecialty approach. Radiographics 2001;21:83–104.

    CAS  PubMed  Google Scholar 

  32. Jurriaans E, Singh N, Finlay K, Friedman L. Imaging of chronic recurrent multifocal osteomyelitis. Radiol Clin North Am 2001;39:305–327. 

    Article  CAS  PubMed  Google Scholar 

  33. Jurik AG. Chronic recurrent multifocal osteomyelitis. Semin Musculoskelet Radiol 2004;8:243–253.

    Article  PubMed  Google Scholar 

  34. Sawicka-Zukowska M, Kajdas L, Muszynska-Roslan K, Krawczuk-Rybak M, Sonta-Jakimczyk D, Szczepanski T. Avascular necrosis – an antineoplastic-treatment-related toxicity: the experiences of two institutions. Pediatr Hematol Oncol 2006;23:625–629.

    Article  PubMed  Google Scholar 

  35. Enrici RM, Anselmo AP, Donato V, Santoro M, Tombolini V. Avascular osteonecrosis in patients treated for Hodgkin's disease. Eur J Haematol 1998;61:204–209.

    Article  CAS  PubMed  Google Scholar 

  36. Cruess RL. Osteonecrosis of bone. Current concepts as to etiology and pathogenesis. Clin Orthop Relat Res 1986;208:30–33.

    PubMed  Google Scholar 

  37. Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: Ten years later. J Bone Joint Surg Am 2006;88:1117–1132.

    Article  PubMed  Google Scholar 

  38. Grigolon MV, Delbeke D. F-18 FDG uptake in a bone infarct: a case report. Clin Nucl Med 2001;26:613–614.

    Article  CAS  PubMed  Google Scholar 

  39. Sohn MH, Jeong HJ, Lim ST, Song SH, Yim CY. FDG uptake in osteonecrosis mimicking bone metastasis on PET/CT images. Clin Nucl Med 2007;32:496–497.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einat Even-Sapir MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Even-Sapir, E., Lerman, H., Flusser, G., Blachar, A. (2010). Hybrid Imaging of Benign Skeletal Diseases. In: Delbeke, D., Israel, O. (eds) Hybrid PET/CT and SPECT/CT Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92820-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92820-3_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92819-7

  • Online ISBN: 978-0-387-92820-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics