Pediatric Applications for PET/CT and SPECT/CT



Positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT) are becoming increasingly important imaging tools in the noninvasive evaluation and monitoring of children with known or suspected malignant diseases. The recent advent of dual-modality imaging systems has added unprecedented diagnostic capabilities by revealing the precise anatomical localization of metabolic information and metabolic characterization of normal and abnormal structures. In addition, the use of CT transmission scanning for attenuation correction has shortened the total acquisition time, which is an especially desirable attribute in pediatric imaging.


Brown Adipose Tissue Lymphoblastic Lymphoma Hodgkin Disease 67Ga Scintigraphy Skeletal Scintigraphy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jadvar H, Connolly LP, Fahey FH, Shulkin BL. PET and PET/CT in pediatric oncology. Semin Nucl Med 2007;37:316–331.CrossRefPubMedGoogle Scholar
  2. 2.
    Kushner BH. Neuroblastoma: A disease requiring a multitude of imaging studies. J Nucl Med 2004;45:1172–1188.PubMedGoogle Scholar
  3. 3.
    Hiorns MP, Owens CM. Radiology of neuroblastoma in children. Eur Radiol 2001;11:2071–2081.CrossRefPubMedGoogle Scholar
  4. 4.
    Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: Radiologic-pathologic correlation. Radiographics 2002;22:911–934.PubMedGoogle Scholar
  5. 5.
    Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med 2003;47:31–40.PubMedGoogle Scholar
  6. 6.
    Papaioannou G, McHugh K. Neuroblastoma in childhood: Review and radiological findings. Cancer Imaging 2005;5:116–127.CrossRefPubMedGoogle Scholar
  7. 7.
    Ilias I, Pacak K. Diagnosis and management of tumors of the adrenal medulla. Horm Metab Res 2005;37:717–721.CrossRefPubMedGoogle Scholar
  8. 8.
    McCarville MB, Christie R, Daw NC, Spunt SL, Kaste SC. PET/CT in the evaluation of childhood sarcomas. AJR Am J Roentgenol 2005;184:1293–1304.PubMedGoogle Scholar
  9. 9.
    Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim EE. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology 2007;245:839–847.CrossRefPubMedGoogle Scholar
  10. 10.
    Volker T, Denecke T, Steffen I, Misch D, Schönberger S, Plotkin M, Ruf Y, Furth C, Stöver B, Hautzel H, Henze G, Amthauer H. Positron emission tomography for staging of pediatric sarcoma patients: Results of a prospective multicenter trial. J Clin Oncol 2007;25:5435–5441.CrossRefPubMedGoogle Scholar
  11. 11.
    Bredella MA, Caputo GR, Steinbach LS. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol 2002;179:1145–1150.PubMedGoogle Scholar
  12. 12.
    Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 2002;94:3277–3284.CrossRefPubMedGoogle Scholar
  13. 13.
    Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad III EU, Eary JF.[18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 2005;23:8828–8834.CrossRefPubMedGoogle Scholar
  14. 14.
    Iagaru A, Masamed R, Chawla SP, Menendez LR, Fedenko A, Conti PS. F-18 FDG PET and PET/CT evaluation of response to chemotherapy in bone and soft tissue sarcomas. Clin Nucl Med 2008;33:8–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Schuetze SM, Rubin BP, Vernon C, Hawkins DS, Bruckner JD, Conrad III EU, Eary JF. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 2005;103:339–348.CrossRefPubMedGoogle Scholar
  16. 16.
    Franzius C, Juergens KU, Vormoor J. PET/CT with diagnostic CT in the evaluation of childhood sarcoma. AJR Am J Roentgenol 2006;186:581; author reply 581–582.CrossRefPubMedGoogle Scholar
  17. 17.
    Iagaru A, Chawla S, Menendez L, Conti PS. 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 2006;27:795–802.CrossRefPubMedGoogle Scholar
  18. 18.
    Mody RJ, Bui C, Hutchinson RJ, Frey KA, Shulkin BL. Comparison of (18)F Flurodeoxyglucose PET with Ga-67 scintigraphy and conventional imaging modalities in pediatric lymphoma. Leuk Lymphoma 2007;48:699–707.CrossRefPubMedGoogle Scholar
  19. 19.
    Miller E, Metser U, Avrahami G, Dvir R, Valdman D, Sira LB, Sayar D, Burstein Y, Toren A, Yaniv I, Even-Sapir E. Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr 2006;30:689–694.CrossRefPubMedGoogle Scholar
  20. 20.
    Juweid ME. 18F-FDG PET as a routine test for posttherapy assessment of Hodgkin's disease and aggressive non-Hodgkin's lymphoma: Where is the evidence? J Nucl Med 2008;49:9–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, Wiseman GA, Kostakoglu L, Scheidhauer K, Buck A, Naumann R, Spaepen K, Hicks RJ, Weber WA, Reske SN, Schwaiger M, Schwartz LH, Zijlstra JM, Siegel BA, Cheson BD. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 2007;25:571–578.CrossRefPubMedGoogle Scholar
  22. 22.
    Hines-Thomas M, Kaste SC, Hudson MM, Howard SC, Liu WA, Wu J, Kun LE, Shulkin BL, Krasin MJ, Metzger ML. Comparison of gallium and PET scans at diagnosis and follow-up of pediatric patients with Hodgkin lymphoma. Pediatr Blood Cancer 2008;51:198–203.CrossRefPubMedGoogle Scholar
  23. 23.
    Meany HJ, Gidvani VK, Minniti CP. Utility of PET scans to predict disease relapse in pediatric patients with Hodgkin lymphoma. Pediatr Blood Cancer 2007;48:399–402.CrossRefPubMedGoogle Scholar
  24. 24.
    Rhodes MM, Delbeke D, Whitlock JA, Martin W, Kuttesch JF, Frangoul HA, Shankar S. Utility of FDG-PET/CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol 2006;28:300–306.CrossRefPubMedGoogle Scholar
  25. 25.
    Shankar A, Fiumara F, Pinkerton R. Role of FDG PET in the management of childhood lymphomas – case proven or is the jury still out? Eur J Cancer 2008;44:663–673.CrossRefPubMedGoogle Scholar
  26. 26.
    Nadel HR, Shulkin BL. Pediatric positron emission tomography-computed tomography protocol considerations. Semin Ultrasound CT MR 2008;29:271–276.CrossRefPubMedGoogle Scholar
  27. 27.
    Almusa OR, Daly B, Shreve P. Protocol considerations for positron emission tomography. Semin Ultrasound CT MR 2008;29:251–262.CrossRefPubMedGoogle Scholar
  28. 28.
    Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL Parker JA, Hubner K, Stabin MG, Zubal J, Kachelriess M, Cronin V, Holbrook S. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006;47:885–895.PubMedGoogle Scholar
  29. 29.
    Nadel HR. Bone scan update. Semin Nucl Med. 2007;37:332–339.CrossRefPubMedGoogle Scholar
  30. 30.
    Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Engl J Med 2007;357:2277–2284.CrossRefPubMedGoogle Scholar
  31. 31.
    Goske MJ, Applegate KE, Boylan J, Butler PF, Callahan MJ, Coley BD, Farley S, Frush DP, Hernanz-Schulman M, Jaramillo D, Johnson ND, Kaste SC, Morrison G, Strauss KJ, Tuggle N. The 'Image Gently' campaign: increasing CT radiation dose awareness through a national education and awareness program. Pediatr Radiol 2008;38:265–269.CrossRefPubMedGoogle Scholar
  32. 32.
    Rademaker J. Hodgkin's and non-Hodgkin's lymphomas. Radiol Clin North Am 2007;45:69–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Karadeniz C, Oguz A, Citak EC, Uluoglu O, Okur V, Demirci S, Okur A, Aksakal N. Clinical characteristics and treatment results of pediatric B-cell Non-Hodgkin lymphona patients in a single center. Pediatr Hematol Oncol 2007;24:417–430.CrossRefPubMedGoogle Scholar
  34. 34.
    Haddy TB, Keenan AM, Jaffe ES, Magrath IT. Bone involvement in young patients with non-Hodgkin's lymphoma: Efficacy of chemotherapy without local radiotherapy. Blood 1988;72:1141–1147.PubMedGoogle Scholar
  35. 35.
    Durr HR, Muller PE, Hiller E, Maier M, Baur A, Jansson V, Refior H. Malignant lymphoma of bone. Arch Orthop Trauma Surg 2002;122:10–16.PubMedGoogle Scholar
  36. 36.
    Wehrli NE, Bural G, Houseni M, Alkhawaldeh K, Alavi A, Torigian DA. Determination of age-related changes in structure and function of skin, adipose tissue, and skeletal muscle with computed tomography, magnetic resonance imaging, and positron emission tomography. Semin Nucl Med 2007;37:195–205.CrossRefPubMedGoogle Scholar
  37. 37.
    Yeung HW, Grewal RK, Gonen M, Schoder H, Larson SM. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 2003;44:1789–1796.PubMedGoogle Scholar
  38. 38.
    Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med 2003;44:170–176.PubMedGoogle Scholar
  39. 39.
    Janeway KA, Liegl B, Harlow A, Le C, Perez-Atayde A, Kozakewich H, Corless CL, Heinrich MC, Fletcher JA. Pediatric KIT wild-type and platelet-derived growth factor receptor alpha-wild-type gastrointestinal stromal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res 2007;67:9084–9088.CrossRefPubMedGoogle Scholar
  40. 40.
    Prakash S, Sarran L, Socci N, DeMatteo RP, Eisenstat J, Greco AM, Maki RG, Wexler LH, LaQuaglia MP, Besmer P, Antonescu CR. Gastrointestinal stromal tumors in children and young adults: A clinicopathologic, molecular, and genomic study of 15 cases and review of the literature. J Pediatr Hematol Oncol 2005;27:179–187.CrossRefPubMedGoogle Scholar
  41. 41.
    Nadel HR. Nuclear oncology in children. In Freeman LM (ed): Nuclear medicine annual. New York: Raven Press, 1996:143–193.Google Scholar
  42. 42.
    Arush MW, Israel O, Postovsky S, Militianu D, Meller I, Zaidman I, Even Sapir A, Bar-Shalom R. Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 2007;49:901–905.CrossRefPubMedGoogle Scholar
  43. 43.
    Shulkin BL, Mitchell DS, Ungar DR, Prakash D, Dole MG, Castle VP, Hernandez RJ, Koeppe RA, Hutchinson RJ. Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-D-glucose PET studies. Radiology 1995;194:495–500.PubMedGoogle Scholar
  44. 44.
    Meyer S, Nadel HR, Marina N, Womer RB, Brown KL, Eary JF, Gorlick R, Grier HE, Randall RL, Lawlor ER, Lessnick SL, Schomberg PJ, Kailo MD. Imaging guidelines for children with Ewing Sarcoma and Osteosarcoma: A report from the Children's Oncology Group Bone Tumor Committee. Pediatr Blood Cancer 2008;51:163–170.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Nuclear Medicine, Department of RadiologyBritish Columbia Children’s Hospital, University of British ColumbiaVancouverCanada
  2. 2.Department of RadiologyBritish Columbia Children’s HospitalVancouverCanada

Personalised recommendations