Advertisement

Malignancy of the Bone: Primary Tumors, Lymphoma, and Skeletal Metastases

  • Einat Even-Sapir
  • Gideon Flusser
  • Arye Blachar
Chapter

Abstract

Most malignant skeletal lesions initiate intramedullary. As the intramedullary malignant deposit enlarges, the surrounding bone undergoes osteoclastic and osteoblastic activity. Tumor cells may destroy bone directly or produce mediators that stimulate reabsorption by osteoclasts.1Based on the balance between the two processes, the radiographic appearance of a malignant skeletal lesion may be lytic, blastic, or mixed.2Detection of malignant skeletal involvement is based on either direct visualization of tumor cells or of the secondary reaction of the bone to the present malignant cells.

Keywords

Positron Emission Tomography Ewing Sarcoma Skeletal Metastasis Increase Tracer Uptake Lymphomatous Involvement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004;350:1655–1664.CrossRefPubMedGoogle Scholar
  2. 2.
    Padhani A, Husband J. Bone metastases. In Husband JES, Reznek RH, (eds): Imaging in Oncology.Oxford, UK: Isis Medical Media Ltd., 1998: 765–787.Google Scholar
  3. 3.
    Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate.Semin Nucl Med 2001;31:28–49.Google Scholar
  4. 4.
    Cook GJ, Fogelman I. The role of positron emission tomography in skeletal disease. Semin Nucl Med 2001;31:50–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005;46:1356–1367.PubMedGoogle Scholar
  6. 6.
    Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004; 22:2942–2953.CrossRefPubMedGoogle Scholar
  7. 7.
    Liu FY, Chang JT, Wang HM, Liao CT, Kang CJ, Ng SH, Chan SC, Yen TC. [18F]fluorodeoxyglucose positron emission tomography is more sensitive than skeletal scintigraphy for detecting bone metastases in endemic nasopharyngeal carcinoma at initial staging. J Clin Oncol 2006;24:599–604.CrossRefPubMedGoogle Scholar
  8. 8.
    Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer 2000; 88:2927–2933.CrossRefPubMedGoogle Scholar
  9. 9.
    Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375–3379.PubMedGoogle Scholar
  10. 10.
    Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998;16:603–609.PubMedGoogle Scholar
  11. 11.
    Even-Sapir E, Lievshitz G, Perry C, Herishanu Y, Lerman H, Metser U. Fluorine-18 fluorodeoxyglucose PET/CT patterns of extranodal involvement in patients with Non-Hodgkin lymphoma and Hodgkin's disease. Radiol Clin North Am 2007;45:697–709.CrossRefPubMedGoogle Scholar
  12. 12.
    Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 2006;42:1539–1543.CrossRefPubMedGoogle Scholar
  13. 13.
    Adam Z, Bolcak K, Stanicek J, Buchler T, Pour L, Krejci M, Prasek J, Neubauer J, Vorlicek J, Hajek R. Fluorodeoxyglucose positron emission tomography in multiple myeloma, solitary plasmocytoma and monoclonal gammapathy of unknown significance. Neoplasma 2007;54:536–540.PubMedGoogle Scholar
  14. 14.
    Israel O, Goldberg A, Nachtigal A, Militianu D, Bar-Shalom R, Keidar Z, Fogelman I. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur J Nucl Med Mol Imaging 2006;33:1280–1284.CrossRefPubMedGoogle Scholar
  15. 15.
    Du Y, Cullum I, Illidge TM, Ell PJ. Fusion of metabolic function and morphology: Sequential [18F]Fluorodeoxyglucose positron-emission tomography /computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 2007;25:3440–3447.CrossRefPubMedGoogle Scholar
  16. 16.
    Kazama T, Swanston N, Podoloff DA, Macapinlac HA. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 2005;32:1406–1411.CrossRefPubMedGoogle Scholar
  17. 17.
    Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET/CT Fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics 2004;24:1411–1431.CrossRefPubMedGoogle Scholar
  18. 18.
    Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E. Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med 2004;45:279–284.PubMedGoogle Scholar
  19. 19.
    Schulte M, Brecht-Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, Diederichs CG, Von Baer A, Kotzerke J, Reske SN. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000;41:1695–701.PubMedGoogle Scholar
  20. 20.
    Pezeshk P, Sadow CA, Winalski CS, Lang PK, Ready JE, Carrino JA. Usefulness of 18F-FDG PET-directed skeletal biopsy for metastatic neoplasm. Acad Radiol 2006;13:1011–1015.CrossRefPubMedGoogle Scholar
  21. 21.
    Lodge MA, Lucas JD, Marsden PK, Cronin BF, O'Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 1999;26:22–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med 2003;44:930–942.PubMedGoogle Scholar
  23. 23.
    Cotterill SJ, Ahrens S, Paulussen M, Jürgens HF, Voûte PA, Gadner H, Craft AW. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 2000;18:3108–3114.PubMedGoogle Scholar
  24. 24.
    Franzius C, Daldrup-Link HE, Wagner-Bohn A, Sciuk, J, Heindel WL, Jürgens H, Schober O. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 2002;13:157–160.CrossRefPubMedGoogle Scholar
  25. 25.
    Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 2002;94:3277–3284.CrossRefPubMedGoogle Scholar
  26. 26.
    Cheran SK, Herndon JE, Patz EF. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 2004; 44:317–325.CrossRefPubMedGoogle Scholar
  27. 27.
    Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med 2005;35:135–142.CrossRefPubMedGoogle Scholar
  28. 28.
    Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K, Suzuki T, Nishimura T. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imag 2005;32:1253–1258.CrossRefGoogle Scholar
  30. 30.
    Abe K, Sasaki M, Kuwabara Y, Koga H, Baba S, Hayashi K, Nakahashi N, Honda H. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 2005;19:573–579.CrossRefPubMedGoogle Scholar
  31. 31.
    Port ER, Yeung H, Gonen M, Liberman L, Caravelli J, Borgen P, Larson S. (18)F-2-fluoro-2-deoxy-d: -glucose positron emission tomography scanning affects surgical management in selected patients with high-risk, operable breast carcinoma. Ann Surg Oncol 2006;13:677–684.CrossRefPubMedGoogle Scholar
  32. 32.
    Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics 2005;25:191–207.CrossRefPubMedGoogle Scholar
  33. 33.
    Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: A meta-analysis. J Nucl Med 2005;46:958–963.PubMedGoogle Scholar
  34. 34.
    Schaefer NG, Strobel K, Taverna C, Hany TF. Bone involvement in patients with lymphoma: The role of FDG-PET/CT. Eur J Nucl Med Mol Imaging 2007;34:60–67.CrossRefPubMedGoogle Scholar
  35. 35.
    Baehring JM, Damek D, Martin EC, Betensky RA, Hochberg FH. Neurolymphomatosis. Neuro-Oncology 2003;5:104–115.PubMedGoogle Scholar
  36. 36.
    Heyning FH, Kroon HM, Hogendoorn PC, Taminiau AH, van der Woude HJ. MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance. Skeletal Radiol 2007;36:937–944.CrossRefPubMedGoogle Scholar
  37. 37.
    Durie BG., Waxman AD, D'Agnolo A, Williams CM. Whole-body 18F-FDG PET identifies high-risk myeloma. J Nucl Med 2002;43:1457–1463.PubMedGoogle Scholar
  38. 38.
    Schirrmeister H, Bommer M, Buck AK, Müller S, Messer P, Bunjes D,. Döhner H, Bergmann L, Reske S. Initial results in the assessment of multiple myeloma using F-18 FDG PET. Eur J Nucl Med Mol Imag 2002;29:361–366.CrossRefGoogle Scholar
  39. 39.
    Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, Schober O, Rummeny EJ. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR 2001;177:229–236.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Einat Even-Sapir
    • 1
  • Gideon Flusser
    • 2
  • Arye Blachar
    • 3
  1. 1.Department of Nuclear MedicineTel-Aviv Sourasky Medical Center, Tel Aviv UniversityTel AvivIsrael
  2. 2.Department of RadiologyTel Aviv Sourasky Medical CenterTel AvivIsrael
  3. 3.Department of Radiology, Sackler School of Medicine, Tel Aviv Sourasky Medical CenterTel Aviv UniversityTel AvivIsrael

Personalised recommendations