Thyroid Cancer

  • Heather A. Jacene
  • Sibyll Goetze
  • Richard L. Wahl


Thyroid cancer is a relatively rare disease, with an annual incidence of 1–4 per 100,000 and is more common in females. The incidence of thyroid cancer has increased in recent years, related to some extent to the earlier detection of sub-clinical disease, especially with the increased used of ultrasound (US). Many patients with thyroid cancer present with an incidentally discovered thyroid nodule on physical examination, at times self-examination, or diagnostic imaging. Some patients seek attention because of local symptoms such as dysphasia, dysphonia, hoarseness, or symptoms related to metastatic disease (cervical lymphadenopathy, pathologic fracture). Initial histological diagnosis is usually established by US and fine needle aspiration (FNA).1


Thyroid Cancer Papillary Thyroid Carcinoma Differentiate Thyroid Cancer Medullary Thyroid Cancer Anaplastic Thyroid Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fraker D, Skarulis M, Livolsi V. Thyroid Tumors. In: DeVita V, Hellman S, Rosenberg SA, eds.: Cancer: Principles and Practice of Oncology, 6th ed. Philadelphia, PA: Lippincott Williams & Wilkens: 2001;1740–1762.Google Scholar
  2. 2.
    Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Sherman SI, Tuttle RM. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006;16:109–142.CrossRefPubMedGoogle Scholar
  3. 3.
    Shapiro B, Rufini V, Jarwan A, Geatti O, Kearfott KJ, Fig LM, Kirkwood ID, Gross MD. Artifacts, anatomical and physiological variants, and unrelated diseases that might cause false-positive whole-body 131-I scans in patients with thyroid cancer. Semin Nucl Med 2000;30:115–132.CrossRefPubMedGoogle Scholar
  4. 4.
    Even-Sapir E, Keidar Z, Sachs J, Engel A, Bettman L, Gaitini D, Guralnik L, Werbin N, Iosilevsky G, Israel O. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 2001;42:998–1004.PubMedGoogle Scholar
  5. 5.
    Tharp K, Israel O, Hausmann J,  Bettman L, Martin WH, Daitzchman M, Sandler MP, Delbeke D. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging 2004;31:1435–1442.CrossRefPubMedGoogle Scholar
  6. 6.
    Leboulleux S, Schroeder PR, Schlumberger M, Ladenson PW. The role of PET in follow-up of patients treated for differentiated epithelial thyroid cancers. Nat Clin Pract Endocrinol Metab 2007;3:112–121.CrossRefPubMedGoogle Scholar
  7. 7.
    Moog F, Linke R, Manthey N, Tiling R, Knesewitsch P, Tatsch K, Hahn K, Grünwald F, Biersack H-J. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 2000;41:1989–1995.PubMedGoogle Scholar
  8. 8.
    van Tol KM, Jager PL, Piers DA, Pruim J, de Vries EGE, Dullaart RPF, Links TP. Better yield of (18)fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid 2002;12:381–387.CrossRefPubMedGoogle Scholar
  9. 9.
    Chin BB, Patel P, Cohade C, Ewertz M, Wahl R, Ladenson P. Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 2004;89:91–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Petrich T, Borner AR, Otto D, Hofmann M, Knapp W. Influence of rhTSH on [(18)F]fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2002;29:641–647.CrossRefPubMedGoogle Scholar
  11. 11.
    Grunwald F, Kalicke T, Feine U, Lietzenmayer R, Scheidhauer K, Dietlein M, Schober O, Lerch H, Brandt-Mainz K, Burchert W, Hiltermann G, Cremerius U, Biersack HJ. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26:1547–1552.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang W, Macapinlac H, Larson SM, Yeh SDJ, Akhurst T, Finn RD, Rosai J, Robbins RJ. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131) I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999;84:2291–2302.CrossRefPubMedGoogle Scholar
  13. 13.
    Leboulleux S, Schroeder PR, Busaidy NL, Auperin A, Corone C, Jacene HA, Ewertz ME, Bournaud C, Wahl RL, Sherman SI, Ladenson PW, Schlumberger M. Assessment of the incremental value of recombinant TSH stimulation before FDG PET/CT imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab 2009;94:1310–1316.Google Scholar
  14. 14.
    Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, Tuttle RM, Drucker W, Larson SM. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91:498–505.Google Scholar
  15. 15.
    Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, Yeung H, Macapinlac H, Rosai J, Robbins RJ. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000;85:1107–1113.CrossRefPubMedGoogle Scholar
  16. 16.
    Plotkin M, Hautzel H, Krause BJ, Schmidt D, Larisch R, Mottaghy FM, Boerner A-R, Herzog H, Vosberg H, Müller-Gärtner H-W. Implication of 2-18fluor-2-deoxyglucose positron emission tomography in the follow-up of Hurthle cell thyroid cancer. Thyroid 2002;12:155–161.CrossRefPubMedGoogle Scholar
  17. 17.
    Pryma DA, Schoder H, Gonen M, Robbins RJ, Larson SM,Yeung HWD. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hurthle cell thyroid cancer patients. J Nucl Med 2006;47:1260–1266.PubMedGoogle Scholar
  18. 18.
    Jadvar H, Fischman AJ. Evaluation of rare tumors with [F-18]Fluorodeoxyglucose positron emission tomography. Clin Positron Imaging 1999;2:153–158.CrossRefPubMedGoogle Scholar
  19. 19.
    Nguyen BD, Ram PC. PET/CT staging and posttherapeutic monitoring of anaplastic thyroid carcinoma. Clin Nucl Med 2007;32:145–149.CrossRefPubMedGoogle Scholar
  20. 20.
    Poppe K, Lahoutte T, Everaert H, Bossuyt A, Velkeniers B. The utility of multimodality imaging in anaplastic thyroid carcinoma. Thyroid 2004;14:981–982.CrossRefPubMedGoogle Scholar
  21. 21.
    Donovan DT,Gagel RF. Medullary Thyroid Carcinoma and the Multiple Endocrine Neoplasms. In: Falk S, ed.: Thyroid Disease: Endocrinology, Surgery, Nuclear Medicine, and Radiotherapy, 2nd ed. Philadelphia, PA: Lippincott-Raven: 1997:619–644.Google Scholar
  22. 22.
    Rufini V, Salvatori M, Garganese MC, Di GD, Lodovica MM, Troncone L. Role of nuclear medicine in the diagnosis and therapy of medullary thyroid carcinoma. Rays 2000;25:273–282.PubMedGoogle Scholar
  23. 23.
    Baudin E, Lumbroso J, Schlumberger M, Leclere J, Giammarile F, Gardet P, Roche A, Travagli JP, Parmentier C. Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med 1996;37:912–916.PubMedGoogle Scholar
  24. 24.
    Frank-Raue K, Bihl H, Dorr U, Buhr H, Ziegler R, Raue F. Somatostatin receptor imaging in persistent medullary thyroid carcinoma. Clin Endocrinol (Oxf) 1995;42:31–37.CrossRefGoogle Scholar
  25. 25.
    Clarke SE, Lazarus CR, Wraight P, Sampson C, Maisey MN. Pentavalent [99mTc]DMSA, [131I]MIBG, and [99mTc]MDP – an evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. J Nucl Med 1988;29:33–38.PubMedGoogle Scholar
  26. 26.
    Khan N, Oriuchi N, Higuchi T, Endo K. Review of fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in the follow-up of medullary and anaplastic thyroid carcinomas. Cancer Control 2005;12:254–260.PubMedGoogle Scholar
  27. 27.
    Giraudet AL, Vanel D, Leboulleux S, Aupérin A, Dromain C, Chami L, Tovo NN, Lumbroso J, Lassau N, Bonniaud G, Hartl D, Travagli J-P, Baudin E, Schlumberger M. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Meta 2007;92:4185–4190.CrossRefGoogle Scholar
  28. 28.
    Iagaru A, Masamed R, Singer PA, Conti PS. Detection of occult medullary thyroid cancer recurrence with 2-deoxy-2-[F-18]fluoro-D-glucose-PET and PET/CT. Mol Imaging Biol 2007;9:72–77.CrossRefPubMedGoogle Scholar
  29. 29.
    de Groot JW, Links TP, Jager PL, Kahraman T, Plukker JT. Impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 2004;11:786–794.CrossRefPubMedGoogle Scholar
  30. 30.
    Ong SC, Schoder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gönen M, Shaha AR, Tuttle RM, Shah JP, Larson SM. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med 2007;48:501–507.CrossRefPubMedGoogle Scholar
  31. 31.
    Musholt TJ, Musholt PB, Dehdashti F, Moley JF. Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. Surgery1997;122:1049–1060.CrossRefPubMedGoogle Scholar
  32. 32.
    Salvatori M, Melis L, Castaldi P, Maussier ML, Rufini V, Perotti G, Rubello D. Clinical significance of focal and diffuse thyroid diseases identified by (18)F-fluorodeoxyglucose positron emission tomography. Biomed Pharmacother 2007;61:488–493.CrossRefPubMedGoogle Scholar
  33. 33.
    Karantanis D, Bogsrud TV, Wiseman GA, Mullan BP, Subramaniam RM, Nathan MA, Peller PJ, Bahn RS, Lowe VJ. Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland. J Nucl Med 2007;48:896–901.CrossRefPubMedGoogle Scholar
  34. 34.
    Podoloff DA, Ball DW, Ben-Josef E, Benson AB, Cohen SJ, Coleman RE, Delbeke D, Ho M, Ilson DH, Kalemkerian GP, Lee RJ, Loeffler JS, Macapinlac HA, Morgan RJ, Siegel BA, Singhal S, Tyler DS, Wong RJ. NCCN Task Force: Clinical Utility of PET in a Variety of Tumor Types Task Force. J Natl Compr Canc Netw 2009;7 Suppl 2:S1–S23. Google Scholar
  35. 35.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman E, Wahl R, Paschold JC, Avril N , Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF. Recommendations for the use of FDG(fluorine-18, (2-[18F]Fluoro-2-deoxy-D-glucose) Positron emission tomography in oncology. J Nucl Med 2008;49:480–508.CrossRefPubMedGoogle Scholar
  36. 36.
    Ruf J, Lehmkuhl L, Bertram H, Sandrock D, Amthauer H, Humplik B, Ludwig Munz D, Felix R. Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma. Nucl Med Commun 2004;25:1177–1182.CrossRefPubMedGoogle Scholar
  37. 37.
    Ladenson PW. Recombinant thyrotropin versus thyroid hormone withdrawal in evaluating patients with thyroid carcinoma. Semin Nucl Med 2000;30:98–106.CrossRefPubMedGoogle Scholar
  38. 38.
    Schroeder PR, Haugen BR, Pacini F, Reiners C, Schlumberger M, Sherman SI, Cooper DS, Schuff CG, Braverman LE, Skarulis MC, Davies TF, Mazzaferri EL, Daniels GH, Ross DS, Luster M, Samuels MH, Weintraub BD, Ridgway EC, Ladenson PW. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab 2006;91:878–884.CrossRefPubMedGoogle Scholar
  39. 39.
    Som PM, Curtin HD, Mancuso AA. An imaging-based classification for the cervical nodes designed as an adjunct to recent clinically based nodal classifications. Arch Otolaryngol Head Neck Surg1999;125:388–396.PubMedGoogle Scholar
  40. 40.
    Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S, Roedel R, Wolff M, Wardelmann E, Biersack H-J, Jaeger U. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006;47:616–624.PubMedGoogle Scholar
  41. 41.
    Yen TC, Lin HD, Lee CH, Chang SL, Yeh SH. The role of technetium-99m sestamibi whole-body scans in diagnosing metastatic Hurthle cell carcinoma of the thyroid gland after total thyroidectomy: A comparison with iodine-131 and thallium-201 whole-body scans. Eur J Nucl Med 1994;21:980–983.CrossRefPubMedGoogle Scholar
  42. 42.
    Stojadinovic A, Hoos A, Ghossein RA, Urist MJ, Leung DHY, Spiro RH, Shah HP, Brennan MF, Singh B, Shaha AR. Hurthle cell carcinoma: A 60-year experience. Ann Surg Oncol 2002;9:197–203.PubMedGoogle Scholar
  43. 43.
    Lowe VJ, Kim H, Boyd JH, Eisenbeis JF, Dunphy FR, Fletcher JW. Primary and recurrent early stage laryngeal cancer: preliminary results of 2-[fluorine 18]fluoro-2-deoxy-D-glucose PET imaging. Radiology 1999;212:799–802.PubMedGoogle Scholar
  44. 44.
    Papotti M, Kumar U, Volante M, Pecchioni C, Patel YC. Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol(Oxf) 2001;54:641–649.CrossRefGoogle Scholar
  45. 45.
    Krausz Y, Keidar Z, Kogan I, Even-Sapir E, Bar-Shalom R, Engel A, Rubinstein R, Sachs J, Bocher M, Agranovicz S, Chisin R, Israel O. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol(Oxf) 2003;59:565–573.CrossRefGoogle Scholar
  46. 46.
    Pfannenberg AC, Eschmann SM, Horger M, Lamberts R, Vonthein R, Claussen CD, Bares R. Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 2003;30:835–843.CrossRefPubMedGoogle Scholar
  47. 47.
    Jacene HA, Goudarzi B, Wahl RL. Scalene muscle uptake: a potential pitfall in head and neck PET/CT. Eur J Nucl Med Mol Imaging 2008;35:89–94.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Heather A. Jacene
    • 1
  • Sibyll Goetze
    • 2
  • Richard L. Wahl
    • 3
  1. 1.Division of Nuclear Medicine / PET, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Radiology, Division of Nuclear Medicine/PETThe University of Alabama at BirminghamBirminghamUSA
  3. 3.Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine/PETJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations