Advertisement

History and Principles of Hybrid Imaging

  • James A. Patton
Chapter

Abstract

Positron emission tomography (PET) and single photon emission computed tomography (SPECT) systems are used to image distributions of radiopharmaceuticals in order to provide physicians with physiological information for diagnostic and therapeutic purposes. However, these images often lack sufficient anatomical detail, a fact that has triggered the development of a new technology termed hybrid imaging. Hybrid imaging is a term that is now being used to describe the combination of x-ray computed tomography (CT) systems with nuclear medicine imaging devices (PET and SPECT systems) in order to provide the technology for acquiring images of anatomy and function in a registered format during a single imaging session with the patient positioned on a common imaging table. There are two primary advantages to this technology.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Attenuation Correction Attenuation Coefficient Compute Tomography Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anger HO, Rosenthal DJ. Scintillation camera and positron camera. In Medical Radioisotope Scanning. Vienna: International Atomic Energy Agency, 1959:59–75.Google Scholar
  2. 2.
    Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology 1963;80:653–662.Google Scholar
  3. 3.
    Kuhl DE, Edwards RQ. Cylindrical and section radioisotope scanning of the liver and brain. Radiology 1964;83:926–936.PubMedGoogle Scholar
  4. 4.
    Kuhl DE. A clinical radioisotope scanner for cylindrical and section scanning. In Medical Radioisotope Scanning, Vol. 1. Vienna: International Atomic Energy Agency, 1964:273–289.Google Scholar
  5. 5.
    Muehllehner G. A tomographic scintillation camera. Phy Med Biol 1971;16:87–96.CrossRefGoogle Scholar
  6. 6.
    Keyes JW, Oleandea N, Heetderks WJ, Leonard PF, Rogers, WL. The humongotron: A scintillation camera transaxial tomography. J Nucl Med 1977;18:381–387.PubMedGoogle Scholar
  7. 7.
    Jaszczak RJ, Huard D, Murphy P, Burdine J. Radionuclide emission tomography with a scintillation camera. J Nucl Med 1976;17:551.Google Scholar
  8. 8.
    Galt JR, Germano G. Advances in instrumentation for cardiac SPECT. In DePuey EG, Berman DS, Garcia EV (eds): Cardiac SPECT Imaging. New York: Raven Press, 1995:91–102.Google Scholar
  9. 9.
    Garcia EV (ed). Imaging guidelines for nuclear cardiology procedures, part I. J Nucl Cardiol 1996;3:G3–45.Google Scholar
  10. 10.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;MI-1:113–122.CrossRefGoogle Scholar
  11. 11.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. J Nucl Med 1994;13:601–609.Google Scholar
  12. 12.
    Muehllehner G, Buchin M, Dudek J. Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci 1976;NS-23:528–537.CrossRefGoogle Scholar
  13. 13.
    Patton JA. Instrumentation for coincidence imaging with multihead cameras. Semin Nucl Med 2000;30:239–254.CrossRefPubMedGoogle Scholar
  14. 14.
    Robertson J, Marr R, Roseblurn B. Thirty-two crystal positron transverse section detector. In Freedman G (ed): Tomographic Imaging in Nuclear Medicine. New York: Society of Nuclear Medicine, 1973:151–153.Google Scholar
  15. 15.
    Burnham C, Brownell G. A multi-crystal positron camera. IEEE Trans Nucl Sci 1972;19:201–205.CrossRefGoogle Scholar
  16. 16.
    Brownell G, Burnham C. MGH positron camera. In Freedman G (ed): Tomographic Imaging in Nuclear Medicine. New York: Society of Nuclear Medicine, 1973:154–164.Google Scholar
  17. 17.
    Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani N. A positron-emission transaxial tomography for nuclear imaging (PETT). Radiology 1975;114:89–98.PubMedGoogle Scholar
  18. 18.
    Phelps ME, Hoffman E, Mullani N, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 1975;16:210–224.PubMedGoogle Scholar
  19. 19.
    Phelps ME, Hoffman E, Mullani N, Higgins CS, Ter-Pogossian MM. Design considerations for a positron emission transaxial tomography (PETT III). IEEE Trans Nucl Sci 1976;NS-23:516–522.CrossRefGoogle Scholar
  20. 20.
    Hoffman E, Phelps ME, Mullani N, Higgins CS, Ter-Pogossian MM. Design and performance characteristics of a whole body transaxial tomography. J Nucl Med 1976;17:493–503.Google Scholar
  21. 21.
    Phelps ME, Hoffman E, Huang S, Kuhl D. ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals. J Nucl Med 1978;19:635–647.PubMedGoogle Scholar
  22. 22.
    Hoffman E, Ricci A, van der Stee LMAM, Phelps ME. ECATIII – Basic design considerations. IEEE Trans Nucl Sci 1983;NS-30:729–733.CrossRefGoogle Scholar
  23. 23.
    Hounsfield G, Ambrose J. Computerized transverse axial scanning (tomography). Part I: Description of system. Part II: Clinical applications. Br J Radiol 1973;46:1016–1047.CrossRefPubMedGoogle Scholar
  24. 24.
    McCormack A. Reconstruction of densities from their projections, with applications to radiological physics. Phys Med Biol 1973;18:195–207.CrossRefGoogle Scholar
  25. 25.
    X-Ray Computed Tomography. In Bushberg JT, Seibert JA, Leidholdt, Jr. EM, Boone JM (eds): The Essential Physics of Medical Imaging, Second Edition. Philadelphia: Lippincott Williams & Wilkins, 2002:327–369.Google Scholar
  26. 26.
    Bruyant PP. Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 2002;43:1343–1358.PubMedGoogle Scholar
  27. 27.
    Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor S, Reilly SM, Gingold EL, Cann CE. A prototype emission-transmission imaging system. IEEE Nucl Sci Symp Conf Rec 1991;3:1902–1906.Google Scholar
  28. 28.
    Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor CS, Reilly SM, Gingold EL, Cann CE. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med 1992;33:1881–1887.PubMedGoogle Scholar
  29. 29.
    Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. J Nucl Med 2000;41:1364–1368.PubMedGoogle Scholar
  30. 30.
    Townsend DW, Beyer T, Kinahan PE, Brun T, Roddy R,  Nutt R,  Byars LG. The SMART scanner: A combined PET/CT tomography for clinical oncology. IEEE Nucl Sci Symp Conf Rec1998;2:170–1174, paper M5-1.Google Scholar
  31. 31.
    Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–1379.PubMedGoogle Scholar
  32. 32.
    Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron mission tomography/computed tomography scanners. Semin Nuc Med 2003;33:166–179.CrossRefGoogle Scholar
  33. 33.
    LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci 1994; NS-41:2793–2799.CrossRefGoogle Scholar
  34. 34.
    Blankespoor SC, Xu X, Kalki CK, Brown JK, Tang HR, Cann CE, Hasegawa BH.Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: Myocardial perfusion assessment. IEEE Trans Nucl Sci 1996; NS-43:2263–2274.CrossRefGoogle Scholar
  35. 35.
    Zaidi H, Hasegawa BH. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44:291–315.PubMedGoogle Scholar
  36. 36.
    King MA, Glick SJ, Pretorius PH, Wells RG, Gifford HC, Narayanan MV, Farncombe T. Attenuation, scatter, and spatial resolution compensation in SPECT. In Wernick MN, Aarsvold JN (eds): Emission Tomography: The Fundamentals of PET and SPECT. London: Elsevier Academic Press, 2004:473–494.Google Scholar
  37. 37.
    Stabin, M, Stubbs JB, Toohey RE. Radiation Dose Extimates for Radiopharmaceuticals. Oak Ridge, TN: Radiation Internal Dose Information Center, ORNL, 1996.CrossRefGoogle Scholar
  38. 38.
    Shaw LJ, Berman DS, Bax JJ, Brown KA, Cohen MC, Hendel RC, Mahmarian JJ, Williams KA, Ziffer JA. Computed tomographic imaging within nuclear cardiology, ASNC information statement – approved November 2004. J Nucl Cardiol 2005;12:131–142.CrossRefGoogle Scholar
  39. 39.
    Tonge CM, Ellul G, Pandit M, Lawson RS, Shields RA, Arumugam P, Prescott MC. The value of registration correction in the attenuation correction of myocardial SPECT studies using low resolution computed tomography images. Nucl Med Commun 2006;27:843–852.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations