Skip to main content

Studies of Sequence-Nonspecific HMGB DNA-Binding Proteins

  • Chapter
  • First Online:
  • 1842 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter introduces the interesting class of eukaryotic sequence-nonspecific DNA-bending proteins known as high-mobility group B (HMGB) proteins. The general problem of DNA stiffness and compaction is first considered. Molecular characteristics of HMGB proteins and hypothetical biological roles are then reviewed. The rest of the chapter relates examples of recent work from the author and collaborators to gain mechanistic insights by ensemble and single-molecule approaches and to develop quantitative in vivo assays of DNA physical properties and the effects of HMGB proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Garcia HG, Grayson P, Han L, Inamdar M, Kondev J, Nelson PC, Phillips R, Widom J, Wiggins PA (2007) Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85:115–130

    Article  Google Scholar 

  2. Shimada J, Yamakawa H (1984) Ring-closure probabilities for twisted wormlike chains. Application to DNA. Macromolecules 17:689–698

    Article  ADS  Google Scholar 

  3. Shore D, Baldwin RL (1983) Energetics of DNA twisting. I. Relation between twist and cyclization probability. J Mol Biol 170:957–981

    Article  Google Scholar 

  4. Shore D, Langowski J, Baldwin RL (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci U S A 78:4833–4837

    Article  ADS  Google Scholar 

  5. Vologodskaia M, Vologodskii A (2002) Contribution of the intrinsic curvature to measured DNA persistence length. J Mol Biol 317:205–213

    Article  Google Scholar 

  6. Ariel G, Andelman D (2003) Persistence length of a strongly charged rodlike polyelectrolyte in the presence of salt. Phys Rev E 67:11805–11814

    Article  ADS  Google Scholar 

  7. Barrat JL, Joanny JF (1993) Persistence length of polyelectrolyte chains. Europhys Lett 24:333–338

    Article  ADS  Google Scholar 

  8. Hagerman PJ (1992) Straightening out the bends in curved DNA. Biochim Biophys Acta 1131:125–132

    Article  Google Scholar 

  9. Maher LJ III (1998) Mechanisms of DNA bending. Curr Opin Chem Biol 2:688–694

    Article  Google Scholar 

  10. Schellman JA, Harvey SC (1995) Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys Chem 55:95–114

    Article  Google Scholar 

  11. Williams LD, Maher LJ III (2000) Electrostatic mechanisms of DNA deformation. Annu Rev Biophys Biomol Struct 29:497–521

    Article  Google Scholar 

  12. Du Q, Smith C, Shiffeldrim N, Vologodskaia M, Vologodskii A (2005) Cyclization of short DNA fragments and bending fluctuations of the double helix. Proc Natl Acad Sci U S A 102:5397–5402

    Article  ADS  Google Scholar 

  13. Bellomy G, Mossing M, Record M (1988) Physical properties of DNA in vivo as probed by the length dependence of the lac operator looping process. Biochemistry 27:3900–3906

    Article  Google Scholar 

  14. Law SM, Bellomy GR, Schlax PJ, Record MT Jr (1993) In vivo thermodynamic analysis of repression with and without looping in lac constructs. Estimates of free and local lac repressor concentrations and of physical properties of a region of supercoiled plasmid DNA in vivo. J Mol Biol 230:161–173

    Article  Google Scholar 

  15. Mossing MC, Record MT Jr (1986) Upstream operators enhance repression of the lac promoter. Science 233:889–892

    Article  ADS  Google Scholar 

  16. Zhang Y, McEwen AE, Crothers DM, Levene SD (2006) Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping. PLoS ONE 1:e136

    Article  ADS  Google Scholar 

  17. Travers AA, Ner SS, Churchill MEA (1994) DNA chaperones: a solution to a persistence problem. Cell 77:167–169

    Article  Google Scholar 

  18. Crothers DM (1993) Architectural elements in nucleoprotein complexes. Curr Biol 3:675–676

    Article  Google Scholar 

  19. Paull TT, Carey M, Johnson RC (1996) Yeast HMG proteins NHP6A/B potentiate promoter-specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro. Genes Dev 10:2769–2781

    Article  Google Scholar 

  20. Paull TT, Haykinson MJ, Johnson RC (1993) The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev 7:1521–1534

    Article  Google Scholar 

  21. Paull TT, Johnson RC (1995) DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/B. J Biol Chem 270:8744–8754

    Article  Google Scholar 

  22. Aki T, Adhya S (1997) Repressor induced site-specific binding of HU for transcriptional regulation. EMBO J 16:3666–3674

    Article  Google Scholar 

  23. Lewis DE, Adhya S (2002) In vitro repression of the gal promoters by GalR and HU depends on the proper helical phasing of the two operators. J Biol Chem 277:2498–2504

    Article  Google Scholar 

  24. Lia G, Bensimon D, Croquette V, Allemand JF, Dunlap D, Lewis DE, Adhya S, Finzi L (2003) Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping. Proc Natl Acad Sci U S A 100:11373–11377

    Article  ADS  Google Scholar 

  25. Thomas JO, Travers AA (2001) HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 26:167–174

    Article  Google Scholar 

  26. Bianchi ME, Beltrame M (2000) Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and neoplasia. EMBO Rep 1:109–114

    Article  Google Scholar 

  27. Bustin M (2001) Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 26:152–153

    Article  Google Scholar 

  28. Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  Google Scholar 

  29. Hock R, Furusawa T, Ueda T, Bustin M (2007) HMG chromosomal proteins in development and disease. Trends Cell Biol 17:72–79

    Article  Google Scholar 

  30. Masse JE, Wong B, Yen YM, Allain FH, Johnson RC, Feigon J (2002) The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. J Mol Biol 323:263–284

    Article  Google Scholar 

  31. Swinger KK, Lemberg KM, Zhang Y, Rice PA (2003) Flexible DNA bending in HU-DNA cocrystal structures. EMBO J 22:3749–3760

    Article  Google Scholar 

  32. Stott K, Tang GS, Lee KB, Thomas JO (2006) Structure of a complex of tandem HMG boxes and DNA. J Mol Biol 360:90–104

    Article  Google Scholar 

  33. Klass J, Murphy F IV, Fouts S, Serenil M, Changela A, Siple J, Churchill ME (2003) The role of intercalating residues in chromosomal high-mobility-group protein DNA binding, bending and specificity. Nucleic Acids Res 31:2852–2864

    Article  Google Scholar 

  34. Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399:708–712

    Article  ADS  Google Scholar 

  35. Allain FH, Yen YM, Masse JE, Schultze P, Dieckmann T, Johnson RC, Feigon J (1999) Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. EMBO J 18:2563–2579

    Article  Google Scholar 

  36. Dragan AI, Read CM, Makeyeva EN, Milgotina EI, Churchill ME, Crane-Robinson C, Privalov PL (2004) DNA binding and bending by HMG boxes: energetic determinants of specificity. J Mol Biol 343:371–393

    Article  Google Scholar 

  37. Baxevanis AD, Landsman D (1995) The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res 23:1604–1613

    Article  Google Scholar 

  38. Bianchi ME, Beltrame M (1998) Flexing DNA: HMG-box proteins and their partners. Am J Hum Genet 63:1573–1577

    Article  Google Scholar 

  39. Wolffe AP (1999) Architectural regulations and Hmg1. Nat Genet 22:215–217

    Article  Google Scholar 

  40. Travers AA (2003) Priming the nucleosome: a role for HMGB proteins? EMBO Rep 4:131–136

    Article  Google Scholar 

  41. Churchill ME, Changela A, Dow LK, Krieg AJ (1999) Interactions of high mobility group box proteins with DNA and chromatin. Methods Enzymol 304:99–133

    Article  Google Scholar 

  42. Jung Y, Lippard SJ (2003) Nature of full-length HMGB1 binding to cisplatin-modified DNA. Biochemistry 42:2664–2671

    Article  Google Scholar 

  43. Becker NA, Kahn JD, Maher LJ III (2005) Bacterial repression loops require enhanced DNA flexibility. J Mol Biol 349:716–730

    Article  Google Scholar 

  44. Megraw TL, Chae CB (1993) Functional complementarity between the HMG1-like yeast mitochondrial histone HM and the bacterial histone-like protein HU. J Biol Chem 268:12758–12763

    Google Scholar 

  45. Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, Ferrari S, Bianchi ME (1999) The lack of chromosomal protein HMG1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nature Genet 22:276–280

    Article  Google Scholar 

  46. Kolodrubetz D, Burgum A (1990) Duplicated NHP6 genes of Saccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. J Biol Chem 265:3234–3239

    Google Scholar 

  47. Kolodrubetz D, Kruppa M, Burgum A (2001) Gene dosage affects the expression of the ­duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 272:93–101

    Article  Google Scholar 

  48. Kruppa M, Kolodrubetz D (2001) Mutations in the yeast Nhp6 protein can differentially affect its in vivo functions. Biochem Biophys Res Commun 280:1292–1299

    Article  Google Scholar 

  49. Kruppa M, Moir RD, Kolodrubetz D, Willis IM (2001) Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol Cell 7:309–318

    Article  Google Scholar 

  50. Aidinis V, Bonaldi T, Beltrame M, Santagata S, Bianchi ME, Spanopoulou E (1999) The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2. Mol Cell Biol 19:6532–6542

    Google Scholar 

  51. Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M, Prives C (1998) High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 12:462–472

    Article  Google Scholar 

  52. Laser H, Bongards C, Schüller J, Heck S, Johnsson N, Lehming N (2000) A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci U S A 97:13732–13737

    Article  ADS  Google Scholar 

  53. LeRoy G, Orphanides G, Lane WS, Reinberg D (1998) Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282:1900–1904

    Article  ADS  Google Scholar 

  54. Prasad R, Liu Y, Deterding LJ, Poltoratsky VP, Kedar PS, Horton JK, Kanno S, Asagoshi K, Hou EW, Khodyreva SN, Lavrik OI, Tomer KB, Yasui A, Wilson SH (2007) HMGB1 is a cofactor in mammalian base excision repair. Mol Cell 27:829–841

    Article  Google Scholar 

  55. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  Google Scholar 

  56. Dobi KC, Winston F (2007) Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol 27:5575–5586

    Article  Google Scholar 

  57. Hershkovits G, Bangio H, Cohen R, Katcoff DJ (2006) Recruitment of mRNA cleavage/polyadenylation machinery by the yeast chromatin protein Sin1p/Spt2p. Proc Natl Acad Sci U S A 103:9808–9813

    Article  ADS  Google Scholar 

  58. Rhoades AR, Ruone S, Formosa T (2004) Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6. Mol Cell Biol 24:3907–3917

    Article  Google Scholar 

  59. Kamau E, Bauerle KT, Grove A (2004) The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. J Biol Chem 279:55234–55240

    Article  Google Scholar 

  60. Hall DB, Wade JT, Struhl K (2006) An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol 26:3672–3679

    Article  Google Scholar 

  61. Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J (2008) Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 22:1190–1204

    Article  Google Scholar 

  62. Zimmerman J, Maher LJ III (2008) Transient HMGB protein interactions with B-DNA duplexes and complexes. Biochem Biophys Res Commun 371:79–84

    Article  Google Scholar 

  63. Sebastian NT, Bystry EM, Becker NA, Maher LJ III (2009) Enhancement of DNA flexibility in vitro and in vivo by HMGB box A proteins carrying box B residues. Biochemistry 48:2125–2134

    Article  Google Scholar 

  64. McCauley M, Hardwidge PR, Maher LJ III, Williams MC (2005) Dual binding modes for an HMG domain from human HMGB2 on DNA. Biophys J 89:353–364

    Article  Google Scholar 

  65. Skoko D, Wong B, Johnson RC, Marko JF (2004) Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA-protein complexes. Biochemistry 43:13867–13874

    Article  Google Scholar 

  66. McCauley MJ, Zimmerman J, Maher LJ III, Williams MC (2007) HMGB binding to DNA: single and double box motifs. J Mol Biol 374:993–1004

    Article  Google Scholar 

  67. Zhang J, McCauley MJ, Maher LJ III, Williams MC, Israeloff NE (2009) Mechanism of DNA flexibility enhancement by HMGB proteins. Nucleic Acids Res 37:1107–1114

    Article  Google Scholar 

  68. Becker NA, Kahn JD, Maher LJ III (2007) Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. Nucleic Acids Res 35:3988–4000

    Article  Google Scholar 

  69. Kramer H, Niemoller M, Amouyal M, Revet B, von Wilcken-Bergmann B, Müller-Hill B (1987) Lac repressor forms loops with linear DNA carrying two suitably spaced lac operators. EMBO J 6:1481–1491

    Google Scholar 

  70. Muller J, Oehler S, Müller-Hill B (1996) Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. J Mol Biol 257:21–29

    Article  Google Scholar 

  71. Oehler S, Eismann ER, Kramer H, Müller-Hill B (1990) The three operators of the lac operon cooperate in repression. EMBO J 9:973–979

    Google Scholar 

  72. Zhang Y, McEwen AE, Crothers DM, Levene SD (2006) Statistical-mechanical theory of DNA looping. Biophys J 90:1903–1912

    Article  Google Scholar 

  73. Becker NA, Kahn JD, Maher LJ III (2008) Eukaryotic HMGB proteins as replacements for HU in E. coli repression loop formation. Nucleic Acids Res 36:4009–4021

    Article  Google Scholar 

  74. Bryant Z, Stone MD, Gore J, Smith SB, Cozzarelli NR, Bustamante C (2003) Structural ­transitions and elasticity from torque measurements on DNA. Nature 424:338–341

    Article  ADS  Google Scholar 

  75. Ross ED, Hardwidge PR, Maher LJ III (2001) HMG proteins and DNA flexibility in transcription activation. Mol Cell Biol 21:6598–6605

    Article  Google Scholar 

  76. Cloutier TE, Widom J (2004) Spontaneous sharp bending of double-stranded DNA. Mol Cell 14:355–362

    Article  Google Scholar 

  77. Maher LJ III (2006) DNA kinks available...if needed. Structure 14:1479–1480

    Article  MathSciNet  Google Scholar 

  78. Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370

    Google Scholar 

  79. Schmid M, Durussel T, Laemmli UK (2004) ChIC and ChEC: genomic mapping of chromatin proteins. Mol Cell 16:147–157

    Google Scholar 

  80. Ansari A, Hampsey M (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19:2969–2978

    Article  Google Scholar 

  81. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  ADS  Google Scholar 

  82. Tang LJ, Li J, Katz DS, Feng JA (2000) Determining the DNA bending angle induced by non-specific high mobility group-1 (HMG-1) proteins: a novel method. Biochemistry 39:3052–3060

    Article  Google Scholar 

  83. Swinger KK, Rice PA (2004) IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14:28–35

    Article  Google Scholar 

Download references

Acknowledgments

The author is delighted to acknowledge the seminal contributions of present and past students (Julie Soukup, Phil Hardwidge, Andy Rodrigues, Eric Ross, Laura Cassiday, Anne Keating, Robert Dean, Joe Azok, Tessa Davis, Bob McDonald, and Justin Peters), staff scientists (Claudia McDonald, Matt Ferber, Jeff Zimmerman, and Emily Rueter) and collaborators (Jason Kahn, Michael Fried, Stephen Levine, Gerald Manning, Wilma Olson, Luke Czapla, Luis Marky, Anjum Ansari, Ivan Rasnik, Alex Vologodskii, Darrin York, Barry Gold, Rob Phillips, Yitzhak Tor, Yuan Ping Pang, Peter Privalov, Larry Parkhurst, Bill Kirk, Mark Williams, Loren Williams, Nathan Israeloff, Chris Switzer, and Udayan Mohanty). The exceptional skills and intellectual contributions of Nicole Becker are deeply appreciated. It was the teaching of Tom Record that first inspired the author’s interest in this field. Work on HMGB proteins in the author’s lab has been funded by the Mayo Foundation for Medical Education and Research and by NIH grant GM75965.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. James Maher III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maher, L.J. (2010). Studies of Sequence-Nonspecific HMGB DNA-Binding Proteins. In: Williams, M., Maher, L. (eds) Biophysics of DNA-Protein Interactions. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92808-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92808-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92807-4

  • Online ISBN: 978-0-387-92808-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics