Role of DNA Conformations in Gene Regulation

  • Ralf Metzler
  • Bram van den Broek
  • Gijs J. L. Wuite
  • Michael A. Lomholt
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The topology of DNA plays an important role in the search of DNA binding ­proteins for their specific target site on the DNA molecule, this search process being at the heart of gene regulation. Connecting to recent single DNA measurements, we provide evidence for the various mechanisms constituting the facilitated diffusion model, in particular, one-dimensional motion along the DNA chain and intersegmental jumps at points of close contact between chemically remote DNA chain segments, mediated by DNA looping.


Persistence Length Search Rate Specific Target Site Catabolite Activator Protein Cognate Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 3rd edn. Garland Science, New YorkGoogle Scholar
  2. 2.
    Ptashne M (2004) A genetic switch. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  3. 3.
    Smoluchowski MV (1916) Three presentations on diffusion, molecular movement according to Brown and coagulation of colloid particles. Physikal Zeitschr 17:557–571ADSGoogle Scholar
  4. 4.
    Riggs AD, Bourgeois S, Cohn M (1970) Lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol 53:401Google Scholar
  5. 5.
    Halford SE (2009) An end to 40 years of mistakes in DNA-protein association kinetics. Biochem Soc Trans 37:344CrossRefGoogle Scholar
  6. 6.
    von Hippel PH, Berg OG (1989) Facilitated target location in biological systems. J Biol Chem 264:675Google Scholar
  7. 7.
    Berg OG, Winter RB, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20:6929Google Scholar
  8. 8.
    Winter RB, Berg OG, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: kinetic measurements and conclusions. Biochemistry 20:6961Google Scholar
  9. 9.
    Kaladimos CG, Biris N, Bonvin AMJJ, Levandovski MM, Guennuegues M, Boelens R, Kaptein R (2004) Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 305:386CrossRefADSGoogle Scholar
  10. 10.
    Lewis M, Chang G, Horton NC, Kercher MA, Pace HC Schumacher MA, Brennan RG, Lu P (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247CrossRefADSGoogle Scholar
  11. 11.
    Viadiu H, Aggarwal AK (2000) Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Mol Cell 5:889CrossRefGoogle Scholar
  12. 12.
    Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS (1993) The crystal-structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J 12:1781Google Scholar
  13. 13.
    Gerland U, Moroz JD, Hwa T (2002) Physical constraints and functional characteristics of transcription factor-DNA interaction. Proc Natl Acad Sci U S A 99:12015CrossRefADSGoogle Scholar
  14. 14.
    Bakk A, Metzler R (2004) In vivo non-specific binding of λ CI and Cro repressors is significant. FEBS Lett 563:66CrossRefGoogle Scholar
  15. 15.
    von Hippel PH, Revzin A, Gross CA, Wang AC (1974) Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects. Proc Natl Acad Sci U S A 71:4808CrossRefADSGoogle Scholar
  16. 16.
    Kao-Huang Y, Revzin A, Butler AP, O’Conner P, Noble DW, von Hippel PH (1977) Non-specific DNA binding of genome regulating proteins as a biological control mechanism: Measurement of DNA-bound Escherichia coli lac repressor in vivo. Proc Natl Acad Sci U S A 74:4228CrossRefADSGoogle Scholar
  17. 17.
    Stanford NP, Szczelkun MD, Marko JF, Halford SE (2000) One- and three-dimensional pathways for proteins to reach specific DNA sites. EMBO J 19:6546CrossRefGoogle Scholar
  18. 18.
    Gowers DM, Wilson GG, Halford SE (2005) Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc Natl Acad Sci U S A 102:15883CrossRefADSGoogle Scholar
  19. 19.
    Sokolov IM, Metzler R, Pant K, Williams MC (2005) Target search of N sliding proteins on a DNA. Biophys J 89:895CrossRefGoogle Scholar
  20. 20.
    Sokolov IM, Metzler R, Pant K, Williams MC (2005) Target search of N sliding proteins on a DNA. Phys Rev E 72:041102CrossRefADSGoogle Scholar
  21. 21.
    Wang YM, Austin RH, Cox EC (2006) Single molecule measurements of repressor protein 1D diffusion on DNA. Phys Rev Lett 97:048302CrossRefADSGoogle Scholar
  22. 22.
    Bonnet I, Biebricher A, Porte P-L, Loverdo C, Benichou O, Voituriez R, Escude C, Wende W, Pingoud A, Desbiolles P (2008) Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 36:4118CrossRefGoogle Scholar
  23. 23.
    Elf J, Li G-W, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191CrossRefADSGoogle Scholar
  24. 24.
    Hughes BD (1995) Random Walks and Random Environments, Volume 1: Random Walks. Oxford University Press, Oxford, UKGoogle Scholar
  25. 25.
    Duplantier B (1989) Statistical mechanics of polymer networks of any topology. J Stat Phys 54:581MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Lomholt MA, Ambjörnsson T, Metzler R (2005) Optimal target search on a fast-folding polymer chain with volume exchange. Phys Rev Lett 95:260603CrossRefADSGoogle Scholar
  27. 27.
    van den Broek B, Lomholt MA, Kalisch S-MJ, Metzler R, Wuite GJL (2008) How DNA coiling enhances the target localization by proteins. Proc Natl Acad Sci U S A 105:15738CrossRefADSGoogle Scholar
  28. 28.
    Lomholt MA, van den Broek B, Kalisch S-MJ, Wuite GJL, Metzler R (2009) Facilitated diffusion with DNA coiling. Proc Natl Acad Sci U S A 106:8204CrossRefADSGoogle Scholar
  29. 29.
    Berg OG, Ehrenberg M (1982) Association kinetics with coupled 3-dimensional and one-dimensional diffusion: chain-length dependence of the association rate to specific DNA sites. Biophys Chem 15:41CrossRefADSGoogle Scholar
  30. 30.
    Lee KC, Borukhov I, Gelbart WM, Liu AJ, Stevens MJ (2004) Effect of mono- and multivalent salts on angle-dependent attractions between charged rods. Phys Rev Lett 93:128101CrossRefADSGoogle Scholar
  31. 31.
    Qiu X et al (2006) Measuring inter-DNA potentials in solution. Phys Rev Lett 96:138101CrossRefADSGoogle Scholar
  32. 32.
    Gowers DM, Halford SE (2003) Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. EMBO J 22:1410CrossRefGoogle Scholar
  33. 33.
    Lwoff A (1953) Lysogeny. Bacteriol Rev 17:269Google Scholar
  34. 34.
    Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102CrossRefADSGoogle Scholar
  35. 35.
    Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89:2960CrossRefGoogle Scholar
  36. 36.
    Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87:3518CrossRefGoogle Scholar
  37. 37.
    Li GW, Berg OG, Elf J (2009) Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat Phys 5:294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ralf Metzler
    • 1
  • Bram van den Broek
  • Gijs J. L. Wuite
  • Michael A. Lomholt
  1. 1.Physics Department T30gTechnical University of MunichGarchingGermany

Personalised recommendations