Single-Molecule Imaging of LacI Diffusing Along Nonspecific DNA

  • Y. M. Wang
  • R. H. Austin
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Transcription factors, restriction enzymes, and RNA polymerases are proteins that function by binding to their specific target sites on DNA [1, 2]. The DNA targets for these proteins are typically a few tens of base pairs long, while the chromosomes contain over a million base pairs of DNA (E. coli, for example, has 4.6 million base pairs); therefore, before reaching their targets, it is inevitable that DNA-binding ­proteins encounter nonspecific DNA first. In this process, protein–nonspecific-DNA binding does occur (although with weaker affinity than DNA target binding [3]) and this interaction affects the specific-DNA targeting rate of the protein. In order to regulate the targeting rate of DNA-binding proteins, which is an important step for gene expression regulations, the mechanisms of protein interaction with nonspecific DNA must be elucidated.


Point Spread Function Dissociation Time Millisecond Timescale Fluorescence Intensity Profile Translocation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ptashne M (1992) A genetic switch: phage lambda and higher organisms, 2nd edn. Blackwell, Cambridge, MAGoogle Scholar
  2. 2.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, fourth edn. Garland Science, New YorkGoogle Scholar
  3. 3.
    Revzin A (1990) The biology of nonspecific DNA protein interactions. CRC Press, LondonGoogle Scholar
  4. 4.
    Riggs AD, Bougeois S, Cohn M (1970) The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol 53:401–417CrossRefGoogle Scholar
  5. 5.
    Adam G, Delbruck M (1968) Reduction of dimensionality in biological diffusion process. In: Rich A, Davidson N (eds) Structural chemistry in molecular biology, Freeman, San Francisco, pp. 198–215Google Scholar
  6. 6.
    Berg OG, Blomberg C (1976) Association kinetics with coupled diffusional flow. Special application to the Lac repressor-operator system. Biophys Chem 4:367–381CrossRefGoogle Scholar
  7. 7.
    Berg OG (1978) On diffusion-controlled dissociation. Chem Phys 31:47–57CrossRefADSGoogle Scholar
  8. 8.
    Winter RB, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor-operator interaction: equilibrium measurements. Biochemistry 20:6948–6960CrossRefGoogle Scholar
  9. 9.
    Jack WE, Terry BJ, Modrich P (1982) Involvement of outside DNA sequences in the major kinetic path by which EcoRI endonuclease locates and leaves its recognition sequence. Proc Natl Acad Sci U S A 79:4010–4014CrossRefADSGoogle Scholar
  10. 10.
    Ricchetti M, Metzger W, Heumann H (1988) One-dimensional diffusion of Escherichia coli DNA-dependent RNA polymerase: A mechanism to facilitate promoter location. Proc Natl Acad Sci U S A 85:4610–4614CrossRefADSGoogle Scholar
  11. 11.
    Ruusala T, Crothers DM (1992) Sliding and intermolecular transfer of the Lac repressor - kinetic perturbation of a reaction intermediate by a distant DNA-sequence. Proc Natl Acad Sci U S A 89:4903–4907CrossRefADSGoogle Scholar
  12. 12.
    Kabata H, Kurosawa O, Arai I, Washizu M, Margarson SA, Glass RE, Shimamoto N (1993) Visualization of single molecules of RNA polymerase sliding along DNA. Science 262:1561–1563CrossRefADSGoogle Scholar
  13. 13.
    Hsien M, Brenowitz M (1997) Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant LacIadj and the native dimeric Gal repressor. J Biol Chem 272:22092–22096CrossRefGoogle Scholar
  14. 14.
    Shimamoto N (1999) One-dimensional diffusion of proteins along DNA. J Biol Chem 274:15293–15296CrossRefGoogle Scholar
  15. 15.
    Halford SE, Marko JF (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res 32:3040–3052CrossRefGoogle Scholar
  16. 16.
    Misteli T (2001) Nuclear structure - Protein dynamics: Implications for nuclear architecture and gene expression. Science 291:843–847CrossRefADSGoogle Scholar
  17. 17.
    Stanford NP, Szczelkun D, Marko JF, Halford SE (2000) One- and three-dimensional pathways for proteins to reach specific DNA sites. EMBO J 23:6546–6557CrossRefGoogle Scholar
  18. 18.
    Gowers DM, Halford SE (2003) Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. Embo J 22:1410–1418CrossRefGoogle Scholar
  19. 19.
    Elf J, Li G-W, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–1194CrossRefADSGoogle Scholar
  20. 20.
    Biebricher A, Wende W, Escudé C, Pingoud A, Desbiolles P (2009) Tracking of single quantum dot labeled EcoRV sliding along DNA manipulated by double optical tweezers. Biophys J: Biophys Lett 96:L50–L52Google Scholar
  21. 21.
    Li G-W, Berg OG, Elf J (2009) Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat Phys 5:294–297CrossRefGoogle Scholar
  22. 22.
    Barbi M, Place C, Popkov V, Salerno M (2004) A model of sequence-dependent protein diffusion along DNA. J Biol phys 30:203–226CrossRefGoogle Scholar
  23. 23.
    Berg OG, Ehrenberg M (1982) Association kinetics with coupled three- and one-dimensional diffusion : Chain-length dependence of the association rate to specific DNA sites. Biophys Chem 15:41–51CrossRefADSGoogle Scholar
  24. 24.
    Gowers DM, Wilson GG, Halford SE (2005) Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc Natl Acad Sci U S A 102:15883–15888CrossRefADSGoogle Scholar
  25. 25.
    Porecha RH, Stivers JT (2008) Uracil DNA glycosylase uses DNA hopping ad short-range sliding to trap extrahelical uracils. Proc Natl Acad Sci U S A 105:10791–10796CrossRefADSGoogle Scholar
  26. 26.
    Harada Y, Funatsu T, Murakami K, Nonoyama Y, Ishihama A, Yanagida T (1999) Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J 76:709–715CrossRefGoogle Scholar
  27. 27.
    Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14:131–160CrossRefGoogle Scholar
  28. 28.
    Barkley MD (1981) Salt dependence of the kinetics of the lac repressor-operator interaction: role of nonoperator deoxyribonucleic acid (DNA) in the association reaction. Biochemistry 20:3833–3842CrossRefGoogle Scholar
  29. 29.
    Hu L, Grosberg AY, Bruinsma R (2008) Are DNA transcription factor proteins Maxwellian demons? Biophys J 95:1151–1156CrossRefGoogle Scholar
  30. 30.
    Wunderlich Z, Mirny LA (2008) Spatial effects on the speed and reliability of protein-DNA search. Nucleic Acids Res 36:3570–3578CrossRefGoogle Scholar
  31. 31.
    Wang YM, Tegenfeldt J, Reisner W, Riehn R, Guan X-J, Guo L, Golding I, Cox EC, Sturm J, Austin RH (2005) Single-molecule studies of repressor-DNA interactions show long-range interactions. Proc Natl Acad Sci U S A 102:9796–9801CrossRefADSGoogle Scholar
  32. 32.
    Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268:83–87CrossRefADSGoogle Scholar
  33. 33.
    Kalodimos CG, Biris N, Bonvin AMJJ, Levandoski MM, Guennuegues M, Boelens R, Kaptein R (2004) Adaptation in nonspecific and specific protein-DNA complexes. Science 305:386–389CrossRefADSGoogle Scholar
  34. 34.
    Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126CrossRefADSGoogle Scholar
  35. 35.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783CrossRefGoogle Scholar
  36. 36.
    Qian H, Sheetz MP, Elson EL (1991) Single particle tracking: Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921CrossRefGoogle Scholar
  37. 37.
    Blainey PC, van Oijent AM, Banerjee A, Verdine GL, Xie XS (2006) A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc Natl Acad Sci U S A 103:5752–5757CrossRefADSGoogle Scholar
  38. 38.
    Graneli A, Yeykal C, Robertson R, Greene E (2006) Long-distance lateral diffusion of human Rad51 on double-stranded DNA. Proc Natl Acad Sci U S A 103:1221–1226CrossRefADSGoogle Scholar
  39. 39.
    Austin RH, Beeson K, Eisenstein L, Frauenfelder H, Gunsalus I, Marshall V (1974) Activation energy spectrum of a biomolecule: Photodissociation of carbonmonoxy myoglobin at low temperatures. Phys Rev Lett 32:403–405CrossRefADSGoogle Scholar
  40. 40.
    Slutsky M, Mirny LA (2004) Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential. Biophys J 87:4021–4035CrossRefGoogle Scholar
  41. 41.
    Barbi M, Place C, Popkov V, Salerno M (2004) Base-sequence-dependent sliding of proteins on DNA. Phys Rev E 70:041901CrossRefADSGoogle Scholar
  42. 42.
    Gerland U, Moroz JD, Hwa T (2002) Physical constraints and functional characteristics of transcription factor–DNA interaction. Proc Natl Acad Sci U S A 99:12015–12020CrossRefADSGoogle Scholar
  43. 43.
    Berg OG, von Hippel PH (1989) Selection of DNA binding sites by regulatory proteins statistical-mechanical theory and application to operators and Promoters. J Mol Biol 193:723–750CrossRefGoogle Scholar
  44. 44.
    von Hippel P, Rees WA, Rippe K, Wilson KS (1996) Specificity mechanisms in the control of transcription. Biophys Chem 59:231CrossRefGoogle Scholar
  45. 45.
    Wang YM, Austin RH, Cox EC (2006) Single molecule measurements of repressor protein 1D diffusion on DNA. Phys Rev Lett 97:048302CrossRefADSGoogle Scholar
  46. 46.
    Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, Greene EC (2007) Dynamic Basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Cell 28:359–370Google Scholar
  47. 47.
    Kim JH, Larson RG (2007) Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules. Nucleic Acids Res 35:3848–3858CrossRefGoogle Scholar
  48. 48.
    Tafvizi A, Huang F, Leith JS, Fersht AR, Mirny LA, van Oijen AM (2008) Tumor Suppressor p53 Slides on DNA with low friction and high stability. Biophys J: Biophys Lett 95:L01–L03Google Scholar
  49. 49.
    Bonnet I, Biebricher A, Porté P-L, Loverdo C, Bénichou O, Voituriez R, Escudé C, Wende W, Pingoud A, Desbiolles P (2008) Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 36:4118–4127CrossRefGoogle Scholar
  50. 50.
    Gorman J, Greene EC (2008) Visualizing one-dimensional diffusion of proteins along DNA. Nat Struct Mol Biol 15:768–774CrossRefGoogle Scholar
  51. 51.
    van Mameren J, Peterman EJG, Wuite GJL (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389CrossRefGoogle Scholar
  52. 52.
    Komazin-Meredith G, Mirchev R, Golan DE, van Oijen AM, Coen DM (2008) Hopping of a precessivity factor on DNA revealed by single-molecule assays of diffusion. Proc Natl Acad Sci U S A 105:10721–10726CrossRefADSGoogle Scholar
  53. 53.
    Laurence TA, Kwon Y, Johnson A, Hollars CW, O’Donnell M, Camarero JA, Barsky D (2009) Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J Biol Chem 283:22895–22906CrossRefGoogle Scholar
  54. 54.
    Lin Y, Zhao T, Jian X, Farooqui Z, Qu X, He C, Dinner AR, Scherer NF (2009) Using the bias from flow to elucidate single DNA repair protein sliding and interactions with DNA. Biophys J 96:1911–1917CrossRefGoogle Scholar
  55. 55.
    Kurita H, Torii K, Yasuda H, Takashima K, Katsura S, Mizuno A (2009) The effect of physical form of DNA on exonucleaseIII activity revealed by single-molecule observations. J Fluoresc 19:33–40CrossRefGoogle Scholar
  56. 56.
    Fan H-F, Li H-W (2009) Studying RecBCD helicase translocation along χ-DNA using tethered partical motion with a stretching force. Biophys J 96:1875–1883CrossRefGoogle Scholar
  57. 57.
    van Oijen A, Köhler J, Schmidt J, Müller M, Brakenhoff G (1998) 3-Dimensional super-resolution by spectrally selective imaging. Chem Phys Lett 292:183–187CrossRefGoogle Scholar
  58. 58.
    Speidel M, Jonas A, Florin E-L (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28:69–71CrossRefADSGoogle Scholar
  59. 59.
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813CrossRefADSGoogle Scholar
  60. 60.
    DeCenzo S, DeSantis M, Wang YM (2010) Single-image separation measurements of two unresolved fluorophores. Opt Express 18:16628–16639CrossRefGoogle Scholar
  61. 61.
    DeSantis M, DeCenzo S, Li JL, Wang Y (submitted) Precision analysis for standard deviation measurements of immobile single fluorescent molecule images. Opt Express 18:6563–6576Google Scholar
  62. 62.
    Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678CrossRefADSGoogle Scholar
  63. 63.
    Schütz GJ, Pastushenko VP, Gruber HJ, Knaus H-G, Pragl B, Schindler H (2000) 3D imaging of individual ion channels in live cells at 40 nm resolution. Single Mol 1:25–31CrossRefADSGoogle Scholar
  64. 64.
    Quake SR, Babcock H, Chu S (1997) The dynamics of partially extended single molecules of DNA. Nature 388:151–154CrossRefADSGoogle Scholar
  65. 65.
    Crut A, Lasne D, Allemand JF, Dahan M, Desbiolles P (2003) Transverse fluctuations of single DNA molecules attached at both extremities to a surface. Phys Rev E 67:051910CrossRefADSGoogle Scholar
  66. 66.
    Loverdo C, Bénichou O, Voituriez R (2009) Quantifying hopping and jumping in facilitated diffusion of DNA-binding proteins. Phys Rev Lett 102:188101Google Scholar
  67. 67.
    Austin R, Beeson K, Eisenstein L, Frauenfelder H, Gunsalus I, Marshall V (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14:5355–5373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Y. M. Wang
    • 1
  • R. H. Austin
  1. 1.Department of PhysicsWashington University in St. LouisSaint LouisUSA

Personalised recommendations