Long-Range Chromatin Interactions in Cells

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Interactions between long-range genetic elements play key roles in regulating gene expression in a spatially and temporally restricted manner during differentiation and development in higher eukaryotic cells. With the aid of new technologies for analyzing chromatin structural organization, new long-range chromatin interactions have been discovered and interaction networks have been proposed. The underlying mechanisms by which these interactions influence gene expression have been explored at the level of three-dimensional chromatin structure. It has been possible to delineate the critical roles of two global regulator proteins, special AT-rich binding protein 1 and CTCF, in bridging long-range chromatin loops. This chapter discusses potential contributions of transcription factors, regulatory adaptor proteins, histone modifications, and noncoding RNAs in the formation of long-range chromatin interactions. The cellular consequences of chromatin topology regulation as well as methodologies used in the study of chromatin conformation are described.


Globin Gene Locus Control Region Chromatin Loop Imprint Control Region Chromatin Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Evans K et al (2007) A comparative study of S/MAR prediction tools. BMC Bioinformatics 8:71CrossRefGoogle Scholar
  2. 2.
    Girod PA et al (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4(9):747–753CrossRefGoogle Scholar
  3. 3.
    Bode J et al (2006) Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J Mol Biol 358(2):597–613CrossRefGoogle Scholar
  4. 4.
    Kleinjan DA, Lettice LA (2008) Long-range gene control and genetic disease. Adv Genet 61:339–388CrossRefGoogle Scholar
  5. 5.
    Dekker J et al (2002) Capturing chromosome conformation. Science 295(5558):1306–1311CrossRefADSGoogle Scholar
  6. 6.
    Lieb JD et al (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28(4):327–334CrossRefGoogle Scholar
  7. 7.
    Ren B et al (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309CrossRefADSGoogle Scholar
  8. 8.
    Dostie J, Dekker J (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2(4):988–1002CrossRefGoogle Scholar
  9. 9.
    Hagege H et al (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2(7):1722–1733CrossRefGoogle Scholar
  10. 10.
    Simonis M et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354CrossRefGoogle Scholar
  11. 11.
    Tiwari VK et al (2008) A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res 18(7):1171–1179CrossRefGoogle Scholar
  12. 12.
    Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13(19):2465–2477CrossRefGoogle Scholar
  13. 13.
    Blackwood EM, Kadonaga JT (1998) Going the distance: a current view of enhancer action. Science 281(5373):60–63CrossRefGoogle Scholar
  14. 14.
    Dean A (2006) On a chromosome far, far away: LCRs and gene expression. Trends Genet 22(1):38–45CrossRefGoogle Scholar
  15. 15.
    Carter D et al (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32(4):623–626CrossRefGoogle Scholar
  16. 16.
    Di LJ et al (2008) Identification of long range regulatory elements of mouse alpha-globin gene cluster by quantitative associated chromatin trap (QACT). J Cell Biochem 105(1):301–312CrossRefGoogle Scholar
  17. 17.
    Dostie J et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309CrossRefGoogle Scholar
  18. 18.
    Schleif R (1992) DNA looping. Annu Rev Biochem 61:199–223CrossRefGoogle Scholar
  19. 19.
    Palstra RJ et al (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194CrossRefGoogle Scholar
  20. 20.
    Tolhuis B et al (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465CrossRefGoogle Scholar
  21. 21.
    Zhou GL et al (2006) Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 26(13):5096–5105CrossRefGoogle Scholar
  22. 22.
    Kato Y, Sasaki H (2005) Imprinting and looping: epigenetic marks control interactions between regulatory elements. Bioessays 27(1):1–4MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lopes S et al (2003) Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet 12(3):295–305MathSciNetCrossRefGoogle Scholar
  24. 24.
    Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36(8):889–893CrossRefGoogle Scholar
  25. 25.
    Tiwari VK et al (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6(12):2911–2927CrossRefGoogle Scholar
  26. 26.
    Zhao Z et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38(11):1341–1347CrossRefGoogle Scholar
  27. 27.
    Ling JQ et al (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312(5771):269–272CrossRefADSGoogle Scholar
  28. 28.
    Lomvardas S et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413CrossRefGoogle Scholar
  29. 29.
    Bacher CP et al (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8(3):293–299CrossRefGoogle Scholar
  30. 30.
    Kurukuti S et al (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 103(28):10684–10689CrossRefADSGoogle Scholar
  31. 31.
    Wurtele H, Chartrand P (2006) Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res 14(5):477–495CrossRefGoogle Scholar
  32. 32.
    Cai S, Lee CC, Kohwi-Shigematsu T (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38(11):1278–1288CrossRefGoogle Scholar
  33. 33.
    Spilianakis CG, Flavell RA (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5(10):1017–1027CrossRefGoogle Scholar
  34. 34.
    Spilianakis CG et al (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645CrossRefADSGoogle Scholar
  35. 35.
    Horike S et al (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37(1):31–40Google Scholar
  36. 36.
    Kumar PP et al (2007) Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 9(1):45–56CrossRefGoogle Scholar
  37. 37.
    Ottaviani D et al (2008) Reconfiguration of genomic anchors upon transcriptional activation of the human major histocompatibility complex. Genome Res 18(11):1778–1786CrossRefGoogle Scholar
  38. 38.
    Filippova GN (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80:337–360CrossRefGoogle Scholar
  39. 39.
    Galande S et al (2007) The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev 17(5):408–414CrossRefGoogle Scholar
  40. 40.
    Cai S, Han HJ, Kohwi-Shigematsu T (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34(1):42–51CrossRefGoogle Scholar
  41. 41.
    Yamasaki K et al (2007) Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1. Nucleic Acids Res 35(15):5073–5084CrossRefGoogle Scholar
  42. 42.
    Galande S et al (2001) SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 21(16):5591–5604CrossRefGoogle Scholar
  43. 43.
    Purbey PK et al (2008) PDZ domain-mediated dimerization and homeodomain-directed specificity are required for high-affinity DNA binding by SATB1. Nucleic Acids Res 36(7):2107–2122CrossRefGoogle Scholar
  44. 44.
    Yasui D et al (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419(6907):641–645CrossRefADSGoogle Scholar
  45. 45.
    Pavan Kumar P et al (2006) Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell 22(2):231–243CrossRefGoogle Scholar
  46. 46.
    Purbey PK et al (2009) Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol Cell Biol 29(5):1321–1337CrossRefGoogle Scholar
  47. 47.
    Wen J et al (2005) SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood 105(8):3330–3339CrossRefGoogle Scholar
  48. 48.
    Wang L et al (2009) Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster. PLoS ONE 4(2):e4629CrossRefADSGoogle Scholar
  49. 49.
    Brown CR et al (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22(5):627–639CrossRefGoogle Scholar
  50. 50.
    Yusufzai TM et al (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13(2):291–298CrossRefGoogle Scholar
  51. 51.
    Lewis A, Murrell A (2004) Genomic imprinting: CTCF protects the boundaries. Curr Biol 14(7):R284–R286CrossRefGoogle Scholar
  52. 52.
    Anguita E et al (2004) Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. Embo J 23(14):2841–2852CrossRefGoogle Scholar
  53. 53.
    Du MJ et al (2008) MafK/NF-E2 p18 is required for beta-globin genes activation by mediating the proximity of LCR and active beta-globin genes in MEL cell line. Int J Biochem Cell Biol 40(8):1481–1493CrossRefGoogle Scholar
  54. 54.
    Kooren J et al (2007) Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. J Biol Chem 282(22):16544–16552CrossRefGoogle Scholar
  55. 55.
    Vakoc CR et al (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17(3):453–462CrossRefGoogle Scholar
  56. 56.
    Li T et al (2008) CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol 28(20):6473–6482CrossRefGoogle Scholar
  57. 57.
    Yasui DH et al (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA 104(49):19416–19421CrossRefADSGoogle Scholar
  58. 58.
    Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–R29CrossRefGoogle Scholar
  59. 59.
    Mainguy G et al (2007) Extensive polycistronism and antisense transcription in the Mammalian Hox clusters. PLoS ONE 2(4):e356CrossRefADSGoogle Scholar
  60. 60.
    Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566CrossRefADSGoogle Scholar
  61. 61.
    Xu N et al (2007) Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 39(11):1390–1396CrossRefGoogle Scholar
  62. 62.
    Zhao J et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756CrossRefADSGoogle Scholar
  63. 63.
    Mohammad F et al (2008) Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 28(11):3713–3728MathSciNetCrossRefGoogle Scholar
  64. 64.
    Boumil RM, Lee JT (2001) Forty years of decoding the silence in X-chromosome inactivation. Hum Mol Genet 10(20):2225–2232CrossRefGoogle Scholar
  65. 65.
    Clerc P, Avner P (2003) Multiple elements within the Xic regulate random X inactivation in mice. Semin Cell Dev Biol 14(1):85–92CrossRefGoogle Scholar
  66. 66.
    Vernimmen D et al (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. Embo J 26(8):2041–2051CrossRefGoogle Scholar
  67. 67.
    Fields PE et al (2004) Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21(6):865–876CrossRefGoogle Scholar
  68. 68.
    Lee GR et al (2003) Regulation of the Th2 cytokine locus by a locus control region. Immunity 19(1):145–153CrossRefGoogle Scholar
  69. 69.
    Eivazova ER, Aune TM (2004) Dynamic alterations in the conformation of the Ifng gene region during T helper cell differentiation. Proc Natl Acad Sci USA 101(1):251–256CrossRefADSGoogle Scholar
  70. 70.
    Liu Z, Garrard WT (2005) Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol Cell Biol 25(8):3220–3231CrossRefGoogle Scholar
  71. 71.
    Hakim O et al (2009) Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range interactions. J Biol Chem 284(10):6048–6052CrossRefGoogle Scholar
  72. 72.
    Tsai CL et al (2008) Higher order chromatin structure at the X-inactivation center via looping DNA. Dev Biol 319(2):416–425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Genetics, Harvard Medical School, Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUSA

Personalised recommendations