Polymerase Switching in Response to DNA Damage

  • Jaylene N. Ollivierre
  • Michelle C. Silva
  • Jana Sefcikova
  • Penny J. Beuning
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


DNA polymerases are highly efficient and accurate macromolecular machines. They are capable of replicating DNA at up to 1,000 nucleotides per second while making less than one error in 100,000 additions. However, DNA is constantly subjected to damage from myriad sources. DNA damage disrupts normal cellular DNA replication by interfering with the accuracy and efficiency of replicative DNA polymerases. Specialized Y family DNA polymerases exist that can copy damaged DNA, although that ability often has a mutagenic cost. Therefore, Y family DNA polymerase activity is highly regulated in the cell. This chapter presents the functions of both replicative and Y family DNA polymerases and the cellular mechanisms of polymerase management. The focus is on Escherichia coli systems but also briefly discusses eukaryotic Y family polymerases. We first present DNA replication carried out by prokaryotic DNA polymerase III and describe its subunits and the coordination of leading and lagging strand replication. We then discuss DNA damage and specialized Y family DNA polymerases. Different models for the management of replicative and Y family DNA polymerases are presented. Finally, we briefly compare the eukaryotic systems with their prokaryotic counterparts.


Replication Fork Exonuclease Activity Clamp Loader Replicative Polymerase Family Polymerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the Beuning laboratory is supported by a New Faculty Award from the Camille & Henry Dreyfus Foundation and a CAREER Award from the NSF (MCB-0845033 to PJB). PJB is a Cottrell Scholar of the Research Corporation for Science Advancement. We thank Sebastian Zawiślak for assistance with the preparation of Figs. 11.6 and 11.8.


  1. 1.
    Kornberg A, Baker TA (1992) DNA replication, 2nd edn. W.H. Freeman and Company,New York, NYGoogle Scholar
  2. 2.
    Kelman Z, O’Donnell M (1995) DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem 64:171–200CrossRefGoogle Scholar
  3. 3.
    Bloom LB, Chen X, Fygenson DK, Turner J, O’Donnell M, Goodman MF (1992) Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem 272:27919–27930CrossRefGoogle Scholar
  4. 4.
    Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263:285–289ADSCrossRefGoogle Scholar
  5. 5.
    Glover BP, McHenry CS (2001) The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 105:925–934CrossRefGoogle Scholar
  6. 6.
    Maki H, Maki S, Kornberg A (1988) DNA polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites. J Biol Chem 263:6570–6578Google Scholar
  7. 7.
    O’Donnell M, Studwell PS (1990) Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. J Biol Chem 265:1179–1187Google Scholar
  8. 8.
    Yuzhakov A, Turner J, O’Donnell M (1996) Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell 86:877–886CrossRefGoogle Scholar
  9. 9.
    McHenry CS (2003) Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 49:1157–1165CrossRefGoogle Scholar
  10. 10.
    McInerney P, Johnson A, Katz F, O’Donnell M (2007) Characterization of a triple DNA polymerase replisome. Mol Cell 27:527–538CrossRefGoogle Scholar
  11. 11.
    Johnson A, O’Donnell M (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283–315CrossRefGoogle Scholar
  12. 12.
    Onrust R, Finkelstein J, Turner J, Naktinis V, O’Donnell M (1995) Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. III. Interface between two polymerases and the clamp loader. J Biol Chem 270:13366–13377CrossRefGoogle Scholar
  13. 13.
    Fay PJ, Johanson KO, McHenry CS, Bambara RA (1981) Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 256:976–983Google Scholar
  14. 14.
    Fay PJ, Johanson KO, McHenry CS, Bambara RA (1982) Size classes of products synthesized processively by two subassemblies of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 257:5692–5699Google Scholar
  15. 15.
    LaDuca RJ, Crute JJ, McHenry CS, Bambara RA (1986) The beta subunit of the Escherichia coli DNA polymerase III holoenzyme interacts functionally with the catalytic core in the absence of other subunits. J Biol Chem 261:7550–7557Google Scholar
  16. 16.
    Maki H, Kornberg A (1985) The polymerase subunit of DNA polymerase III of Escherichia coli. II. Purification of the alpha subunit, devoid of nuclease activities. J Biol Chem 260:12987–12992Google Scholar
  17. 17.
    Mok M, Marians KJ (1987) Formation of rolling-circle molecules during phi X174 complementary strand DNA replication. J Biol Chem 262:2304–2309Google Scholar
  18. 18.
    Maki H, Kornberg A (1987) Proofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits. Proc Natl Acad Sci USA 84:4389–4392ADSCrossRefGoogle Scholar
  19. 19.
    Studwell PS, O’Donnell M (1990) Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. J Biol Chem 265:1171–1178Google Scholar
  20. 20.
    Bloom LB (2009) Loading clamps for DNA replication and repair. DNA Repair 8:570–578CrossRefGoogle Scholar
  21. 21.
    McHenry CS (1982) Purification and characterization of DNA polymerase III′. Identification of tau as a subunit of the DNA polymerase III holoenzyme. J Biol Chem 257:2657–2663Google Scholar
  22. 22.
    Glover BP, McHenry CS (1998) The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem 273:23476–23484CrossRefGoogle Scholar
  23. 23.
    Kelman Z, Yuzhakov A, Andjelkovic J, O’Donnell M (1998) Devoted to the lagging strand – the chi subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J 17:2436–2449CrossRefGoogle Scholar
  24. 24.
    Anderson SG, Williams CR, O’Donnell M, Bloom LB (2007) A function for the psi subunit in loading the Escherichia coli DNA polymerase sliding clamp. J Biol Chem 282:7035–7045CrossRefGoogle Scholar
  25. 25.
    Lamers MH, Georgescu RE, Lee SG, O’Donnell M, Kuriyan J (2006) Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III. Cell 126:881–892CrossRefGoogle Scholar
  26. 26.
    Brautigam CA, Steitz TA (1998) Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol 8:54–63CrossRefGoogle Scholar
  27. 27.
    Rothwell PJ, Waksman G (2005) Structure and mechanism of DNA polymerases. Adv Protein Chem 71:401–440CrossRefGoogle Scholar
  28. 28.
    Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398CrossRefGoogle Scholar
  29. 29.
    Pritchard AE, McHenry CS (1999) Identification of the acidic residues in the active site of DNA polymerase III. J Mol Biol 285:1067–1080CrossRefGoogle Scholar
  30. 30.
    Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36:11205–11215CrossRefGoogle Scholar
  31. 31.
    Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746–3752CrossRefGoogle Scholar
  32. 32.
    Stano NM, Chen J, McHenry CS (2006) A coproofreading Zn(2+)-dependent exonuclease within a bacterial replicase. Nat Struct Mol Biol 13:458–459CrossRefGoogle Scholar
  33. 33.
    Bailey S, Wing RA, Steitz TA (2006) The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell 126:893–904CrossRefGoogle Scholar
  34. 34.
    Jergic S, Ozawa K, Williams NK, Su XC, Scott DD, Hamdan SM, Crowther JA, Otting G, Dixon NE (2007) The unstructured C-terminus of the tau subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the alpha subunit. Nucleic Acids Res 35:2813–2824CrossRefGoogle Scholar
  35. 35.
    Kim DR, McHenry CS (1996) Biotin tagging deletion analysis of domain limits involved in protein–macromolecular interactions. Mapping the tau binding domain of the DNA polymerase III alpha subunit. J Biol Chem 271:20690–20698CrossRefGoogle Scholar
  36. 36.
    Lopez de Saro FJ, Georgescu RE, O’Donnell M (2003) A peptide switch regulates DNA polymerase processivity. Proc Natl Acad Sci USA 100:14689–14694ADSCrossRefGoogle Scholar
  37. 37.
    Dohrmann PR, McHenry CS (2005) A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol 350:228–239CrossRefGoogle Scholar
  38. 38.
    Theobald DL, Mitton-Fry RM, Wuttke DS (2003) Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115–133CrossRefGoogle Scholar
  39. 39.
    McCauley MJ, Shokri L, Sefcikova J, Venclovas C, Beuning PJ, Williams MC (2008) Distinct double- and single-stranded DNA binding of E. coli replicative DNA polymerase III alpha subunit. ACS Chem Biol 3:577–587CrossRefGoogle Scholar
  40. 40.
    Wing RA, Bailey S, Steitz TA (2008) Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit. J Mol Biol 382:859–869CrossRefGoogle Scholar
  41. 41.
    Evans RJ, Davies DR, Bullard JM, Christensen J, Green LS, Guiles JW, Pata JD, Ribble WK, Janjic N, Jarvis TC (2008) Structure of PolC reveals unique DNA binding and fidelity determinants. Proc Natl Acad Sci USA 105:20695–20700ADSCrossRefGoogle Scholar
  42. 42.
    Lamers MH, O’Donnell M (2008) A consensus view of DNA binding by the C family of replicative DNA polymerases. Proc Natl Acad Sci USA 105:20565–20566ADSCrossRefGoogle Scholar
  43. 43.
    Hamdan S, Carr PD, Brown SE, Ollis DL, Dixon NE (2002) Structural basis for proofreading during replication of the Escherichia coli chromosome. Structure 10:535–546CrossRefGoogle Scholar
  44. 44.
    DeRose EF, Li D, Darden T, Harvey S, Perrino FW, Schaaper RM, London RE (2002) Model for the catalytic domain of the proofreading epsilon subunit of Escherichia coli DNA polymerase III based on NMR structural data. Biochemistry 41:94–110CrossRefGoogle Scholar
  45. 45.
    Perrino FW, Harvey S, McNeill SM (1999) Two functional domains of the epsilon subunit of DNA polymerase III. Biochemistry 38:16001–16009CrossRefGoogle Scholar
  46. 46.
    Taft-Benz SA, Schaaper RM (1999) The C-terminal domain of DnaQ contains the polymerase binding site. J Bacteriol 181:2963–2965Google Scholar
  47. 47.
    Taft-Benz SA, Schaaper RM (1998) Mutational analysis of the 3′– > 5′ proofreading exonuclease of Escherichia coli DNA polymerase III. Nucleic Acids Res 26:4005–4011CrossRefGoogle Scholar
  48. 48.
    Ozawa K, Jergic S, Park AY, Dixon NE, Otting G (2008) The proofreading exonuclease subunit epsilon of Escherichia coli DNA polymerase III is tethered to the polymerase subunit alpha via a flexible linker. Nucleic Acids Res 36:5074–5082CrossRefGoogle Scholar
  49. 49.
    Wieczorek A, McHenry CS (2006) The NH2-terminal PHP domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit. J Biol Chem 281:12561–12567CrossRefGoogle Scholar
  50. 50.
    DeRose EF, Darden T, Harvey S, Gabel S, Perrino FW, Schaaper RM, London RE (2003) Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy. Biochemistry 42:3635–3644CrossRefGoogle Scholar
  51. 51.
    Studwell-Vaughan PS, O’Donnell M (1993) DNA polymerase III accessory proteins. V. Theta encoded by holE. J Biol Chem 268:11785–11791Google Scholar
  52. 52.
    Keniry MA, Park AY, Owen EA, Hamdan SM, Pintacuda G, Otting G, Dixon NE (2006) Structure of the theta subunit of Escherichia coli DNA polymerase III in complex with the epsilon subunit. J Bacteriol 188:4464–4473CrossRefGoogle Scholar
  53. 53.
    Mueller GA, Kirby TW, DeRose EF, Li D, Schaaper RM, London RE (2005) Nuclear magnetic resonance solution structure of the Escherichia coli DNA polymerase III theta subunit. J Bacteriol 187:7081–7089CrossRefGoogle Scholar
  54. 54.
    Gupta R, Hamdan SM, Dixon NE, Sheil MM, Beck JL (2004) Application of electrospray ionization mass spectrometry to study the hydrophobic interaction between the epsilon and theta subunits of DNA polymerase III. Protein Sci 13:2878–2887CrossRefGoogle Scholar
  55. 55.
    Jonczyk P, Nowicka A, Fijalkowska IJ, Schaaper RM, Ciesla Z (1998) In vivo protein interactions within the Escherichia coli DNA polymerase III core. J Bacteriol 180:1563–1566Google Scholar
  56. 56.
    Taft-Benz SA, Schaaper RM (2004) The theta subunit of Escherichia coli DNA polymerase III: a role in stabilizing the epsilon proofreading subunit. J Bacteriol 186:2774–2780CrossRefGoogle Scholar
  57. 57.
    Hamdan S, Bulloch EM, Thompson PR, Beck JL, Yang JY, Crowther JA, Lilley PE, Carr PD, Ollis DL, Brown SE, Dixon NE (2002) Hydrolysis of the 5′-p-nitrophenyl ester of TMP by the proofreading exonuclease (epsilon) subunit of Escherichia coli DNA polymerase III. Biochemistry 41:5266–5275CrossRefGoogle Scholar
  58. 58.
    Lehtinen DA, Perrino FW (2004) Dysfunctional proofreading in the Escherichia coli DNA polymerase III core. Biochem J 384:337–348CrossRefGoogle Scholar
  59. 59.
    Ellison V, Stillman B (2001) Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell 106:655–660CrossRefGoogle Scholar
  60. 60.
    Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O’Donnell M, Kuriyan J (2001) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106:417–428CrossRefGoogle Scholar
  61. 61.
    Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 87:2516–2520ADSCrossRefGoogle Scholar
  62. 62.
    Blinkowa AL, Walker JR (1990) Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame. Nucleic Acids Res 18:1725–1729CrossRefGoogle Scholar
  63. 63.
    Flower AM, McHenry CS (1990) The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA 87:3713–3717ADSCrossRefGoogle Scholar
  64. 64.
    Jeruzalmi D, O’Donnell M, Kuriyan J (2001) Crystal structure of the processivity clamp loader gamma complex of E. coli DNA polymerase III. Cell 106:429–441CrossRefGoogle Scholar
  65. 65.
    Podobnik M, Weitze TF, O’Donnell M, Kuriyan J (2003) Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Structure 11:253–263CrossRefGoogle Scholar
  66. 66.
    Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J (1997) Crystal structure of the delta′ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91:335–345CrossRefGoogle Scholar
  67. 67.
    Story RM, Steitz TA (1992) Structure of the RecA protein-ADP complex. Nature 355:374–376ADSCrossRefGoogle Scholar
  68. 68.
    Millar D, Trakselis MA, Benkovic SJ (2004) On the solution structure of the T4 sliding clamp (gp45). Biochemistry 43:12723–12727CrossRefGoogle Scholar
  69. 69.
    Stewart J, Hingorani MM, Kelman Z, O’Donnell M (2001) Mechanism of beta clamp opening by the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 276:19182–19189CrossRefGoogle Scholar
  70. 70.
    Turner J, Hingorani MM, Kelman Z, O’Donnell M (1999) The internal workings of a DNA polymerase clamp-loading machine. EMBO J 18:771–783CrossRefGoogle Scholar
  71. 71.
    Lopez de Saro FJ, Georgescu RE, Goodman MF, O’Donnell M (2003) Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J 22:6408–6418CrossRefGoogle Scholar
  72. 72.
    Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P (2004) Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. J Mol Biol 335:1187–1197CrossRefGoogle Scholar
  73. 73.
    Beuning PJ, Sawicka D, Barsky D, Walker GC (2006) Two processivity clamp interactions differentially alter the dual activities of UmuC. Mol Microbiol 59:460–474CrossRefGoogle Scholar
  74. 74.
    Sutton MD, Duzen JM, Maul RW (2005) Mutant forms of the Escherichia coli beta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Mol Microbiol 55:1751–1766CrossRefGoogle Scholar
  75. 75.
    Scouten Ponticelli SK, Duzen JM, Sutton MD (2009) Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling. Nucleic Acids Res 37:2796–2809CrossRefGoogle Scholar
  76. 76.
    Becherel OJ, Fuchs RP, Wagner J (2002) Pivotal role of the beta clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair 1:703–708CrossRefGoogle Scholar
  77. 77.
    Hingorani MM, O’Donnell M (1998) ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J Biol Chem 273:24550–24563CrossRefGoogle Scholar
  78. 78.
    Goedken ER, Kazmirski SL, Bowman GD, O’Donnell M, Kuriyan J (2005) Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Nat Struct Mol Biol 12:183–190CrossRefGoogle Scholar
  79. 79.
    Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K (2005) Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc Natl Acad Sci USA 102:13795–13800ADSCrossRefGoogle Scholar
  80. 80.
    Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O’Donnell M, Kuriyan J (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137:659–671CrossRefGoogle Scholar
  81. 81.
    Anderson SG, Thompson JA, Paschall CO, O’Donnell M, Bloom LB (2009) Temporal correlation of DNA binding, ATP hydrolysis, and clamp release in the clamp loading reaction catalyzed by the Escherichia coli gamma complex. Biochemistry 48:8516–8527CrossRefGoogle Scholar
  82. 82.
    O’Donnell ME (1987) Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J Biol Chem 262:16558–16565Google Scholar
  83. 83.
    Bowman GD, O’Donnell M, Kuriyan J (2004) Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429:724–730ADSCrossRefGoogle Scholar
  84. 84.
    Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245:160–164ADSCrossRefGoogle Scholar
  85. 85.
    Gulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O’Donnell M, Kuriyan J (2004) Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 271:439–449CrossRefGoogle Scholar
  86. 86.
    Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A (1968) Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci USA 59:598–605ADSCrossRefGoogle Scholar
  87. 87.
    Olson MW, Dallmann HG, McHenry CS (1995) DnaX complex of Escherichia coli DNA polymerase III holoenzyme. The chi psi complex functions by increasing the affinity of tau and gamma for delta.delta′ to a physiologically relevant range. J Biol Chem 270:29570–29577CrossRefGoogle Scholar
  88. 88.
    Witte G, Urbanke C, Curth U (2003) DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res 31:4434–4440CrossRefGoogle Scholar
  89. 89.
    Kong XP, Onrust R, O’Donnell M, Kuriyan J (1992) Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425–437CrossRefGoogle Scholar
  90. 90.
    Oakley AJ, Prosselkov P, Wijffels G, Beck JL, Wilce MCJ, Dixon NE (2003) Flexibility revealed by the 1.85. A crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III. Acta Crystallogr D Biol Crystallogr 59:1192–1199CrossRefGoogle Scholar
  91. 91.
    Stukenberg PT, Studwell-Vaughan PS, O’Donnell M (1991) Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J Biol Chem 266:11328–11334Google Scholar
  92. 92.
    Stukenberg PT, Turner J, O’Donnell M (1994) An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 78:877–887CrossRefGoogle Scholar
  93. 93.
    Yao N, Turner J, Kelman Z, Stukenberg PT, Dean F, Shechter D, Pan ZQ, Hurwitz J, O’Donnell M (1996) Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases. Genes Cells 1:101–113CrossRefGoogle Scholar
  94. 94.
    Laurence TA, Kwon Y, Johnson A, Hollars CW, O’Donnell M, Camarero JA, Barsky D (2008) Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J Biol Chem 283:22895–22906CrossRefGoogle Scholar
  95. 95.
    Georgescu RE, Kim S-S, Yurieva O, Kuriyan J, Kong X-P, O’Donnell M (2008) Structure of a sliding clamp on DNA. Cell 132:43–54CrossRefGoogle Scholar
  96. 96.
    Wagner J, Fujii S, Gruz P, Nohmi T, Fuchs RP (2000) The beta clamp targets DNA polymerase IV to DNA and strongly increases its processivity. EMBO Rep 1:484–488Google Scholar
  97. 97.
    Georgescu RE, Yurieva O, Kim SS, Kuriyan J, Kong XP, O’Donnell M (2008) Structure of a small-molecule inhibitor of a DNA polymerase sliding clamp. Proc Natl Acad Sci USA 105:11116–11121ADSCrossRefGoogle Scholar
  98. 98.
    Duzen JM, Walker GC, Sutton MD (2004) Identification of specific amino acid residues in the E. coli beta processivity clamp involved in interactions with DNA polymerase III, UmuD and UmuD′. DNA Repair 3:301–312CrossRefGoogle Scholar
  99. 99.
    Georgescu RE, Kurth I, Yao NY, Stewart J, Yurieva O, O’Donnell M (2009) Mechanism of polymerase collision release from sliding clamps on the lagging strand. EMBO J 28:2981–2991CrossRefGoogle Scholar
  100. 100.
    Leu FP, Georgescu R, O’Donnell M (2003) Mechanism of the E. coli tau processivity switch during lagging-strand synthesis. Mol Cell 11:315–327CrossRefGoogle Scholar
  101. 101.
    Fujii S, Fuchs RP (2004) Defining the position of the switches between replicative and bypass DNA polymerases. EMBO J 23:4342–4352CrossRefGoogle Scholar
  102. 102.
    Indiani C, McInerney P, Georgescu R, Goodman MF, O’Donnell M (2005) A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol Cell 19:805–815CrossRefGoogle Scholar
  103. 103.
    Bunting KA, Roe SM, Pearl LH (2003) Structural basis for recruitment of translesion DNA polymerase pol IV/DinB to the beta-clamp. EMBO J 22:5883–5892CrossRefGoogle Scholar
  104. 104.
    Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91–102CrossRefGoogle Scholar
  105. 105.
    Yang J, Zhuang Z, Roccasecca RM, Trakselis MA, Benkovic SJ (2004) The dynamic processivity of the T4 DNA polymerase during replication. Proc Natl Acad Sci USA 101:8289–8294ADSCrossRefGoogle Scholar
  106. 106.
    Gao D, McHenry CS (2001) Tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain. J Biol Chem 276:4433–4440CrossRefGoogle Scholar
  107. 107.
    Dallmann HG, Kim S, Pritchard AE, Marians KJ, McHenry CS (2000) Characterization of the unique C terminus of the Escherichia coli tau DnaX protein. Monomeric C-tau binds alpha AND DnaB and can partially replace tau in reconstituted replication forks. J Biol Chem 275:15512–15519CrossRefGoogle Scholar
  108. 108.
    Gao D, McHenry CS (2001) Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. J Biol Chem 276:4441–4446CrossRefGoogle Scholar
  109. 109.
    Kim S, Dallmann HG, McHenry CS, Marians KJ (1996) Tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork. J Biol Chem 271:21406–21412CrossRefGoogle Scholar
  110. 110.
    Su XC, Jergic S, Keniry MA, Dixon NE, Otting G (2007) Solution structure of domains IVa and V of the tau subunit of Escherichia coli DNA polymerase III and interaction with the alpha subunit. Nucleic Acids Res 35:2825–2832CrossRefGoogle Scholar
  111. 111.
    Kim S, Dallmann HG, McHenry CS, Marians KJ (1996) Coupling of a replicative polymerase and helicase: a tau–DnaB interaction mediates rapid replication fork movement. Cell 84:643–650CrossRefGoogle Scholar
  112. 112.
    Kim S, Dallmann HG, McHenry CS, Marians KJ (1996) Tau protects beta in the leading-strand polymerase complex at the replication fork. J Biol Chem 271:4315–4318CrossRefGoogle Scholar
  113. 113.
    Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. American Society for Microbiology, Washington, DCGoogle Scholar
  114. 114.
    Rupp WD (1996) DNA repair mechanisms. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 2277–2294Google Scholar
  115. 115.
    Rudolph CJ, Upton AL, Lloyd RG (2007) Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli. Genes Dev 21:668–681CrossRefGoogle Scholar
  116. 116.
    Pages V, Fuchs RP (2003) Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300:1300–1303ADSCrossRefGoogle Scholar
  117. 117.
    Higuchi K, Katayama T, Iwai S, Hidaka M, Horiuchi T, Maki H (2003) Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro. Genes Cells 8:437–449CrossRefGoogle Scholar
  118. 118.
    McInerney P, O’Donnell M (2004) Functional uncoupling of twin poymerases. J Biol Chem 279:21543–21551CrossRefGoogle Scholar
  119. 119.
    Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304CrossRefGoogle Scholar
  120. 120.
    Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562ADSCrossRefGoogle Scholar
  121. 121.
    Simmons LA, Foti JJ, Cohen SE, Walker GC (2008) The SOS regulatory network. In: Bock A et al (eds) EcoSal – Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DCGoogle Scholar
  122. 122.
    Foti JJ, Simmons LA, Beuning PJ, Walker GC (2009) Signal transduction in the Escherichia coli SOS response. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling. Elsevier Science, San Diego, CA, pp 2127–2136Google Scholar
  123. 123.
    Jarosz DF, Beuning PJ, Cohen SE, Walker GC (2007) Y-family DNA polymerases in Escherichia coli. Trends Microbiol 15:70–77CrossRefGoogle Scholar
  124. 124.
    Schlacher K, Goodman MF (2007) Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat Rev Mol Cell Biol 8:587–594CrossRefGoogle Scholar
  125. 125.
    Nohmi T (2006) Environmental stress and lesion-bypass DNA polymerases. Annu Rev Microbiol 60:231–253CrossRefGoogle Scholar
  126. 126.
    Yang W (2003) Damage repair DNA polymerases Y. Curr Opin Struct Biol 13:23–30CrossRefGoogle Scholar
  127. 127.
    Beard WA, Wilson SH (2001) DNA lesion bypass polymerases open up. Structure 9:759–764CrossRefGoogle Scholar
  128. 128.
    Silvian LF, Toth EA, Pham P, Goodman MF, Ellenberger T (2001) Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nature 8:984–989Google Scholar
  129. 129.
    Zhou BL, Pata JD, Steitz TA (2001) Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol Cell 8:427–437CrossRefGoogle Scholar
  130. 130.
    Boudsocq F, Kokoska RJ, Plosky BS, Vaisman A, Ling H, Kunkel TA, Yang W, Woodgate R (2004) Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J Biol Chem 279:32932–32940CrossRefGoogle Scholar
  131. 131.
    Beard WA, Wilson SH (2003) Structural insights into the origins of DNA polymerase fidelity. Structure 11:489–496CrossRefGoogle Scholar
  132. 132.
    Bell JB, Eckert KA, Joyce CM, Kunkel TA (1997) Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain. J Biol Chem 272:7345–7351CrossRefGoogle Scholar
  133. 133.
    Zhang H, Rhee C, Bebenek A, Drake JW, Wang J, Konigsberg W (2006) The L561A substitution in the nascent base-pair binding pocket of RB69 DNA polymerase reduces base discrimination. Biochemistry 45:2211–2220CrossRefGoogle Scholar
  134. 134.
    Boudsocq F, Ling H, Yang W, Woodgate R (2002) Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass. DNA Repair 1:343–358CrossRefGoogle Scholar
  135. 135.
    Elledge SJ, Walker GC (1983) Proteins required for ultraviolet light and chemical mutagenesis. Identification of the products of the umuC locus of Escherichia coli. J Mol Biol 164:175–192CrossRefGoogle Scholar
  136. 136.
    Kato T (1977) Effects of chloramphenicol and caffeine on postreplication repair in uvr A-umuC- und uvrA-recF-strains of Escherichia coli K-12. Mol Gen Genet 156:115–120Google Scholar
  137. 137.
    Kato T, Shinoura Y (1977) Isolation and characterization of mutants of Escherichia coli deficient in induction of mutagenesis by ultraviolet light. Mol Gen Genet 156:121–131Google Scholar
  138. 138.
    Shinagawa H, Kato T, Ise T, Makino K, Nakata A (1983) Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli. Gene 23:167–174CrossRefGoogle Scholar
  139. 139.
    Steinborn G (1978) Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol Gen Genet 165:87–93CrossRefGoogle Scholar
  140. 140.
    Tang M, Pham P, Shen X, Taylor J-S, ODonnell M, Woodgate R, Goodman MF (2000) Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404:1014–1018ADSCrossRefGoogle Scholar
  141. 141.
    Tang M, Bruck I, Eritja R, Turner J, Frank EG, Woodgate R, O’Donnell M, Goodman MF (1998) Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD′2C mutagenic complex and RecA protein. Proc Natl Acad Sci USA 95:9755–9760ADSCrossRefGoogle Scholar
  142. 142.
    Fuchs RP, Fujii S (2007) Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot. DNA Repair 6:1032–1041CrossRefGoogle Scholar
  143. 143.
    Rajagopalan M, Lu C, Woodgate R, ODonnell M, Goodman MF, Echols H (1992) Activity of the purified mutagenesis proteins UmuC, UmuD′, and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III. Proc Natl Acad Sci USA 89:10777–10781ADSCrossRefGoogle Scholar
  144. 144.
    Shen X, Sayer JM, Kroth H, Ponten I, ODonnell M, Woodgate R, Jerina DM, Goodman MF (2002) Efficiency and accuracy of SOS-induced DNA polymerases replicating benso[a]pyrene-7, 8-diol 9, 10-epoxide A and G adducts. J Biol Chem 277:5265–5274CrossRefGoogle Scholar
  145. 145.
    Lenne-Samuel N, Janel-Bintz R, Kolbanovsky A, Geacintov NE, Fuchs RP (2000) The processing of benzo(a)pyrene adduct into a frameshift or a base substitution mutation requires a different set of genes in Escherichia coli. Mol Microbiol 38:299–307CrossRefGoogle Scholar
  146. 146.
    Yin J, Seo KY, Loechler EL (2004) A role for DNA polymerase V in G- > T mutations from the major benzo[a]pyrene N2-dG adduct when studied in a 5′-TGT sequence in E. coli. DNA Repair 3:323–334CrossRefGoogle Scholar
  147. 147.
    Neeley WL, Delaney S, Alekseyev YO, Jarosz DF, Delaney JC, Walker GC, Essigmann JM (2007) DNA polymerase V allows bypass of toxic guanine oxidation products in vivo. J Biol Chem 282:12741–12748CrossRefGoogle Scholar
  148. 148.
    Fujii S, Gasser V, Fuchs RP (2004) The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J Mol Biol 341:405–417CrossRefGoogle Scholar
  149. 149.
    Pham P, Seitz EM, Saveliev S, Shen X, Woodgate R, Cox MM, Goodman MF (2002) Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis. Proc Natl Acad Sci USA 99:11061–11066ADSCrossRefGoogle Scholar
  150. 150.
    Reuven NB, Arad G, Maor-Shoshani A, Livneh Z (1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J Biol Chem 274:31763–31766CrossRefGoogle Scholar
  151. 151.
    Schlacher K, Cox MM, Woodgate R, Goodman MF (2006) RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442:883–887ADSCrossRefGoogle Scholar
  152. 152.
    Jiang Q, Karata K, Woodgate R, Cox MM, Goodman MF (2009) The active form of DNA polymerase V is UmuD′2C-RecA-ATP. Nature 460:359–363ADSCrossRefGoogle Scholar
  153. 153.
    Schlacher K, Leslie K, Wyman C, Woodgate R, Cox M, Goodman M (2005) DNA polymerase V and RecA protein, a minimal mutasome. Mol Cell 17:561–572CrossRefGoogle Scholar
  154. 154.
    Arad G, Hendel A, Urbanke C, Curth U, Livneh Z (2008) Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 283:8274–8282CrossRefGoogle Scholar
  155. 155.
    Fujii S, Fuchs RP (2009) Biochemical basis for the essential genetic requirements of RecA and the β-clamp in Pol V activation. Proc Natl Acad Sci USA 106:14825–14830ADSCrossRefGoogle Scholar
  156. 156.
    Reuven NB, Arad G, Stasiak AZ, Stasiak A, Livneh Z (2001) Lesion bypass by the Escherichia coli DNA polymerase V requires assembly of a RecA nucleoprotein filament. J Biol Chem 276:5511–5517CrossRefGoogle Scholar
  157. 157.
    Seo KY, Nagalingam A, Miri S, Yin J, Chandani S, Kolbanovskiy A, Shastry A, Loechler EL (2006) Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli. DNA Repair 5:515–522CrossRefGoogle Scholar
  158. 158.
    Jarosz DF, Godoy VG, DeLaney JC, Essigmann JM, Walker GC (2006) A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 439:225–228ADSCrossRefGoogle Scholar
  159. 159.
    Kumari A, Minko IG, Harbut MB, Finkel SE, Goodman MF, Lloyd RS (2008) Replication bypass of interstrand cross-link intermediates by Escherichia coli DNA polymerase IV. J Biol Chem 283:27433–27437CrossRefGoogle Scholar
  160. 160.
    Minko IG, Yamanaka K, Kozekov ID, Kozekova A, Indiani C, O’Donnell ME, Jiang Q, Goodman MF, Rizzo CJ, Lloyd RS (2008) Replication bypass of the acrolein-mediated deoxyguanine DNA-peptide cross-links by DNA polymerases of the DinB family. Chem Res Toxicol 21:1983–1990CrossRefGoogle Scholar
  161. 161.
    Yuan B, Cao H, Jiang Y, Hong H, Wang Y (2008) Efficient and accurate bypass of N2-(1-carboxyethyl)-2′-deoxyguanosine by DinB DNA polymerase in vitro and in vivo. Proc Natl Acad Sci USA 105:8679–8684ADSCrossRefGoogle Scholar
  162. 162.
    Suzuki N, Okashi E, Hayashi K, Ohmori H, Grollman AP, Shibutani S (2001) Translesional synthesis past acetylaminofluorene-derived DNA adducts catalyzed by human DNA polymerase κ and Escherichia coli DNA polymerase IV. Biochemistry 40:15176–15183CrossRefGoogle Scholar
  163. 163.
    Maor-Shoshani A, Hayashi K, Ohmori H, Livneh Z (2003) Analysis of translesion replication across an abasic site by DNA polymerase IV of Escherichia coli. DNA Repair 2:1227–1238CrossRefGoogle Scholar
  164. 164.
    Kitagawa Y, Akaboshi E, Shinagawa H, Horii T, Ogawa H, Kato T (1985) Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Proc Natl Acad Sci USA 82:4336–4340ADSCrossRefGoogle Scholar
  165. 165.
    Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64Google Scholar
  166. 166.
    Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96CrossRefGoogle Scholar
  167. 167.
    Brent R, Ptashne M (1981) Mechanism of action of the lexA gene product. Proc Natl Acad Sci USA 78:4204–4208ADSCrossRefGoogle Scholar
  168. 168.
    Woodgate R, Ennis DG (1991) Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage. Mol Gen Genet 229:10–16Google Scholar
  169. 169.
    Kim S-R, Matsui K, Yamada M, Gruz P, Nohmi T (2001) Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics 266:207–215CrossRefGoogle Scholar
  170. 170.
    Nohmi T, Battista JR, Dodson LA, Walker GC (1988) RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci USA 85:1816–1820ADSCrossRefGoogle Scholar
  171. 171.
    Opperman T, Murli S, Smith BT, Walker GC (1999) A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc Natl Acad Sci USA 96:9218–9223ADSCrossRefGoogle Scholar
  172. 172.
    Battista JR, Ohta T, Nohmi T, Sun W, Walker GC (1990) Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis. Proc Natl Acad Sci USA 87:7190–7194ADSCrossRefGoogle Scholar
  173. 173.
    Woodgate R, Rajagopalan M, Lu C, Echols H (1989) UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD′. Proc Natl Acad Sci USA 86:7301–7305ADSCrossRefGoogle Scholar
  174. 174.
    Ferentz AE, Walker GC, Wagner G (2001) Converting a DNA damage checkpoint effector (UmuD2C) into a lesion bypass polymerase (UmuD′2C). EMBO J 20:4287–4298CrossRefGoogle Scholar
  175. 175.
    Peat TS, Frank EG, McDonald JP, Levine AS, Woodgate R, Hendrickson WA (1996) Structure of the UmuD′ protein and its regulation in response to DNA damage. Nature 380:727–730ADSCrossRefGoogle Scholar
  176. 176.
    Simon SM, Sousa FJ, Mohana-Borges R, Walker GC (2008) Regulation of Escherichia coli SOS mutagenesis by dimeric intrinsically disordered umuD gene products. Proc Natl Acad Sci USA 105:1152–1157ADSCrossRefGoogle Scholar
  177. 177.
    Burckhardt SE, Woodgate R, Scheuermann RH, Echols H (1988) UmuD mutagenesis protein of Escherichia coli: overproduction, purification and cleavage by RecA. Proc Natl Acad Sci USA 85:1811–1815ADSCrossRefGoogle Scholar
  178. 178.
    Shinagawa H, Iwasaki H, Kato T, Nakata A (1988) RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci USA 85:1806–1810ADSCrossRefGoogle Scholar
  179. 179.
    Godoy VG, Jarosz DF, Simon SM, Abyzov A, Ilyin V, Walker GC (2007) UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol Cell 28:1058–1070CrossRefGoogle Scholar
  180. 180.
    McDonald JP, Frank EG, Levine AS, Woodgate R (1998) Intermolecular cleavage by UmuD-like mutagenesis proteins. Proc Natl Acad Sci USA 95:1478–1483ADSCrossRefGoogle Scholar
  181. 181.
    Sutton MD, Kim M, Walker GC (2001) Genetic and biochemical characterization of a novel umud mutation: insights into a mechanism for UmuD self-cleavage. J Bacteriol 183:347–357CrossRefGoogle Scholar
  182. 182.
    Sutton MD, Walker GC (2001) UmuDC-mediated cold sensitivity is a manifestation of functions of the UmuD2C complex involved in a DNA damage checkpoint control. J Bacteriol 183:1215–1224CrossRefGoogle Scholar
  183. 183.
    Opperman T, Murli S, Walker GC (1996) The genetic requirements for UmuDC-mediated cold sensitivity are distinct from those for SOS mutagenesis. J Bacteriol 178:4400–4411Google Scholar
  184. 184.
    Marsh L, Walker GC (1985) Cold sensitivity induced by overproduction of UmuDC in Escherichia coli. J Bacteriol 162:155–161Google Scholar
  185. 185.
    Tang M, Shen X, Frank EG, O’Donnell M, Woodgate R, Goodman MF (1999) UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96:8919–8924ADSCrossRefGoogle Scholar
  186. 186.
    Sommer S, Bailone A, Devoret R (1993) The appearance of the UmuD′C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis. Mol Microbiol 10:963–971CrossRefGoogle Scholar
  187. 187.
    Szpilewska H, Bertrand P, Bailone A, Dutreix M (1995) In vitro inhibition of RecA-mediated homologous pairing by UmuD′C proteins. Biochimie 77:848–853CrossRefGoogle Scholar
  188. 188.
    Frank EG, Cheng N, Do CC, Cerritelli ME, Bruck I, Goodman MF, Egelman EH, Woodgate R, Steven AC (2000) Visualization of two binding sites for the Escherichia coli UmuD′(2)C complex (DNA pol V) on RecA-ssDNA filaments. J Mol Biol 297:585–597CrossRefGoogle Scholar
  189. 189.
    Rehrauer WM, Bruck I, Woodgate R, Goodman MF, Kowalczykowski SC (1998) Modulation of RecA nucleoprotein function by the mutagenic UmuD′C protein complex. J Biol Chem 273:32384–32387CrossRefGoogle Scholar
  190. 190.
    Berdichevsky A, Izhar L, Livneh Z (2002) Error-free recombinational repair predominates over mutagenic translesion replication in E. coli. Mol Cell 10:917–924CrossRefGoogle Scholar
  191. 191.
    Gonzalez M, Frank EG, Levine AS, Woodgate R (1998) Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: in vitro degradation and identification of residues required for proteolysis. Genes Dev 12:3889–3899CrossRefGoogle Scholar
  192. 192.
    Gonzalez M, Rasulova F, Maurizi MR, Woodgate R (2000) Subunit-specific degradation of the UmuD/UmuD′ heterodimer by the ClpXp protease: the role of trans recognition in UmuD′ stability. EMBO J 19:5251–5258CrossRefGoogle Scholar
  193. 193.
    Neher SB, Sauer RT, Baker TA (2003) Distinct peptide signals in the UmuD and UmuD′ subunits of UmuD/D′ mediate tethering and substrate processing by the ClpXP protease. Proc Natl Acad Sci USA 100:13219–13224ADSCrossRefGoogle Scholar
  194. 194.
    Frank EG, Ennis DG, Gonzalez M, Levine AS, Woodgate R (1996) Regulation of SOS mutagenesis by proteolysis. Proc Natl Acad Sci USA 93:10291–10296ADSCrossRefGoogle Scholar
  195. 195.
    Beuning PJ, Simon SM, Zemla A, Barsky D, Walker GC (2006) A non-cleavable UmuD variant that acts as a UmuD′ mimic. J Biol Chem 281:9633–9640CrossRefGoogle Scholar
  196. 196.
    Sutton MD, Opperman T, Walker GC (1999) The Escherichia coli SOS mutagenesis proteins UmuD and UmuD′ interact physically with the replicative DNA polymerase. Proc Natl Acad Sci USA 96:12373–12378ADSCrossRefGoogle Scholar
  197. 197.
    Sutton MD, Narumi I, Walker GC (2002) Posttranslational modification of the umuD-encoded subunit of Escherichia coli DNA polymerase V regulates its interactions with the beta processivity clamp. Proc Natl Acad Sci USA 99:5307–5312ADSCrossRefGoogle Scholar
  198. 198.
    Ferentz AE, Opperman T, Walker GC, Wagner G (1997) Dimerization of the UmuD′ protein in solution and its implications for regulation of SOS mutagenesis. Nat Struct Biol 4:979–983CrossRefGoogle Scholar
  199. 199.
    Peat TS, Frank EG, McDonald JP, Levine AS, Woodgate R, Hendrickson WA (1996) The UmuD′ protein filament and its potential role in damage induced mutagenesis. Structure 4:1401–1412CrossRefGoogle Scholar
  200. 200.
    Ohta T, Sutton MD, Guzzo A, Cole S, Ferentz AE, Walker GC (1999) Mutations affecting the ability of the Escherichia coli UmuD′ protein to participate in SOS mutagenesis. J Bacteriol 181:177–185Google Scholar
  201. 201.
    Guzzo A, Lee MH, Oda K, Walker GC (1996) Analysis of the region between amino acids 30 and 42 of intact UmuD by a monocysteine approach. J Bacteriol 178:7295–7303Google Scholar
  202. 202.
    Lee MH, Guzzo A, Walker GC (1996) Inhibition of RecA-mediated cleavage in covalent dimers of UmuD. J Bacteriol 178:7304–7307Google Scholar
  203. 203.
    Lee MH, Ohta T, Walker GC (1994) A monocysteine approach for probing the structure and interactions of the UmuD protein. J Bacteriol 176:4825–4837Google Scholar
  204. 204.
    McLenigan M, Peat TS, Frank EG, McDonald JP, Gonzalez M, Levine AS, Hendrickson WA, Woodgate R (1998) Novel Escherichia coli UmuD′ mutants: structure function insights into SOS mutagenesis. J Bacteriol 180:4658–4666Google Scholar
  205. 205.
    Beuning PJ, Chan S, Waters LS, Addepalli H, Ollivierre JN, Walker GC (2009) Characterization of novel alleles of the Escherichia coli umuDC genes identifies additional interaction sites of UmuC with the beta clamp. J Bacteriol 191:5910–5920CrossRefGoogle Scholar
  206. 206.
    Sutton MD, Guzzo A, Narumi I, Costanzo M, Altenbach C, Ferentz AE, Hubbell WL, Walker GC (2002) A model for the structure of the Escherichia coli SOS-regulated UmuD(2) protein. DNA Repair 1:77–93CrossRefGoogle Scholar
  207. 207.
    Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA, Cherney M, Kim B, Little JW, Strynadka NC (2001) Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106:585–594CrossRefGoogle Scholar
  208. 208.
    Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456CrossRefGoogle Scholar
  209. 209.
    Tadmor Y, Ascarelli-Goell R, Skaliter R, Livneh Z (1992) Overproduction of the beta subunit of DNA polymerase III holoenzyme reduces UV mutagenesis in Escherichia coli. J Bacteriol 174:2517–2524Google Scholar
  210. 210.
    Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA (2001) A universal protein–protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci USA 98:11627–11632ADSCrossRefGoogle Scholar
  211. 211.
    Sutton MD (2006) Damage signals triggering the Escherichia coli SOS response. In: Wolfram Seide YWK, Doetsch PW (eds) DNA damage and recognition. Taylor & Francis, New York, NY, pp 781–802Google Scholar
  212. 212.
    Hogg M, Wallace SS, Doublie S (2005) Bumps in the road: how replicative DNA polymerases see DNA damage. Curr Opin Struct Biol 15:86–93CrossRefGoogle Scholar
  213. 213.
    Yang W (2008) Structure and mechanism for DNA lesion recognition. Cell Res 18:184–197CrossRefGoogle Scholar
  214. 214.
    Sutton MD (2009) Coordinating DNA polymerase traffic during high and low fidelity synthesis. Biochim Biophys Acta. doi:  10.1016/j.bbapap.2009.06.010
  215. 215.
    Furukohri A, Goodman MF, Maki H (2008) A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. J Biol Chem 283:11260–11269CrossRefGoogle Scholar
  216. 216.
    Uchida K, Furukohri A, Shinozaki Y, Mori T, Ogawara D, Kanaya S, Nohmi T, Maki H, Akiyama M (2008) Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork progression and is lethal. Mol Microbiol 70:608–622CrossRefGoogle Scholar
  217. 217.
    Indiani C, Langston LD, Yurieva O, Goodman MF, O’Donnell M (2009) Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc Natl Acad Sci USA 106:6031–6038ADSCrossRefGoogle Scholar
  218. 218.
    Maor-Shoshani A, Livneh Z (2002) Analysis of the stimulation of DNA polymerase V of Escherichia coli by processivity proteins. Biochemistry 41:14438–14446CrossRefGoogle Scholar
  219. 219.
    Maul RW, Ponticelli SKS, Duzen JM, Sutton MD (2007) Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 65:811–827CrossRefGoogle Scholar
  220. 220.
    Sutton MD (2004) The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction. J Bacteriol 186:6738–6748CrossRefGoogle Scholar
  221. 221.
    Sutton MD, Duzen JM (2006) Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli. DNA Repair 5:312–323CrossRefGoogle Scholar
  222. 222.
    Xing G, Kirouac K, Shin YJ, Bell SD, Ling H (2009) Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Mol Microbiol 71:678–691CrossRefGoogle Scholar
  223. 223.
    Heltzel JM, Maul RW, Scouten Ponticelli SK, Sutton MD (2009) A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc Natl Acad Sci USA 106:12664–12669ADSCrossRefGoogle Scholar
  224. 224.
    Friedberg EC, Lehmann AR, Fuchs RP (2005) Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol Cell 18:499–505CrossRefGoogle Scholar
  225. 225.
    Hsu GW, Kiefer JR, Burnouf D, Becherel OJ, Fuchs RP, Beese LS (2004) Observing translesion synthesis of an aromatic amine DNA adduct by a high-fidelity DNA polymerase. J Biol Chem 279:50280–50285CrossRefGoogle Scholar
  226. 226.
    Johnson SJ, Taylor JS, Beese LS (2003) Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations. Proc Natl Acad Sci USA 100:3895–3900ADSCrossRefGoogle Scholar
  227. 227.
    Kiefer JR, Mao C, Braman JC, Beese LS (1998) Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391:304–307ADSCrossRefGoogle Scholar
  228. 228.
    Curti E, McDonald JP, Mead S, Woodgate R (2009) DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Mol Microbiol 71(2):315–331CrossRefGoogle Scholar
  229. 229.
    Delmas S, Matic I (2006) Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases. Proc Natl Acad Sci USA 103:4564–4569ADSCrossRefGoogle Scholar
  230. 230.
    Napolitano R, Janel-Bintz R, Wagner J, Fuchs RP (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19:6259–6265CrossRefGoogle Scholar
  231. 231.
    Shurtleff BW, Ollivierre JN, Tehrani M, Walker GC, Beuning PJ (2009) Steric gate variants of UmuC confer UV hypersensitivity on Escherichia coli. J Bacteriol 191:4815–4823CrossRefGoogle Scholar
  232. 232.
    DeLucia AM, Chaudhuri S, Potapova O, Grindley NDF, Joyce CM (2006) The properties of steric gate mutants reveal different constraints within the active sites of Y-family and A-family DNA polymerases. J Biol Chem 281:27286–27291CrossRefGoogle Scholar
  233. 233.
    DeLucia AM, Grindley NDF, Joyce CM (2003) An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a “steric gate” residue for discrimination against ribonucleotides. Nucleic Acids Res 31:4129–4137CrossRefGoogle Scholar
  234. 234.
    Courcelle CT, Belle JJ, Courcelle J (2005) Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli. J Bacteriol 187:6953–6961CrossRefGoogle Scholar
  235. 235.
    Courcelle CT, Chow KH, Casey A, Courcelle J (2006) Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. Proc Natl Acad Sci USA 103:9154–9159ADSCrossRefGoogle Scholar
  236. 236.
    Waters LS, Walker GC (2006) The critical mutagenic translesion synthesis DNA polymerase Rev1 is highly expressed during G2/M phase rather than S phase. Proc Natl Acad Sci USA 103:8971–8976ADSCrossRefGoogle Scholar
  237. 237.
    Kelly TJ, Stillman B (2006) Duplication of DNA in eukaryotic cells. In: DePamphilis ML (ed) DNA replication and human disease. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  238. 238.
    Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284:4041–4045CrossRefGoogle Scholar
  239. 239.
    Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18:521–527CrossRefGoogle Scholar
  240. 240.
    Pavlov YI, Shcherbakova PV, Rogozin IB (2006) Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int Rev Cytol 255:41–132CrossRefGoogle Scholar
  241. 241.
    Syvaoja J, Suomensaari S, Nishida C, Goldsmith JS, Chui GS, Jain S, Linn S (1990) DNA polymerases alpha, delta, and epsilon: three distinct enzymes from HeLa cells. Proc Natl Acad Sci USA 87:6664–6668ADSCrossRefGoogle Scholar
  242. 242.
    Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62:1143–1151CrossRefGoogle Scholar
  243. 243.
    Chilkova O, Stenlund P, Isoz I, Stith CM, Grabowski P, Lundstrom EB, Burgers PM, Johansson E (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35:6588–6597CrossRefGoogle Scholar
  244. 244.
    Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4:11CrossRefGoogle Scholar
  245. 245.
    Wardle J, Burgers PM, Cann IK, Darley K, Heslop P, Johansson E, Lin LJ, McGlynn P, Sanvoisin J, Stith CM, Connolly BA (2008) Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Res 36:705–711CrossRefGoogle Scholar
  246. 246.
    Dua R, Levy DL, Campbell JL (1998) Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. J Biol Chem 273:30046–30055CrossRefGoogle Scholar
  247. 247.
    Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–1987CrossRefGoogle Scholar
  248. 248.
    Sanchez Garcia J, Ciufo LF, Yang X, Kearsey SE, MacNeill SA (2004) The C-terminal zinc finger of the catalytic subunit of DNA polymerase delta is responsible for direct interaction with the B-subunit. Nucleic Acids Res 32:3005–3016CrossRefGoogle Scholar
  249. 249.
    Copeland WC, Wang TS (1991) Catalytic subunit of human DNA polymerase alpha overproduced from baculovirus-infected insect cells. Structural and enzymological characterization. J Biol Chem 266:22739–22748Google Scholar
  250. 250.
    Takada-Takayama R, Suzuki M, Enomoto T, Hanaoka F, Ui M (1990) Purification and characterization of mouse DNA polymerase alpha devoid of primase activity. FEBS Lett 273:27–30CrossRefGoogle Scholar
  251. 251.
    Garg P, Burgers PM (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40:115–128CrossRefGoogle Scholar
  252. 252.
    Klinge S, Hirst J, Maman JD, Krude T, Pellegrini L (2007) An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat Struct Mol Biol 14:875–877CrossRefGoogle Scholar
  253. 253.
    Uchiyama M, Wang TS (2004) The B-subunit of DNA polymerase alpha-primase associates with the origin recognition complex for initiation of DNA replication. Mol Cell Biol 24:7419–7434CrossRefGoogle Scholar
  254. 254.
    Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16:202–207CrossRefGoogle Scholar
  255. 255.
    Baranovskiy AG, Babayeva ND, Liston VG, Rogozin IB, Koonin EV, Pavlov YI, Vassylyev DG, Tahirov TH (2008) X-ray structure of the complex of regulatory subunits of human DNA polymerase delta. Cell Cycle 7:3026–3036CrossRefGoogle Scholar
  256. 256.
    Gomes XV, Burgers PM (2000) Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J 19:3811–3821CrossRefGoogle Scholar
  257. 257.
    Gray FC, Pohler JR, Warbrick E, MacNeill SA (2004) Mapping and mutation of the conserved DNA polymerase interaction motif (DPIM) located in the C-terminal domain of fission yeast DNA polymerase delta subunit Cdc27. BMC Mol Biol 5:21CrossRefGoogle Scholar
  258. 258.
    Johansson E, Garg P, Burgers PM (2004) The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 279:1907–1915CrossRefGoogle Scholar
  259. 259.
    Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273:19747–19755CrossRefGoogle Scholar
  260. 260.
    Lawrence CW (2002) Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair 1:425–435CrossRefGoogle Scholar
  261. 261.
    Acharya N, Johnson RE, Pages V, Prakash L, Prakash S (2009) Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proc Natl Acad Sci USA 106:9631–9636ADSCrossRefGoogle Scholar
  262. 262.
    Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353CrossRefGoogle Scholar
  263. 263.
    Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685CrossRefGoogle Scholar
  264. 264.
    Dua R, Levy DL, Li CM, Snow PM, Campbell JL (2002) In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase epsilon in insect cells. Purification and characterization. J Biol Chem 277:7889–7896CrossRefGoogle Scholar
  265. 265.
    Pursell ZF, Kunkel TA (2008) DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog Nucleic Acid Res Mol Biol 82:101–145CrossRefGoogle Scholar
  266. 266.
    Jaszczur M, Rudzka J, Kraszewska J, Flis K, Polaczek P, Campbell JL, Fijalkowska IJ, Jonczyk P (2009) Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae. Mutat Res 669:27–35CrossRefGoogle Scholar
  267. 267.
    Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24:217–227CrossRefGoogle Scholar
  268. 268.
    Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H (2003) GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 17:1153–1165CrossRefGoogle Scholar
  269. 269.
    Feng W, Rodriguez-Menocal L, Tolun G, D’Urso G (2003) Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication. Mol Biol Cell 14:3427–3436CrossRefGoogle Scholar
  270. 270.
    Masumoto H, Sugino A, Araki H (2000) Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol 20:2809–2817CrossRefGoogle Scholar
  271. 271.
    Washington MT, Carlson KD, Freudenthal BD, Pryor JM (2009) Variations on a theme: eukaryotic Y-family DNA polymerases. Biochim Biophys Acta. doi:  10.1016/j.bbapap.2009.07.004
  272. 272.
    Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73:134–154CrossRefGoogle Scholar
  273. 273.
    Yang W, Woodgate R (2007) What a difference a decade makes: insights into translesion DNA synthesis. Proc Natl Acad Sci USA 104:15591–15598ADSCrossRefGoogle Scholar
  274. 274.
    Johnson RE, Kondratick CM, Prakash S, Prakash L (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285:263–265CrossRefGoogle Scholar
  275. 275.
    Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700–704ADSCrossRefGoogle Scholar
  276. 276.
    Lee KY, Myung K (2008) PCNA modifications for regulation of post-replication repair pathways. Mol Cells 26:5–11Google Scholar
  277. 277.
    McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA (2004) Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428:97–100ADSCrossRefGoogle Scholar
  278. 278.
    Washington MT, Johnson RE, Prakash S, Prakash L (2001) Mismatch extension ability of yeast and human DNA polymerase eta. J Biol Chem 276:2263–2266Google Scholar
  279. 279.
    Vaisman A, Lehmann AR, Woodgate R (2004) DNA polymerases eta and iota. Adv Protein Chem 69:205–228CrossRefGoogle Scholar
  280. 280.
    Trincao J, Johnson RE, Escalante CR, Prakash S, Prakash L, Aggarwal AK (2001) Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Mol Cell 8:417–426CrossRefGoogle Scholar
  281. 281.
    Friedberg EC, Feaver WJ, Gerlach VL (2000) The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance. Proc Natl Acad Sci USA 97:5681–5683ADSCrossRefGoogle Scholar
  282. 282.
    McDonald JP, Rapic-Otrin V, Epstein JA, Broughton BC, Wang X, Lehmann AR, Wolgemuth DJ, Woodgate R (1999) Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase eta. Genomics 60:20–30CrossRefGoogle Scholar
  283. 283.
    Kannouche P, Fernandez de Henestrosa AR, Coull B, Vidal AE, Gray C, Zicha D, Woodgate R, Lehmann AR (2003) Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J 22:1223–1233Google Scholar
  284. 284.
    Tissier A, McDonald JP, Frank EG, Woodgate R (2000) Poliota, a remarkably error-prone human DNA polymerase. Genes Dev 14:1642–1650Google Scholar
  285. 285.
    Choi JY, Guengerich FP (2006) Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota. J Biol Chem 281:12315–12324CrossRefGoogle Scholar
  286. 286.
    Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK (2004) Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature 430:377–380ADSCrossRefGoogle Scholar
  287. 287.
    Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000) Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406:1015–1019ADSCrossRefGoogle Scholar
  288. 288.
    Tissier A, Frank EG, McDonald JP, Vaisman A, Fernandez de Henestrosa AR, Boudsocq F, McLenigan MP, Woodgate R (2001) Biochemical characterization of human DNA polymerase iota provides clues to its biological function. Biochem Soc Trans 29:183–187CrossRefGoogle Scholar
  289. 289.
    Ogi T, Kannouche P, Lehmann AR (2005) Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J Cell Sci 118:129–136CrossRefGoogle Scholar
  290. 290.
    Ogi T, Shinkai Y, Tanaka K, Ohmori H (2002) Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci USA 99:15548–15553ADSCrossRefGoogle Scholar
  291. 291.
    Choi JY, Angel KC, Guengerich FP (2006) Translesion synthesis across bulky N2-alkyl guanine DNA adducts by human DNA polymerase kappa. J Biol Chem 281:21062–21072CrossRefGoogle Scholar
  292. 292.
    Suzuki N, Ohashi E, Kolbanovskiy A, Geacintov NE, Grollman AP, Ohmori H, Shibutani S (2002) Translesion synthesis by human DNA polymerase kappa on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-N(2)-BPDE (7, 8-dihydroxy-anti-9, 10-epoxy-7, 8, 9, 10-tetrahydrobenzo[a]pyrene). Biochemistry 41:6100–6106CrossRefGoogle Scholar
  293. 293.
    Haracska L, Prakash L, Prakash S (2002) Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci USA 99:16000–16005ADSCrossRefGoogle Scholar
  294. 294.
    Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A, Nair DT, Prakash S, Prakash L, Aggarwal AK (2007) Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 25:601–614CrossRefGoogle Scholar
  295. 295.
    Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev 14:1589–1594Google Scholar
  296. 296.
    Ohashi E, Bebenek K, Matsuda T, Feaver WJ, Gerlach VL, Friedberg EC, Ohmori H, Kunkel TA (2000) Fidelity and processivity of DNA synthesis by DNA polymerase kappa, the product of the human DINB1 gene. J Biol Chem 275:39678–39684CrossRefGoogle Scholar
  297. 297.
    Nelson JR, Lawrence CW, Hinkle DC (1996) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729–731ADSCrossRefGoogle Scholar
  298. 298.
    Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2005) Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309:2219–2222ADSCrossRefGoogle Scholar
  299. 299.
    Lawrence CW, Christensen R (1976) UV mutagenesis in radiation-sensitive strains of yeast. Genetics 82:207–232Google Scholar
  300. 300.
    Johnson RE, Torres-Ramos CA, Izumi T, Mitra S, Prakash S, Prakash L (1998) Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev 12:3137–3143CrossRefGoogle Scholar
  301. 301.
    Baynton K, Bresson-Roy A, Fuchs RP (1999) Distinct roles for Rev1p and Rev7p during translesion synthesis in Saccharomyces cerevisiae. Mol Microbiol 34:124–133CrossRefGoogle Scholar
  302. 302.
    Lawrence CW (2004) Cellular functions of DNA polymerase zeta and Rev1 protein. Adv Protein Chem 69:167–203CrossRefGoogle Scholar
  303. 303.
    Guo C, Sonoda E, Tang TS, Parker JL, Bielen AB, Takeda S, Ulrich HD, Friedberg EC (2006) REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell 23:265–271CrossRefGoogle Scholar
  304. 304.
    Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L (2005) Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol 25:9734–9740CrossRefGoogle Scholar
  305. 305.
    Ohashi E, Murakumo Y, Kanjo N, Akagi J, Masutani C, Hanaoka F, Ohmori H (2004) Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9:523–531CrossRefGoogle Scholar
  306. 306.
    Tissier A, Kannouche P, Reck MP, Lehmann AR, Fuchs RP, Cordonnier A (2004) Co-localization in replication foci and interaction of human Y-family members. DNA polymerase pol eta and REVl protein. DNA Repair 3:1503–1514CrossRefGoogle Scholar
  307. 307.
    Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC (2003) Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 22:6621–6630CrossRefGoogle Scholar
  308. 308.
    Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M (2001) Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 276:35644–35651CrossRefGoogle Scholar
  309. 309.
    Nelson JR, Lawrence CW, Hinkle DC (1996) Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272:1646–1649ADSCrossRefGoogle Scholar
  310. 310.
    Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM, Prakash S, Prakash L (2001) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15:945–954CrossRefGoogle Scholar
  311. 311.
    Cuniasse P, Sowers LC, Eritja R, Kaplan B, Goodman MF, Cognet JA, LeBret M, Guschlbauer W, Fazakerley GV (1987) An abasic site in DNA. Solution conformation determined by proton NMR and molecular mechanics calculations. Nucleic Acids Res 15:8003–8022CrossRefGoogle Scholar
  312. 312.
    Kalnik MW, Chang CN, Grollman AP, Patel DJ (1988) NMR studies of abasic sites in DNA duplexes: deoxyadenosine stacks into the helix opposite the cyclic analogue of 2-deoxyribose. Biochemistry 27:924–931CrossRefGoogle Scholar
  313. 313.
    Bemark M, Khamlichi AA, Davies SL, Neuberger MS (2000) Disruption of mouse polymerase zeta (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro. Curr Biol 10:1213–1216CrossRefGoogle Scholar
  314. 314.
    Zhong X, Garg P, Stith CM, Nick McElhinny SA, Kissling GE, Burgers PM, Kunkel TA (2006) The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 34:4731–4742CrossRefGoogle Scholar
  315. 315.
    Majka J, Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227–260CrossRefGoogle Scholar
  316. 316.
    Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679CrossRefGoogle Scholar
  317. 317.
    Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243CrossRefGoogle Scholar
  318. 318.
    Lau PJ, Kolodner RD (2003) Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J Biol Chem 278:14–17CrossRefGoogle Scholar
  319. 319.
    Xu H, Zhang P, Liu L, Lee MY (2001) A novel PCNA-binding motif identified by the panning of a random peptide display library. Biochemistry 40:4512–4520CrossRefGoogle Scholar
  320. 320.
    Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87:297–306CrossRefGoogle Scholar
  321. 321.
    Bruning JB, Shamoo Y (2004) Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. Structure 12:2209–2219CrossRefGoogle Scholar
  322. 322.
    Hishiki A, Hashimoto H, Hanafusa T, Kamei K, Ohashi E, Shimizu T, Ohmori H, Sato M (2009) Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J Biol Chem 284:10552–10560CrossRefGoogle Scholar
  323. 323.
    Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair 6:891–899CrossRefGoogle Scholar
  324. 324.
    Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191ADSCrossRefGoogle Scholar
  325. 325.
    Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467ADSCrossRefGoogle Scholar
  326. 326.
    Ulrich HD (2009) Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair 8:461–469CrossRefGoogle Scholar
  327. 327.
    Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178CrossRefGoogle Scholar
  328. 328.
    Jentsch S, Pyrowolakis G (2000) Ubiquitin and its kin: how close are the family ties? Trends Cell Biol 10:335–342CrossRefGoogle Scholar
  329. 329.
    Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533CrossRefGoogle Scholar
  330. 330.
    Schwartz DC, Hochstrasser M (2003) A superfamily of protein tags: ubiquitin. SUMO and related modifiers. Trends Biochem Sci 28:321–328CrossRefGoogle Scholar
  331. 331.
    Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059CrossRefGoogle Scholar
  332. 332.
    Kim KI, Baek SH, Chung CH (2002) Versatile protein tag. SUMO: its enzymology and biological function. J Cell Physiol 191:257–268CrossRefGoogle Scholar
  333. 333.
    Melchior F (2000) SUMO – nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626CrossRefGoogle Scholar
  334. 334.
    Budzowska M, Kanaar R (2009) Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 53:17–31CrossRefGoogle Scholar
  335. 335.
    Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141ADSCrossRefGoogle Scholar
  336. 336.
    Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D’Andrea AD (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8:339–347Google Scholar
  337. 337.
    Andersen PL, Xu F, Xiao W (2008) Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18:162–173CrossRefGoogle Scholar
  338. 338.
    Sheng W, Liao X (2002) Solution structure of a yeast ubiquitin-like protein Smt3: the role of structurally less defined sequences in protein-protein recognitions. Protein Sci 11:1482–1491CrossRefGoogle Scholar
  339. 339.
    Haracska L, Torres-Ramos CA, Johnson RE, Prakash S, Prakash L (2004) Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol 24:4267–4274CrossRefGoogle Scholar
  340. 340.
    Haracska L, Unk I, Prakash L, Prakash S (2006) Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc Natl Acad Sci USA 103:6477–6482ADSCrossRefGoogle Scholar
  341. 341.
    Fernandes PH, Lloyd RS (2007) Mutagenic bypass of the butadiene-derived 2′-deoxyuridine adducts by polymerases eta and zeta. Mutat Res 625:40–49CrossRefGoogle Scholar
  342. 342.
    Shachar S, Ziv O, Avkin S, Adar S, Wittschieben J, Reissner T, Chaney S, Friedberg EC, Wang Z, Carell T, Geacintov N, Livneh Z (2009) Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. EMBO J 28:383–393CrossRefGoogle Scholar
  343. 343.
    Ziv O, Geacintov N, Nakajima S, Yasui A, Livneh Z (2009) DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. Proc Natl Acad Sci USA 106:11552–11557ADSCrossRefGoogle Scholar
  344. 344.
    Zhang Y, Wu X, Guo D, Rechkoblit O, Geacintov NE, Wang Z (2002) Two-step error-prone bypass of the (+)- and (-)-trans-anti-BPDE-N2-dG adducts by human DNA polymerases eta and kappa. Mutat Res 510:23–35CrossRefGoogle Scholar
  345. 345.
    Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16:1872–1883MathSciNetCrossRefGoogle Scholar
  346. 346.
    Haracska L, Prakash S, Prakash L (2003) Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7, 8-dihydro-8-Oxoguanine and O6-methylguanine. Mol Cell Biol 23:1453–1459CrossRefGoogle Scholar
  347. 347.
    Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821–1824ADSCrossRefGoogle Scholar
  348. 348.
    Majka J, Burgers PM (2003) Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci USA 100:2249–2254ADSCrossRefGoogle Scholar
  349. 349.
    Parrilla-Castellar ER, Arlander SJ, Karnitz L (2004) Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair 3:1009–1014CrossRefGoogle Scholar
  350. 350.
    Venclovas C, Thelen MP (2000) Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res 28:2481–2493CrossRefGoogle Scholar
  351. 351.
    Xu M, Bai L, Gong Y, Xie W, Hang H, Jiang T (2009) Structure and functional implications of the human rad9-hus1-rad1 cell cycle checkpoint complex. J Biol Chem 284:20457–20461CrossRefGoogle Scholar
  352. 352.
    Dore AS, Kilkenny ML, Rzechorzek NJ, Pearl LH (2009) Crystal structure of the rad9-rad1-hus1 DNA damage checkpoint complex–implications for clamp loading and regulation. Mol Cell 34:735–745CrossRefGoogle Scholar
  353. 353.
    Shiomi Y, Shinozaki A, Nakada D, Sugimoto K, Usukura J, Obuse C, Tsurimoto T (2002) Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes Cells 7:861–868CrossRefGoogle Scholar
  354. 354.
    Griffith JD, Lindsey-Boltz LA, Sancar A (2002) Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J Biol Chem 277:15233–15236CrossRefGoogle Scholar
  355. 355.
    Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, Sancar A (2003) Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci USA 100:1633–1638ADSCrossRefGoogle Scholar
  356. 356.
    Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol 1:E33CrossRefGoogle Scholar
  357. 357.
    Roos-Mattjus P, Hopkins KM, Oestreich AJ, Vroman BT, Johnson KL, Naylor S, Lieberman HB, Karnitz LM (2003) Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J Biol Chem 278:24428–24437CrossRefGoogle Scholar
  358. 358.
    Fu Y, Zhu Y, Zhang K, Yeung M, Durocher D, Xiao W (2008) Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133:601–611CrossRefGoogle Scholar
  359. 359.
    Paulovich AG, Armour CD, Hartwell LH (1998) The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 150:75–93Google Scholar
  360. 360.
    Kai M, Wang TS (2003) Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17:64–76CrossRefGoogle Scholar
  361. 361.
    Kai M, Wang TS (2003) Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis. Mutat Res 532:59–73CrossRefGoogle Scholar
  362. 362.
    Sabbioneda S, Minesinger BK, Giannattasio M, Plevani P, Muzi-Falconi M, Jinks-Robertson S (2005) The 9-1-1 checkpoint clamp physically interacts with polzeta and is partially required for spontaneous polzeta-dependent mutagenesis in Saccharomyces cerevisiae. J Biol Chem 280:38657–38665CrossRefGoogle Scholar
  363. 363.
    Kai M, Furuya K, Paderi F, Carr AM, Wang TS (2007) Rad3-dependent phosphorylation of the checkpoint clamp regulates repair-pathway choice. Nat Cell Biol 9:691–697CrossRefGoogle Scholar
  364. 364.
    Helt CE, Wang W, Keng PC, Bambara RA (2005) Evidence that DNA damage detection machinery participates in DNA repair. Cell Cycle 4:529–532CrossRefGoogle Scholar
  365. 365.
    Paz-Elizur T, Skaliter R, Blumenstein S, Livneh Z (1996) Beta*, a UV-inducible smaller form of the beta subunit sliding clamp of DNA polymerase III of Escherichia coli. I. Gene expression and regulation. J Biol Chem 271:2482–2490CrossRefGoogle Scholar
  366. 366.
    Skaliter R, Bergstein M, Livneh Z (1996) Beta*, a UV-inducible shorter form of the beta subunit of DNA polymerase III of Escherichia coli. II. Overproduction, purification, and activity as a polymerase processivity clamp. J Biol Chem 271:2491–2496CrossRefGoogle Scholar
  367. 367.
    Skaliter R, Paz-Elizur T, Livneh Z (1996) A smaller form of the sliding clamp subunit of DNA polymerase III is induced by UV irradiation in Escherichia coli. J Biol Chem 271:2478–2481CrossRefGoogle Scholar
  368. 368.
    Kirby TW, Harvey S, DeRose EF, Chalov S, Chikova AK, Perrino FW, Schaaper RM, London RE, Pedersen LC (2006) Structure of the Escherichia coli DNA polymerase III epsilon-HOT proofreading complex. J Biol Chem 281:38466–38471CrossRefGoogle Scholar
  369. 369.
    Scheuermann RH, Echols H (1984) A separate editing exonuclease for DNA replication: the epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 81:7747–7751ADSCrossRefGoogle Scholar
  370. 370.
    McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18:148–161CrossRefGoogle Scholar
  371. 371.
    Kobayashi S, Valentine MR, Pham P, O’Donnell M, Goodman MF (2002) Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment. J Biol Chem 277:34198–34207CrossRefGoogle Scholar
  372. 372.
    Maor-Shoshani A, Reuven NB, Tomer G, Livneh Z (2000) Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis. Proc Natl Acad Sci USA 97:565–570ADSCrossRefGoogle Scholar
  373. 373.
    McCulloch SD, Wood A, Garg P, Burgers PM, Kunkel TA (2007) Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta. Biochemistry 46:8888–8896CrossRefGoogle Scholar
  374. 374.
    Matsuda T, Bebenek K, Masutani C, Rogozin IB, Hanaoka F, Kunkel TA (2001) Error rate and specificity of human and murine DNA polymerase eta. J Mol Biol 312:335–346CrossRefGoogle Scholar
  375. 375.
    Bebenek K, Tissier A, Frank EG, McDonald JP, Prasad R, Wilson SH, Woodgate R, Kunkel TA (2001) 5′-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science 291:2156–2159ADSCrossRefGoogle Scholar
  376. 376.
    Kunkel TA, Hamatake RK, Motto-Fox J, Fitzgerald MP, Sugino A (1989) Fidelity of DNA polymerase I and the DNA polymerase I-DNA primase complex from Saccharomyces cerevisiae. Mol Cell Biol 9:4447–4458Google Scholar
  377. 377.
    Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PM, Kunkel TA (2005) Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem 280:29980–29987CrossRefGoogle Scholar
  378. 378.
    Shimizu K, Hashimoto K, Kirchner JM, Nakai W, Nishikawa H, Resnick MA, Sugino A (2002) Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. J Biol Chem 277:37422–37429CrossRefGoogle Scholar
  379. 379.
    Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  380. 380.
    Sohn SY, Cho Y (2009) Crystal structure of the human rad9-hus1-rad1 clamp. J Mol Biol 390:490–502CrossRefGoogle Scholar
  381. 381.
    Winter JA, Christofi P, Morroll S, Bunting KA (2009) The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation. BMC Struct Biol 9:55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jaylene N. Ollivierre
  • Michelle C. Silva
  • Jana Sefcikova
  • Penny J. Beuning
    • 1
  1. 1.Department of Chemistry & Chemical Biology, Center for Interdisciplinary, Research on Complex SystemsNortheastern UniversityBostonUSA

Personalised recommendations