Dynamics of Protein–ssDNA Interactions in the Bacteriophage T4 Homologous Recombination System

  • Jie Liu
  • Scott W. Morrical
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Homologous recombination plays critical roles in maintaining genetic diversity and genome stability through processes such as meiosis and DNA double-strand break repair. The central process in homologous recombination is DNA strand exchange, in which single-stranded DNA (ssDNA) from the resected, broken end of one chromosome invades the homologous double-stranded DNA (dsDNA) of a sister chromosome. This reaction is catalyzed by presynaptic filaments – filamentous complexes of core recombination proteins bound to the invading ssDNA. Successful recombination depends on the coordinated assembly and dynamics of these protein–ssDNA filaments. Studies of the bacteriophage T4 core recombination machinery (UvsX recombinase, Gp32 ssDNA-binding protein, UvsY recombination mediator protein) have provided valuable insights on the biochemistry and biophysics of protein–ssDNA interactions in homologous recombination. In this chapter, we explore current models for the assembly and dynamic instability of the T4 presynaptic filament and show how mechanistic features of this system may be conserved in other recombination systems.


Strand Exchange ssDNA Binding Branch Migration Physiological Ionic Strength Intrinsic Affinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jasin M (2002) Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21(58):8981–8993CrossRefGoogle Scholar
  2. 2.
    Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66(4):630–670, table of contentsCrossRefGoogle Scholar
  3. 3.
    Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11(11):S52–S59CrossRefGoogle Scholar
  4. 4.
    Sun H, Treco D, Szostak JW (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64(6):1155–1161CrossRefGoogle Scholar
  5. 5.
    Haber JE (1995) In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17(7):609–620CrossRefGoogle Scholar
  6. 6.
    Bianco PR, Tracy RB, Kowalczykowski SC (1998) DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci 3:570–603Google Scholar
  7. 7.
    Thacker J (1999) A surfeit of RAD51-like genes? Trends Genet 15(5):166–168CrossRefGoogle Scholar
  8. 8.
    McRobbie AM, Carter LG, Kerou M, Liu H, McMahon SA, Johnson KA, Oke M, Naismith JH, White MF (2009) Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity. J Mol Biol 389(4):661–673CrossRefGoogle Scholar
  9. 9.
    Cox MM (2007) Motoring along with the bacterial RecA protein. Nat Rev Mol Cell Biol 8(2):127–138CrossRefGoogle Scholar
  10. 10.
    Haber JE (1997) A super new twist on the initiation of meiotic recombination. Cell 89(2): 163–166CrossRefGoogle Scholar
  11. 11.
    Konforti BB, Davis RW (1990) The preference for a 3′ homologous end is intrinsic to RecA-promoted strand exchange. J Biol Chem 265(12):6916–6920Google Scholar
  12. 12.
    Sung P, Robberson DL (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82(3):453–461CrossRefGoogle Scholar
  13. 13.
    Oh SD, Lao JP, Hwang PY, Taylor AF, Smith GR, Hunter N (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130(2):259–272CrossRefGoogle Scholar
  14. 14.
    Salinas F, Kodadek T (1995) Phage T4 homologous strand exchange: a DNA helicase, not the strand transferase, drives polar branch migration. Cell 82(1):111–119CrossRefGoogle Scholar
  15. 15.
    Beernink HT, Morrical SW (1999) RMPs: recombination/replication mediator proteins. Trends Biochem Sci 24(10):385–389CrossRefGoogle Scholar
  16. 16.
    Wadsworth RI, White MF (2001) Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res 29(4):914–920CrossRefGoogle Scholar
  17. 17.
    Kerr ID, Wadsworth RI, Cubeddu L, Blankenfeldt W, Naismith JH, White MF (2003) Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J 22(11):2561–2570CrossRefGoogle Scholar
  18. 18.
    Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278(44):42729–42732CrossRefGoogle Scholar
  19. 19.
    Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11(5):1337–1347CrossRefGoogle Scholar
  20. 20.
    New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391(6665):407–410CrossRefADSGoogle Scholar
  21. 21.
    Shinohara A, Ogawa T (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391(6665):404–407CrossRefADSGoogle Scholar
  22. 22.
    Yang H, Li Q, Fan J, Holloman WK, Pavletich NP (2005) The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433(7026):653–657CrossRefADSGoogle Scholar
  23. 23.
    Sung P (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11(9):1111–1121CrossRefGoogle Scholar
  24. 24.
    Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y (2000) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275(43):33782–33790CrossRefGoogle Scholar
  25. 25.
    DiRuggiero J, Brown JR, Bogert AP, Robb FT (1999) DNA repair systems in archaea: mementos from the last universal common ancestor? J Mol Evol 49(4):474–484CrossRefGoogle Scholar
  26. 26.
    Bleuit JS, Xu H, Ma Y, Wang T, Liu J, Morrical SW (2001) Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc Natl Acad Sci USA 98(15):8298–8305CrossRefADSGoogle Scholar
  27. 27.
    Mosig G (1994) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 54–82Google Scholar
  28. 28.
    Kreuzer KN (2000) Recombination-dependent DNA replication in phage T4. Trends Biochem Sci 25(4):165–173MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kodadek T (1990) The role of the bacteriophage T4 gene 32 protein in homologous pairing. J Biol Chem 265(34):20966–20969Google Scholar
  30. 30.
    Kodadek T, Gan DC, Stemke-Hale K (1989) The phage T4 uvsY recombination protein stabilizes presynaptic filaments. J Biol Chem 264(28):16451–16457Google Scholar
  31. 31.
    Griffith J, Formosa T (1985) The uvsX protein of bacteriophage T4 arranges single-stranded and double-stranded DNA into similar helical nucleoprotein filaments. J Biol Chem 260(7): 4484–4491Google Scholar
  32. 32.
    Farb JN, Morrical SW (2009) Functional complementation of UvsX and UvsY mutations in the mediation of T4 homologous recombination. Nucleic Acids Res 37(7):2336–2345CrossRefGoogle Scholar
  33. 33.
    Liu J, Qian N, Morrical SW (2006) Dynamics of bacteriophage T4 presynaptic filament assembly from extrinsic fluorescence measurements of Gp32-single-stranded DNA interactions. J Biol Chem 281(36):26308–26319CrossRefGoogle Scholar
  34. 34.
    Harris LD, Griffith JD (1989) UvsY protein of bacteriophage T4 is an accessory protein for in vitro catalysis of strand exchange. J Mol Biol 206(1):19–27CrossRefGoogle Scholar
  35. 35.
    Yassa DS, Chou KM, Morrical SW (1997) Characterization of an amino-terminal fragment of the bacteriophage T4 uvsY recombination protein. Biochimie 79(5):275–285CrossRefGoogle Scholar
  36. 36.
    Ando RA, Morrical SW (1998) Single-stranded DNA binding properties of the UvsX recombinase of bacteriophage T4: binding parameters and effects of nucleotides. J Mol Biol 283(4):785–796CrossRefGoogle Scholar
  37. 37.
    Liu J, Bond JP, Morrical SW (2006) Mechanism of presynaptic filament stabilization by the bacteriophage T4 UvsY recombination mediator protein. Biochemistry 45(17):5493–5502CrossRefGoogle Scholar
  38. 38.
    Formosa T, Alberts BM (1986) Purification and characterization of the T4 bacteriophage uvsX protein. J Biol Chem 261(13):6107–6118Google Scholar
  39. 39.
    Pugh BF, Cox MM (1988) High salt activation of recA protein ATPase in the absence of DNA. J Biol Chem 263(1):76–83Google Scholar
  40. 40.
    Farb JN, Morrical SW (2009) Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase. J Mol Biol 385(2):393–404CrossRefGoogle Scholar
  41. 41.
    Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA (2004) Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11(8):791–796CrossRefGoogle Scholar
  42. 42.
    Lauder SD, Kowalczykowski SC (1991) Asymmetry in the recA protein-DNA filament. J Biol Chem 266(9):5450–5458Google Scholar
  43. 43.
    Kodadek T, Wong ML, Alberts BM (1988) The mechanism of homologous DNA strand exchange catalyzed by the bacteriophage T4 uvsX and gene 32 proteins. J Biol Chem 263(19):9427–9436Google Scholar
  44. 44.
    Riddles PW, Lehman IR (1985) The formation of plectonemic joints by the recA protein of Escherichia coli. Requirement for ATP hydrolysis. J Biol Chem 260(1):170–173Google Scholar
  45. 45.
    Kowalczykowski SC, Krupp RA (1995) DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc Natl Acad Sci USA 92(8):3478–3482CrossRefADSGoogle Scholar
  46. 46.
    Yonesaki T, Minagawa T (1989) Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins. J Biol Chem 264(14):7814–7820Google Scholar
  47. 47.
    Melamede RJ, Wallace SS (1977) Properties of the nonlethal recombinational repair x and y mutants of bacteriophage T4. II. DNA synthesis. J Virol 24(1):28–40Google Scholar
  48. 48.
    Melamede RJ, Wallace SS (1980) Properties of the nonlethal recombinational repair deficient mutants of bacteriophage T4. III. DNA replicative intermediates and T4w. Mol Gen Genet 177(3):501–509CrossRefGoogle Scholar
  49. 49.
    Kreuzer KN, Morrical SM (1994) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 28–42Google Scholar
  50. 50.
    Chase JW, Williams KR (1986) Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem 55:103–136CrossRefGoogle Scholar
  51. 51.
    Karpel R, Karpel RL (1990) The biology of nonspecific DNA-protein interactions. CRC, Boca Raton, FL, pp 103–130Google Scholar
  52. 52.
    Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH, Steitz TA (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376(6538):362–366CrossRefADSGoogle Scholar
  53. 53.
    Williams KR, Shamoo Y, Spicer EK, Coleman JE, Konigsberg WH (1994) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 301–304Google Scholar
  54. 54.
    Giedroc DP, Khan R, Barnhart K (1990) Overexpression, purification, and characterization of recombinant T4 gene 32 protein22-301 (g32P-B). J Biol Chem 265(20):11444–11455Google Scholar
  55. 55.
    Xu H, Wang Y, Bleuit JS, Morrical SW (2001) Helicase assembly protein Gp59 of bacteriophage T4: fluorescence anisotropy and sedimentation studies of complexes formed with derivatives of Gp32, the phage ssDNA binding protein. Biochemistry 40(25):7651–7661CrossRefGoogle Scholar
  56. 56.
    Hurley JM, Chervitz SA, Jarvis TC, Singer BS, Gold L (1993) Assembly of the bacteriophage T4 replication machine requires the acidic carboxy terminus of gene 32 protein. J Mol Biol 229(2):398–418CrossRefGoogle Scholar
  57. 57.
    Jiang H, Giedroc D, Kodadek T (1993) The role of protein-protein interactions in the assembly of the presynaptic filament for T4 homologous recombination. J Biol Chem 268(11): 7904–7911Google Scholar
  58. 58.
    Ma Y, Wang T, Villemain JL, Giedroc DP, Morrical SW (2004) Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork. J Biol Chem 279(18):19035–19045CrossRefGoogle Scholar
  59. 59.
    Morrical SW, Beernink HT, Dash A, Hempstead K (1996) The gene 59 protein of bacteriophage T4. Characterization of protein-protein interactions with gene 32 protein, the T4 single-stranded DNA binding protein. J Biol Chem 271(33):20198–20207CrossRefGoogle Scholar
  60. 60.
    Kowalczykowski SC (1990) Thermodynamic data for protein-nucleic acid interactions. In: Saenger W (ed) Landolt-Bornstein: numerical data and functional relationships in science and technology. Springer, Berlin, pp 244–263Google Scholar
  61. 61.
    Newport JW, Lonberg N, Kowalczykowski SC, von Hippel PH (1981) Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. II. Specificity of binding to DNA and RNA. J Mol Biol 145(1):105–121CrossRefGoogle Scholar
  62. 62.
    Kowalczykowski SC, Lonberg N, Newport JW, von Hippel PH (1981) Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. I. Characterization of the binding interactions. J Mol Biol 145(1):75–104CrossRefGoogle Scholar
  63. 63.
    Rouzina I, Pant K, Karpel RL, Williams MC (2005) Theory of electrostatically regulated binding of T4 gene 32 protein to single- and double-stranded DNA. Biophys J 89(3): 1941–1956CrossRefGoogle Scholar
  64. 64.
    Pant K, Karpel RL, Rouzina I, Williams MC (2005) Salt dependent binding of T4 gene 32 protein to single and double-stranded DNA: single molecule force spectroscopy measurements. J Mol Biol 349(2):317–330CrossRefGoogle Scholar
  65. 65.
    Shokri L, Rouzina I, Williams MC (2009) Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA. Phys Biol 6(2):25002CrossRefGoogle Scholar
  66. 66.
    Morrical SW, Alberts BM (1990) The UvsY protein of bacteriophage T4 modulates recombination-dependent DNA synthesis in vitro. J Biol Chem 265(25):15096–15103Google Scholar
  67. 67.
    Beernink HT, Morrical SW (1998) The uvsY recombination protein of bacteriophage T4 forms hexamers in the presence and absence of single-stranded DNA. Biochemistry 37(16):5673–5681CrossRefGoogle Scholar
  68. 68.
    Sweezy MA, Morrical SW (1997) Single-stranded DNA binding properties of the uvsY recombination protein of bacteriophage T4. J Mol Biol 266(5):927–938CrossRefGoogle Scholar
  69. 69.
    Xu H, Beernink HT, Morrical SW (2010) DNA binding properties of T4 UvsY recombination mediator protein: polynudeotide wrapping promotes high-affinity binding to ssDNA. Nucleic Acids Res 38(14):4821–4833Google Scholar
  70. 70.
    Bleuit JS, Ma Y, Munro J, Morrical SW (2004) Mutations in a conserved motif inhibit single-stranded DNA binding and recombination mediator activities of bacteriophage T4 UvsY protein. J Biol Chem 279(7):6077–6086CrossRefGoogle Scholar
  71. 71.
    Pant K, Shokri L, Karpel RL, Morrical SW, Williams MC (2008) Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY. J Mol Biol 380(5):799–811CrossRefGoogle Scholar
  72. 72.
    Ando RA, Morrical SW (1999) Relationship between hexamerization and ssDNA binding affinity in the uvsY recombination protein of bacteriophage T4. Biochemistry 38(50):16589–16598CrossRefGoogle Scholar
  73. 73.
    McGhee JD (1976) Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 15(7):1345–1375CrossRefGoogle Scholar
  74. 74.
    Morrical SW, Wong ML, Alberts BM (1991) Amplification of snap-back DNA synthesis reactions by the uvsX recombinase of bacteriophage T4. J Biol Chem 266(21):14031–14038Google Scholar
  75. 75.
    Kodadek T (1990) Functional interactions between phage T4 and E. coli DNA-binding proteins during the presynapsis phase of homologous recombination. Biochem Biophys Res Commun 172(2):804–810CrossRefGoogle Scholar
  76. 76.
    Sweezy MA, Morrical SW (1999) Biochemical interactions within a ternary complex of the bacteriophage T4 recombination proteins uvsY and gp32 bound to single-stranded DNA. Biochemistry 38(3):936–944CrossRefGoogle Scholar
  77. 77.
    Hashimoto K, Yonesaki T (1991) The characterization of a complex of three bacteriophage T4 recombination proteins, uvsX protein, uvsY protein, and gene 32 protein, on single-stranded DNA. J Biol Chem 266(8):4883–4888Google Scholar
  78. 78.
    Echols H (1986) Multiple DNA-protein interactions governing high-precision DNA transactions. Science 233(4768):1050–1056CrossRefADSGoogle Scholar
  79. 79.
    Lohman TM, Kowalczykowski SC (1981) Kinetics and mechanism of the association of the bacteriophage T4 gene 32 (helix destabilizing) protein with single-stranded nucleic acids. Evidence for protein translocation. J Mol Biol 152(1):67–109CrossRefGoogle Scholar
  80. 80.
    Liu J, Berger C, Morrical SW Kinetics of presynaptic filament assembly in the presence of SSB and mediator proteins. Manuscript under revisionGoogle Scholar
  81. 81.
    Hilario J, Amitani I, Baskin RJ, Kowalczykowski SC (2009) Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc Natl Acad Sci USA 106(2): 361–368CrossRefADSGoogle Scholar
  82. 82.
    Mickelson C, Wiberg JS (1981) Membrane-associated DNase activity controlled by genes 46 and 47 of bacteriophage T4D and elevated DNase activity associated with the T4 das mutation. J Virol 40(1):65–77Google Scholar
  83. 83.
    Cromie GA, Connelly JC, Leach DR (2001) Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell 8(6):1163–1174CrossRefGoogle Scholar
  84. 84.
    Anderson DG, Kowalczykowski SC (1997) The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90(1):77–86CrossRefGoogle Scholar
  85. 85.
    Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423(6937):305–309CrossRefADSGoogle Scholar
  86. 86.
    Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423(6937):309–312CrossRefADSGoogle Scholar
  87. 87.
    Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24(1):180–189CrossRefGoogle Scholar
  88. 88.
    Jongeneel CV, Formosa T, Alberts BM (1984) Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J Biol Chem 259(20):12925–12932Google Scholar
  89. 89.
    Nanduri B, Byrd AK, Eoff RL, Tackett AJ, Raney KD (2002) Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc Natl Acad Sci USA 99(23):14722–14727CrossRefADSGoogle Scholar
  90. 90.
    Raney KD, Benkovic SJ (1995) Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA. J Biol Chem 270(38):22236–22242CrossRefGoogle Scholar
  91. 91.
    Gauss P, Park K, Spencer TE, Hacker KJ (1994) DNA helicase requirements for DNA replication during bacteriophage T4 infection. J Bacteriol 176(6):1667–1672Google Scholar
  92. 92.
    Barry J, Alberts B (1994) A role for two DNA helicases in the replication of T4 bacteriophage DNA. J Biol Chem 269(52):33063–33068Google Scholar
  93. 93.
    Bedinger P, Hochstrasser M, Jongeneel CV, Alberts BM (1983) Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34(1):115–123CrossRefGoogle Scholar
  94. 94.
    Formosa T, Alberts BM (1984) The use of affinity chromatography to study proteins involved in bacteriophage T4 genetic recombination. Cold Spring Harb Symp Quant Biol 49:363–370CrossRefGoogle Scholar
  95. 95.
    Kodadek T, Alberts BM (1987) Stimulation of protein-directed strand exchange by a DNA helicase. Nature 326(6110):312–314CrossRefADSGoogle Scholar
  96. 96.
    Kadyrov FA, Drake JW (2004) UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J Biol Chem 279(34):35735–35740CrossRefGoogle Scholar
  97. 97.
    Solinger JA, Kiianitsa K, Heyer WD (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10(5):1175–1188CrossRefGoogle Scholar
  98. 98.
    van Mameren J, Modesti M, Kanaar R, Wyman C, Peterman EJ, Wuite GJ (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457(7230):745–748CrossRefADSGoogle Scholar
  99. 99.
    Scully R (2000) Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Res 2(5):324–330CrossRefGoogle Scholar
  100. 100.
    Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR (2000) Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev 14(11):1400–1406Google Scholar
  101. 101.
    Formosa T, Alberts BM (1986) DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47(5):793–806CrossRefGoogle Scholar
  102. 102.
    Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453(7194):489–494CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations