Skip to main content

The Solar Diameter and the Astronomical Unit

  • Chapter
  • First Online:
  • 1000 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 361))

Abstract

Since the beginnings of Astronomy, the measurement of the sizes of the different bodies in the Solar System and the distances between them has been a primary challenge. The determination of the Earth – Sun distance was the first step for many of the subsequent works: not in vain is this parameter called the “astronomical unit”. Here we will describe two topics related to this essential parameter: First, the determination of the solar radius, and second, the description of planetary transits across the solar disk. As in the rest of the book, we will concentrate our study on historical documents and visual observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aughton, P. The Transit of Venus: The Brief, Brilliant Life of Jeremiah Horrocks, Father of the British Astronomy. Windrush Press, 2004.

    Google Scholar 

  • Azcárate, T. Eclipse total de Sol del 17 de Abril de 1912. Revista Sociedad Astronómica de España y América, 33, 1914.

    Google Scholar 

  • Badache-Damiani, C. and Rozelot, J. P. Solar apparent radius variability: a new statistical approach to astrolabe multisite observations. Monthly Notices Royal Astronomical Society,, 369:83–88, 2006.

    Article  Google Scholar 

  • Baily, F. Account of Mr. Abraham Sharp’s observations of the transit of Mercury in April 1707, and Flamsteed’s correspondence thereon. Monthly Notices Royal Astronomical Society,, 3:105–107, 1835.

    Google Scholar 

  • Balmforth, N. J., Gough, D. O., and Merryfield, W. J. Structural changes to the Sun through the solar cycle. Monthly Notices Royal Astronomical Society, 278:437–448, 1996.

    Article  Google Scholar 

  • Bartolini, S. I fori gnomonici di Egnazio Dante in Santa Maria Novella. Edizione Polistampa, 2006.

    Google Scholar 

  • Baum, R. and Sheehan, W. In Search of Planet Vulcan: The Ghost in Newton’s Clockwork Universe. Basic Books, 2003.

    Google Scholar 

  • Bliss, C. Observations on the Transit of Venus over the Sun, on the 6th of June 1761. Philosophical Transactions of the Royal Society, 52:173–178, 1762.

    Google Scholar 

  • Bònoli, F. Parmeggiani, G., and Poppi, F. Il Sole nella Chiesa: Cassini e le grandi meridiane come strumenti di indagine scientifica. Giornale di Astronomia, Atti del Convegno Il Sole nella Chiesa: Bologna, 32:1–128, 2006.

    Google Scholar 

  • Bouguer, P. De la mesure des diametres des plus grandes Planétes: description d’un novel instrument qu’on peu nombrer H’eliometre, prope a les déterminer; et observations sur le soleil. Mémoires de l’Academie Royale des Sciences, année 1748, pp. 11–34, 1748.

    Google Scholar 

  • Browne, L. W. B. Halley’s method for calculating the Earth-Sun distance. Archive for History of Exact Sciences, 59:251–266, 2005.

    Article  Google Scholar 

  • Burton, E. The History of Clocks and Watches. London, Little, Brown & Co., 1992.

    Google Scholar 

  • Butler, C. J. Observations of planetary transits made in Ireland in the 18th Century and the development of astronomy in Ireland. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 87–99, 2005.

    Google Scholar 

  • Butrica, A. J. In conjunction with Venus. IEEE Spectrum, 34:31–38, 1997.

    Article  Google Scholar 

  • Chapman, A. Jeremiah Horrocks, the transit of Venus, and the ‘New Astronomy’ in early seventeenth-century England. Quartely Journal of the Royal Astronomical Society, 31:333–357, 1990.

    Google Scholar 

  • Chapman, A. Dividing the Circle: The Development of Critical Angular Measurement in Astronomy 1500-1850. John Wiley and Sons, 2nd. edition, 1996.

    Google Scholar 

  • Cohen, I. B. Benjamin Franklin and the Transit of Mercury in 1753. Proceedings of the American Philosophical Society, 94:222–232, 1950.

    Google Scholar 

  • Cox, A. N. Allen’s Astrophysical Quantities, 4th ed. Publisher: New York: AIP Press; Springer, 2000.

    Google Scholar 

  • Danjon, A. The contribution of the impersonal astrolabe to fundamental astronomy. Monthly Notices Royal Astronomical Society, 118:411–431, 1958.

    Article  Google Scholar 

  • Dearborn, D. S. P. and Blake, J. B. Magnetic fields and the solar constant. Nature, 287:365–368, 1980.

    Article  Google Scholar 

  • Débarbat, S. Venus transits – A French view. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 41–51, 2005.

    Google Scholar 

  • Dèbarbat, S. and Guinot, B. La méthode des hauters égales en astronomie. Gordon and Breach, Paris, 1970.

    Google Scholar 

  • Delisle, J. N. Observations du passage de Mercure sur le disque du Soleil, le 6 Novembre 1756; avec des réflexions qui peuvent servir a perfectionner les calculs de ces passages, et les élements de la theorie de Mercure, deduits des observations. Mémoires Acad. Roy. Sci. Paris, pp. 134–154, 1763.

    Google Scholar 

  • Derham, W. Extracts from Mr. Gascoigne’s and Mr. Crabtrie’s Letters, probing Mr. Gascoigne to Have Been the Inventor of the Telecopic Sights of Mathematical Instruments, and Not the French. Philosophical Transactions, 30:603–610, 1717.

    Google Scholar 

  • Dollond, J. A Letter from Mr. John Dollond to Mr. James Short, F. R. S. concerning an Improvement of Refracting Telescopes. Philosophical Transactions of the Royal Society of London, part I, 48:103–107, 1753.

    Google Scholar 

  • Dollond, J. An explanation of an Instrument for Measuring Small Angles. Philosophical Transactions, 48:551–564, 1754.

    Google Scholar 

  • Dunham, D. W., Sofia, S., Fiala, A. D., Muller, P. M., and Herald, D. Observations of a probable change in the solar radius between 1715 and 1979. Science, 210:1243–1245, 1980.

    Article  Google Scholar 

  • Dunn, S. A Determination of the exact Moments of Time when the Planet Venus was at external and internal contact with the Sun’s Limb in the Transits of June 6, 1761 and June 3,1769. Philosophical Transactions Royal Society London, 60:65–73, 1770.

    Google Scholar 

  • Encke, J. F. Der Venusdurchgang von 1769. Gotha, In der Beckerschen Buchhandlung, 1824.

    Google Scholar 

  • Encke, J. F. Der wahre u. scheinbare Sonnenhalbmesser, nach Herrn Professor Encke’s neuesten Untersuchungen. Astronomische Nachrichten, 3:287–288, 1825.

    Google Scholar 

  • Endal, A. S., Sofia, S., and Twigg, L. W. Changes of solar luminosity and radius following secular perturbations in the convective envelope. Astrophysical Journal, 290:748–757, 1985.

    Article  Google Scholar 

  • Fiala, A. D., Dunham, D. W., and Sofia, S. Variation of the solar diameter from solar eclipse observations, 1715-1991. Solar Physics, 152:97–104, 1994.

    Article  Google Scholar 

  • Forbes, E. G. Tobias Mayer’s Opera Inedita. Mac Millan, London, 1971.

    Google Scholar 

  • Forbes, E. G. The unpublished writings of Tobias Meyer. Vandenhoech and Ruprecht, Göttingen, 1972.

    Google Scholar 

  • Fuhg, A. Über den Sonnendurchmesser. Astronomische Nachrichten, 85:375–376, 1875.

    Article  Google Scholar 

  • Galindo Trejo, J. and Allen, C. Maya observations of 13th century transits of Venus? In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 124–137, 2005.

    Google Scholar 

  • Galle, J. G. Ueber eine bestimmung der sonnen-parallaxe aus correspondirenden beobachtungen des planeten Flora auf mehreren sternwarten der nordlichen und sudlichen halbkugel im october und november 1873. Maruschke & Berendt, Breslau, 1875.

    Google Scholar 

  • Gallet, C. Mercurius sub Sole visus avenione die 7. Novembris 1677. Journal des Scavans, pp. 241–246, 1677.

    Google Scholar 

  • Geyer, E. H. The heliometer principle and some modern applications. Astrophysics and Space Sciences, 110:183–192, 1985.

    Article  Google Scholar 

  • Gill, D. On the solar parallax derived from observations of Mars at Asccension (abstract). Monthly Notices Royal Astronomical Society, 41:317, 1881.

    Article  Google Scholar 

  • Gilliland, R. L. Solar Luminosity Variations – Models of Solar Convection Zone. Nature, 286:838–839, 1980.

    Article  Google Scholar 

  • Gilliland, R. L. Solar radius variations over the past 265 years. Astrophysical Journal, 248:1144–1155, 1981.

    Article  Google Scholar 

  • Goldstein, B. R. Some Medieval Reports of Venus and Mercury Transits. Centaurus, 14:49–59, 1969.

    Article  Google Scholar 

  • Goldstein, B. R. Astronomy of Levi Ben Gerson. Studies in the History of Mathematics and Physical Science, Vol. 11, Springer, 1985.

    Book  Google Scholar 

  • Gough, D. On the seat of the solar cycle. In S. Sofia (ed.), Variations on the Solar Constant, pp. 185–206, 1981.

    Google Scholar 

  • Gough, D. Solar physics: Sizing up the Sun. Nature, 410:313–314, 2001.

    Article  Google Scholar 

  • Green, R. M. Spherical Astronomy. Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  • Hamilton, J. A. Extract from a letetr from Rev. James August Hamilton giving an account of his observation of the transit of Mercury over the Sun, of Nov. 12, 1782, observed of Cook’s Town, near Dungannon, in Ireland. Philosophical Transactions Royal Society London, 73:453–455, 1783.

    Google Scholar 

  • Harkness, W. Erratum [On the masses of Mercury, Venus and the earth, and on the solar parallax]. Astronomical Journal, 9:31–31, 1889a.

    Article  Google Scholar 

  • Harkness, W. On the masses of Mercury, Venus and the earth, and on the solar parallax. Astronomical Journal, 9:9–15, 1889b.

    Article  Google Scholar 

  • Heath, T. L. Aristarchus of Samos, the Ancient Copernichus. Dover Publications, 1981.

    Google Scholar 

  • Heilbron, J. L. The Sun in the Church. Harvard University Press, 1999.

    Google Scholar 

  • Herald, D. Correcting predictions of solar eclipse contact times for the effects of lunar limb irregularities. Journal of the British Astronomical Association, 93:241–246, 1983.

    Google Scholar 

  • Herschel, W. Observations of the transit of Mercury over the disk of the Sun; to which is added an investigation of the causes which often prevent the proper action of mirrors. Philosophical Transactions Royal Society London, 93:214–232, 1803.

    Google Scholar 

  • Hilfiker, J. Über die bestimmung der constante der sonnenparallaxe mit besonderer berucksichtigung der oppositionsbeobachtungen. Bern, Buchdruckerei B. F. Haller, 1878.

    Google Scholar 

  • Hinks, A. R. Reduction of 295 Photographs of Eros made at Nine Observatories during the period 1900 November 7–15, with a determination of the Solar Parallax. Monthly Notices Royal Astronomical Society, 64:701, 1904.

    Article  Google Scholar 

  • Hooke, R. A description of an Instrument for Dividing a Foot into many thousand parts, and thereby measuring the Diameters of the Planets to great exactness. Philosophical Transactions, 29:541–544, 1667.

    Google Scholar 

  • Hornsby, T. A Discourse on the Parallax of the Sun. Philosophical Transactions Series I, 53:467–495, 1763.

    Google Scholar 

  • Hornsby, T. An Account of the Observations of the Transit of Venus and of the Eclipse of the Sun, Made at Shirburn Castle and at Oxford. By the Reverend Thomas Hornsby, M. A. F. R. S. and Savilian Professor of Astronomy in the University of Oxford. Philosophical Transactions Series I, 59:172–182, 1769.

    Google Scholar 

  • Hornsby, T. The Quantity of the Sun’s Parallax, as Deduced from the Observations of the Transit of Venus, on June 3, 1769. Philosophical Transactions Series I, 61:574–579, 1771.

    Google Scholar 

  • Hughes, D. W. Why did other European astronomers not see the December 1639 transit of Venus? In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 146–153, 2005.

    Google Scholar 

  • Humbert, P. L’oeuvre astronomique de Gassendi. Paris, 1936.

    Google Scholar 

  • Johnson, S. J. On a probable Assyrian transit of Venus. Monthly Notices Royal Astronomical Society, 43:41–42, 1882.

    Article  Google Scholar 

  • Kollerstrom, N. William Crabtree’s Venus transit observation. In D. W. Kurtz, editor, IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 34–40, April 2005.

    Google Scholar 

  • Kovalevsky, J. Modern Astrometry, 2nd edition, Springer, 2002.

    Google Scholar 

  • Kubo, Y. Position and radius of the Sun determined by solar eclipses in combination with lunar occultations. Publications Astronomical Society of Japan, 45:819–829, 1993.

    Google Scholar 

  • Kurtz, D. W. (ed.). IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy. Cambridge University Press, 2005.

    Google Scholar 

  • Laclare, F., Delmas, C., Coin, J. P., and Irbah, A. Measurements and variations of the solar diameter. Solar Physics, 166:211–229, 1996.

    Article  Google Scholar 

  • Lalande, J. J. L’ Astronomie. 2nd. ed. Editions Desaimp, Paris, 1771.

    Google Scholar 

  • Lefebvre, S. and Rozelot, J.-P. The PICARD space mission: Ground-space synergy. In Societe Francaise d’Astronomie et d’Astrophysique, editor, SF2A-2001: Semaine de l’Astrophysique Francaise, pp. 61–62, 2001.

    Google Scholar 

  • Licchelli, D. The transit of Venus and the Black Drop Effect . Memorie della Societa Astronomica Italiana Supplement, 6:17–21, 2005.

    Google Scholar 

  • Lisicki, A. Johannes Hevelius as an observer. In Glebocki & Zbierski (eds.). phOn the 300th phAnniversary of the Death of Johannes Hevelius, The Polish Academy of Science, pp. 23–42, 1992.

    Google Scholar 

  • Maeyama, Y. Ancient Stellar Observations: Timocharis, Aristyllus, Hipparcus, Ptolomy – the Dates and Accuracies. Centaurus, 27:280–310, 1984.

    Article  Google Scholar 

  • Mancha, J. L. Egidius of Baisiu’s theory of pinhole images. Archive for History of Exact Sciences, 40:1–35, 1989.

    Article  Google Scholar 

  • Mancha, J. L. Astronomical Use of Pinhole Images in William of Saint Cloud’s Alamanach Planetarum. Archive for History of Exact Sciences, 43:275–298, 1993.

    Article  Google Scholar 

  • Mancinelli, F. and Casanovas, J. La Torre dei Venti in Vaticano. Libreria Editrice Vaticana, 1980.

    Google Scholar 

  • Maor, E. Venus in Transit. Princeton University Press, 2004.

    Google Scholar 

  • Marov, M. Y. Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 209–219, 2005.

    Google Scholar 

  • Maunder, M. Transit: When Planets Cross the Sun. Practical Astronomy Series, Springer, 2000.

    Google Scholar 

  • McConnell, A. and Brech, A. Natahaniel and Edward Pigott, Itinerant Astronomers. Notes and Records of the Royal Society London, 53:305–318, 1999.

    Article  Google Scholar 

  • Meeus, J. Transits. Willmann-Bell Inc, Richmond, 1989.

    Google Scholar 

  • Meeus, J. phAstronomical Tables of the Sun, Moon and Planets. Willmann-Bell Inc., Richmond, p. 450, 1995.

    Google Scholar 

  • Messier, C. Observation du passage de Mercure sur le disque du soleil. Memoires Academie Royale des Sciences, 1782:652–657, 1782.

    Google Scholar 

  • Mignard, F. The Solar Parallax with the Transit of Venus. Observatoire de la Cote d’Azur, 2004.

    Google Scholar 

  • Mouton, G. Observationes Diametrorum Solis et Lunae apparentium. Lyon, 1670.

    Google Scholar 

  • Neugebauer, O. A History of Ancient Mathematical Astronomy. Part 1; Part 2; Part 3. Studies in the History of Mathematics and Physical Sciences, Berlin; Springer, 1975.

    Google Scholar 

  • Newcomb, S. Discussion of Observations of the Transits of Venus in 1761 and 1769, Astronomical Papers prepared for the use of the Americal Ephemeris and Nautical Almanac. U. S. Government Printing Office, part V, 259; Washington, 1890.

    Google Scholar 

  • O’dell, C. R. and Van Helden, A. How accurate were seventeenth-century measurements of solar diameter? Nature, 330:629–631, 1987.

    Article  Google Scholar 

  • Pap, J., Rozelot, J. P., Godier, S., and Varadi, F. On the relation between total irradiance and radius variations. phAstronomy and Astrophysics, 372, 2001.

    Google Scholar 

  • Parkinson, J. H., Morrison, L. V., and Stephenson, F. R. The constancy of the solar diameter over the past 250 years. Nature, 288:548–551, 1980.

    Article  Google Scholar 

  • Pasachoff, J. M., Schneider, G., and Golub, L. The black-drop effect explained. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 242–253, 2005.

    Google Scholar 

  • Piñera Ramìrez, D. Sondeo historiografico sobre Astronomia en Baja California. In M. A. Moreno Corral (ed.), Historia de la Astronomía en Mexico, UNAM, pp. 193–214, 1982.

    Google Scholar 

  • Pigatto, L. The 1761 transit of Venus dispute between Audiffredi and Pingré. In D. W. Kurtz, editor, IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 74–86, 2005.

    Google Scholar 

  • Proctor, R. A. Transits of Venus. Longmans, Green and Co., 1882.

    Google Scholar 

  • Ribes, E., Beardsley, B., Brown, T. M., Delache, P., Laclare, F., Kuhn, J. R., and Leister, N. V. The variability of the solar diameter. In C. P. Sonnett, M. S. Giampapa, and M. S. Matthews (eds.), The Sun in Time, pp. 59–97, 1991.

    Google Scholar 

  • Ribes, E., Merlin, P., Ribes, J.-C., and Barthalot, R. Absolute periodicities in the solar diameter, derived from historical and modern data. Annales Geophysicae, 7:321–329, 1989.

    Google Scholar 

  • Ribes, J. C., and Nesme-Ribes, E. The solar sunspot cycle in the Maunder minimum AD1645 to AD1715, phAstronomy and Astrophysics, 276:549–563, 1993.

    Google Scholar 

  • Ribes, E., Ribes, J. C., and Barthalot, R. Evidence for a larger sun with a slower rotation during the seventeenth century. Nature, 326:52–55, 1987.

    Article  Google Scholar 

  • Robinson, H. W. Jeremiah Dixon (1733–1779): A Biographical Note. Proceedings of the American Philosophical Society, 94:272–274, 1950.

    Google Scholar 

  • Rosa, P. Studii intorno al diametri solari. Roma, A. Befani., 1873.

    Google Scholar 

  • Rozelot, J. P. Possible links between the solar radius variations and the Earth’s climate evolution over the past four centuries. Journal of Atmospheric and Terrestrial Physics, 63:375–386, 2001.

    Article  Google Scholar 

  • Rumovski, M. Observations of the Transit of Mercury at St. Petersburg. In a Letter from M. Rumovski, Astronomer in the Imperial Academy, to Mr. J. H. de Magellan, F. R. S. Philosophical Transactions Series I, 77:48–49, 1787.

    Google Scholar 

  • Savery, S. A New Way of Measuring the Difference between the Apparent Diameter of the Sun at the Times of the Earth’s Perihelion and Aphelion, with a Micrometer placed in a Telescope Invented for that purpose. Philosophical Transactions, 48:167–178, 1754.

    Google Scholar 

  • Schneider, G., Pasachoff, J. M., and Golub, L. TRACE observations of the 15 November 1999 transit of Mercury and the Black Drop effect: Considerations for the 2004 transit of Venus. Icarus, 168:249–256, 2004.

    Article  Google Scholar 

  • Sellers, D. The Transit of Venus: The Quest to Find the Distance of the Sun. MagaVelda Press, 2001.

    Google Scholar 

  • Shapiro, I. I. Is the sun shrinking. Science, 208:51–53, 1980.

    Article  Google Scholar 

  • Sheenan, W. The Transits of Venus. Prometheus Books, 2004.

    Google Scholar 

  • Sigismondi, C. and Fraschetti, F. Measurements of the solar diameter in Kepler’s time. The Observatory, 121:380–385, 2001.

    Google Scholar 

  • Smart, W. M. Textbook on Spherical Astronomy, sixth edition. Cambridge University Press, 1977.

    Google Scholar 

  • Sofia, S., Basu, S., Demarque, P., Li, L., and Thuillier, G. The Nonhomologous Nature of Solar Diameter Variations. Astrophysical Journal, 632:L147–L150, 2005.

    Article  Google Scholar 

  • Spencer Jones, H. Eros, On the suitability of, for the accurate determination of the solar parallax. Monthly Notices Royal Astronomical Society, 100:422–434, 1940.

    Article  Google Scholar 

  • Spiegel, E. A. and Weiss, N. O. Magnetic activity and variations in solar luminosity. Nature, 287:616–617, 1980.

    Article  Google Scholar 

  • Spruit, H. C. Theory of luminosity and radius variations. In C. P. Sonett, M. S. Giampapa, and M. S. Matthews (eds.), The Sun in Time, pp. 118–158, 1991.

    Google Scholar 

  • Stephenson, F. R. Historical Evidence concerning the Sun: Interpretation of Sunspot Records during the Telescopic and Pretelescopic Eras. Royal Society of London Philosophical Transactions Series A, 330:499–512, 1990.

    Article  Google Scholar 

  • Stephenson, F. R., Jones, J. E., and Morrison, L. V. The solar eclipse observed by Clavius in A.D. 1567. Astronomy and Astrophysics, 322:347–351, 1997.

    Google Scholar 

  • Sterken, C. Astronomical heritages: Astronomical archives and Historic transits of Venus. Vrije Universiteit Brussel, 2005.

    Google Scholar 

  • Sveshnikov, M. L. Solar-radius variations from transits of mercury across the solar disk. Astronomy Letters, 28:115–120, 2002.

    Article  Google Scholar 

  • Taft, L. G. Computational Spherical Astronomy. Kriger Pub. Co., 1991.

    Google Scholar 

  • Thomas, J. H. Variations of the sun’s radius and temperature due to magnetic buoyancy. Nature, 280:662–663, 1979.

    Article  Google Scholar 

  • Toulmonde, M. The diameter of the Sun over the past three centuries. Astronomy and Astrophysics, 325:1174–1178, 1997.

    Google Scholar 

  • Van Biesbroeck, G. Mercury, transit of, 1707. Monthly Notices Royal Astronomical Society, 73:34–36, 1912.

    Article  Google Scholar 

  • Van Brummelen, G. The Mathematics of the Heavens and the Earth: The Early History of Trigonometry. Princeton University Press, 2009.

    Google Scholar 

  • Van Helden, A. The importance of the transit of Mercury of 1631. Journal for the History of Astronomy, 7:1–9, 1976.

    Article  Google Scholar 

  • Van Helden, A. Measuring the Universe. University of Chicago Press, 1985.

    Google Scholar 

  • Vaquero, J. M., Gallego, M. C., and Trigo, R. M. Sunspot numbers during 1736–1739 revisited. Advances in Space Research, 40:1895–1903, 2007.

    Article  Google Scholar 

  • Volkoff, I. J. Hevelius and his Catalog of Stars. Brigham Young University Press, 1971.

    Google Scholar 

  • Wales, W. and Dymond, J. Astronomical observations made by order of the Royal Society, at Prince of Wales’s Fort, on the North-West Coast of Hudson’s Bay. Philosophical Transactions Series I, 59:467–488, 1769.

    Google Scholar 

  • Watts, C. B. The Marginal Zone of the Moon. Washington, US Government Printing Service, 1963.

    Google Scholar 

  • Waugh, A. E. Sundials: Their Theory and Construction. Dover, 1973.

    Google Scholar 

  • Whatton, A. B. Memoir of the Life and Labours of Jeremiah Horrocks, To Which Is Appended A Translation of His Celebrated Discourse The Transit of Venus across the Sun, London, 1859.

    Google Scholar 

  • Winthrop, J. A Letter from Mr. John Winthrop to C. Mortimer, M. ’D. Sec. R. S. concerning the Transit of Mercury Over the Sun, April 21. 1740. and of an Eclipse of the Moon, Dec. 21. 1740. Philosophical Transactions Series I, 42:572–578, 1742.

    Google Scholar 

  • Wittmann, A. Numerical simulation of the Mercury transit black drop phenomenon. Astronomy and Astrophysics, 31:239–243, 1974.

    Google Scholar 

  • Wittmann, A. Tobias Mayer’s observations of the sun – Evidence against a secular decrease of the solar diameter. Solar Physics, 66:223–231, 1980.

    Article  Google Scholar 

  • Wittmann, A. D. The solar diameter derived from Tobias Mayer’s observations 1756-1761. Acta Historica Astronomiae, 3:49–51, 1998.

    Google Scholar 

  • Wittmann, A. D. and Debarbat, S. The solar diameter and its variability. Sterne und Weltraum, 29:420–426, 1990.

    Google Scholar 

  • Wittmann, A. D. and Neckel, H. On the Relation between the Sun’s (Geocentric) Angular Diameter and the Observed (Topocentric) ‘Drift Time’. Solar Physics, 163:1–5, 1996.

    Article  Google Scholar 

  • Wlodarczyk, J. Solar eclipse observations in the time of Copernicus: tradition or novelty? Journal for the History of Astronomy, 38:351–364, 2007.

    Article  Google Scholar 

  • Woolf, H. The Transits of Venus: A Study in Eighteen-Century Science. Princeton University Press, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Vaquero .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaquero, J., Vázquez, M. (2009). The Solar Diameter and the Astronomical Unit. In: The Sun Recorded Through History. Astrophysics and Space Science Library, vol 361. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92790-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92790-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92789-3

  • Online ISBN: 978-0-387-92790-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics