The Solar Diameter and the Astronomical Unit

  • J.M. Vaquero
Part of the Astrophysics and Space Science Library book series (ASSL, volume 361)

Since the beginnings of Astronomy, the measurement of the sizes of the different bodies in the Solar System and the distances between them has been a primary challenge. The determination of the Earth – Sun distance was the first step for many of the subsequent works: not in vain is this parameter called the “astronomical unit”. Here we will describe two topics related to this essential parameter: First, the determination of the solar radius, and second, the description of planetary transits across the solar disk. As in the rest of the book, we will concentrate our study on historical documents and visual observations.


Solar System Solar Disk Solar Eclipse Solar Radius Maunder Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aughton, P. The Transit of Venus: The Brief, Brilliant Life of Jeremiah Horrocks, Father of the British Astronomy. Windrush Press, 2004.Google Scholar
  2. Azcárate, T. Eclipse total de Sol del 17 de Abril de 1912. Revista Sociedad Astronómica de España y América, 33, 1914.Google Scholar
  3. Badache-Damiani, C. and Rozelot, J. P. Solar apparent radius variability: a new statistical approach to astrolabe multisite observations. Monthly Notices Royal Astronomical Society,, 369:83–88, 2006.CrossRefADSGoogle Scholar
  4. Baily, F. Account of Mr. Abraham Sharp’s observations of the transit of Mercury in April 1707, and Flamsteed’s correspondence thereon. Monthly Notices Royal Astronomical Society,, 3:105–107, 1835.Google Scholar
  5. Balmforth, N. J., Gough, D. O., and Merryfield, W. J. Structural changes to the Sun through the solar cycle. Monthly Notices Royal Astronomical Society, 278:437–448, 1996.ADSGoogle Scholar
  6. Bartolini, S. I fori gnomonici di Egnazio Dante in Santa Maria Novella. Edizione Polistampa, 2006.Google Scholar
  7. Baum, R. and Sheehan, W. In Search of Planet Vulcan: The Ghost in Newton’s Clockwork Universe. Basic Books, 2003.Google Scholar
  8. Bliss, C. Observations on the Transit of Venus over the Sun, on the 6th of June 1761. Philosophical Transactions of the Royal Society, 52:173–178, 1762.Google Scholar
  9. Bònoli, F. Parmeggiani, G., and Poppi, F. Il Sole nella Chiesa: Cassini e le grandi meridiane come strumenti di indagine scientifica. Giornale di Astronomia, Atti del Convegno Il Sole nella Chiesa: Bologna, 32:1–128, 2006.Google Scholar
  10. Bouguer, P. De la mesure des diametres des plus grandes Planétes: description d’un novel instrument qu’on peu nombrer H’eliometre, prope a les déterminer; et observations sur le soleil. Mémoires de l’Academie Royale des Sciences, année 1748, pp. 11–34, 1748.Google Scholar
  11. Browne, L. W. B. Halley’s method for calculating the Earth-Sun distance. Archive for History of Exact Sciences, 59:251–266, 2005.MATHCrossRefADSMathSciNetGoogle Scholar
  12. Burton, E. The History of Clocks and Watches. London, Little, Brown & Co., 1992.Google Scholar
  13. Butler, C. J. Observations of planetary transits made in Ireland in the 18th Century and the development of astronomy in Ireland. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 87–99, 2005.Google Scholar
  14. Butrica, A. J. In conjunction with Venus. IEEE Spectrum, 34:31–38, 1997.CrossRefADSGoogle Scholar
  15. Chapman, A. Jeremiah Horrocks, the transit of Venus, and the ‘New Astronomy’ in early seventeenth-century England. Quartely Journal of the Royal Astronomical Society, 31:333–357, 1990.ADSGoogle Scholar
  16. Chapman, A. Dividing the Circle: The Development of Critical Angular Measurement in Astronomy 1500-1850. John Wiley and Sons, 2nd. edition, 1996.Google Scholar
  17. Cohen, I. B. Benjamin Franklin and the Transit of Mercury in 1753. Proceedings of the American Philosophical Society, 94:222–232, 1950.Google Scholar
  18. Cox, A. N. Allen’s Astrophysical Quantities, 4th ed. Publisher: New York: AIP Press; Springer, 2000.Google Scholar
  19. Danjon, A. The contribution of the impersonal astrolabe to fundamental astronomy. Monthly Notices Royal Astronomical Society, 118:411–431, 1958.ADSGoogle Scholar
  20. Dearborn, D. S. P. and Blake, J. B. Magnetic fields and the solar constant. Nature, 287:365–368, 1980.CrossRefADSGoogle Scholar
  21. Débarbat, S. Venus transits – A French view. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 41–51, 2005.Google Scholar
  22. Dèbarbat, S. and Guinot, B. La méthode des hauters égales en astronomie. Gordon and Breach, Paris, 1970.Google Scholar
  23. Delisle, J. N. Observations du passage de Mercure sur le disque du Soleil, le 6 Novembre 1756; avec des réflexions qui peuvent servir a perfectionner les calculs de ces passages, et les élements de la theorie de Mercure, deduits des observations. Mémoires Acad. Roy. Sci. Paris, pp. 134–154, 1763.Google Scholar
  24. Derham, W. Extracts from Mr. Gascoigne’s and Mr. Crabtrie’s Letters, probing Mr. Gascoigne to Have Been the Inventor of the Telecopic Sights of Mathematical Instruments, and Not the French. Philosophical Transactions, 30:603–610, 1717.Google Scholar
  25. Dollond, J. A Letter from Mr. John Dollond to Mr. James Short, F. R. S. concerning an Improvement of Refracting Telescopes. Philosophical Transactions of the Royal Society of London, part I, 48:103–107, 1753.Google Scholar
  26. Dollond, J. An explanation of an Instrument for Measuring Small Angles. Philosophical Transactions, 48:551–564, 1754.Google Scholar
  27. Dunham, D. W., Sofia, S., Fiala, A. D., Muller, P. M., and Herald, D. Observations of a probable change in the solar radius between 1715 and 1979. Science, 210:1243–1245, 1980.CrossRefADSGoogle Scholar
  28. Dunn, S. A Determination of the exact Moments of Time when the Planet Venus was at external and internal contact with the Sun’s Limb in the Transits of June 6, 1761 and June 3,1769. Philosophical Transactions Royal Society London, 60:65–73, 1770.Google Scholar
  29. Encke, J. F. Der Venusdurchgang von 1769. Gotha, In der Beckerschen Buchhandlung, 1824.Google Scholar
  30. Encke, J. F. Der wahre u. scheinbare Sonnenhalbmesser, nach Herrn Professor Encke’s neuesten Untersuchungen. Astronomische Nachrichten, 3:287–288, 1825.Google Scholar
  31. Endal, A. S., Sofia, S., and Twigg, L. W. Changes of solar luminosity and radius following secular perturbations in the convective envelope. Astrophysical Journal, 290:748–757, 1985.CrossRefADSGoogle Scholar
  32. Fiala, A. D., Dunham, D. W., and Sofia, S. Variation of the solar diameter from solar eclipse observations, 1715-1991. Solar Physics, 152:97–104, 1994.CrossRefADSGoogle Scholar
  33. Forbes, E. G. Tobias Mayer’s Opera Inedita. Mac Millan, London, 1971.MATHGoogle Scholar
  34. Forbes, E. G. The unpublished writings of Tobias Meyer. Vandenhoech and Ruprecht, Göttingen, 1972.Google Scholar
  35. Fuhg, A. Über den Sonnendurchmesser. Astronomische Nachrichten, 85:375–376, 1875.CrossRefADSGoogle Scholar
  36. Galindo Trejo, J. and Allen, C. Maya observations of 13th century transits of Venus? In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 124–137, 2005.Google Scholar
  37. Galle, J. G. Ueber eine bestimmung der sonnen-parallaxe aus correspondirenden beobachtungen des planeten Flora auf mehreren sternwarten der nordlichen und sudlichen halbkugel im october und november 1873. Maruschke & Berendt, Breslau, 1875.Google Scholar
  38. Gallet, C. Mercurius sub Sole visus avenione die 7. Novembris 1677. Journal des Scavans, pp. 241–246, 1677.Google Scholar
  39. Geyer, E. H. The heliometer principle and some modern applications. Astrophysics and Space Sciences, 110:183–192, 1985.CrossRefADSGoogle Scholar
  40. Gill, D. On the solar parallax derived from observations of Mars at Asccension (abstract). Monthly Notices Royal Astronomical Society, 41:317, 1881.ADSGoogle Scholar
  41. Gilliland, R. L. Solar Luminosity Variations – Models of Solar Convection Zone. Nature, 286:838–839, 1980.CrossRefADSGoogle Scholar
  42. Gilliland, R. L. Solar radius variations over the past 265 years. Astrophysical Journal, 248:1144–1155, 1981.CrossRefADSGoogle Scholar
  43. Goldstein, B. R. Some Medieval Reports of Venus and Mercury Transits. Centaurus, 14:49–59, 1969.MATHCrossRefADSMathSciNetGoogle Scholar
  44. Goldstein, B. R. Astronomy of Levi Ben Gerson. Studies in the History of Mathematics and Physical Science, Vol. 11, Springer, 1985.MATHGoogle Scholar
  45. Gough, D. On the seat of the solar cycle. In S. Sofia (ed.), Variations on the Solar Constant, pp. 185–206, 1981.Google Scholar
  46. Gough, D. Solar physics: Sizing up the Sun. Nature, 410:313–314, 2001.CrossRefADSGoogle Scholar
  47. Green, R. M. Spherical Astronomy. Cambridge University Press, Cambridge, 1985.Google Scholar
  48. Hamilton, J. A. Extract from a letetr from Rev. James August Hamilton giving an account of his observation of the transit of Mercury over the Sun, of Nov. 12, 1782, observed of Cook’s Town, near Dungannon, in Ireland. Philosophical Transactions Royal Society London, 73:453–455, 1783.Google Scholar
  49. Harkness, W. Erratum [On the masses of Mercury, Venus and the earth, and on the solar parallax]. Astronomical Journal, 9:31–31, 1889a.CrossRefADSGoogle Scholar
  50. Harkness, W. On the masses of Mercury, Venus and the earth, and on the solar parallax. Astronomical Journal, 9:9–15, 1889b.CrossRefADSGoogle Scholar
  51. Heath, T. L. Aristarchus of Samos, the Ancient Copernichus. Dover Publications, 1981.Google Scholar
  52. Heilbron, J. L. The Sun in the Church. Harvard University Press, 1999.Google Scholar
  53. Herald, D. Correcting predictions of solar eclipse contact times for the effects of lunar limb irregularities. Journal of the British Astronomical Association, 93:241–246, 1983.ADSGoogle Scholar
  54. Herschel, W. Observations of the transit of Mercury over the disk of the Sun; to which is added an investigation of the causes which often prevent the proper action of mirrors. Philosophical Transactions Royal Society London, 93:214–232, 1803.Google Scholar
  55. Hilfiker, J. Über die bestimmung der constante der sonnenparallaxe mit besonderer berucksichtigung der oppositionsbeobachtungen. Bern, Buchdruckerei B. F. Haller, 1878.Google Scholar
  56. Hinks, A. R. Reduction of 295 Photographs of Eros made at Nine Observatories during the period 1900 November 7–15, with a determination of the Solar Parallax. Monthly Notices Royal Astronomical Society, 64:701, 1904.ADSGoogle Scholar
  57. Hooke, R. A description of an Instrument for Dividing a Foot into many thousand parts, and thereby measuring the Diameters of the Planets to great exactness. Philosophical Transactions, 29:541–544, 1667.Google Scholar
  58. Hornsby, T. A Discourse on the Parallax of the Sun. Philosophical Transactions Series I, 53:467–495, 1763.Google Scholar
  59. Hornsby, T. An Account of the Observations of the Transit of Venus and of the Eclipse of the Sun, Made at Shirburn Castle and at Oxford. By the Reverend Thomas Hornsby, M. A. F. R. S. and Savilian Professor of Astronomy in the University of Oxford. Philosophical Transactions Series I, 59:172–182, 1769.Google Scholar
  60. Hornsby, T. The Quantity of the Sun’s Parallax, as Deduced from the Observations of the Transit of Venus, on June 3, 1769. Philosophical Transactions Series I, 61:574–579, 1771.Google Scholar
  61. Hughes, D. W. Why did other European astronomers not see the December 1639 transit of Venus? In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 146–153, 2005.Google Scholar
  62. Humbert, P. L’oeuvre astronomique de Gassendi. Paris, 1936.Google Scholar
  63. Johnson, S. J. On a probable Assyrian transit of Venus. Monthly Notices Royal Astronomical Society, 43:41–42, 1882.ADSGoogle Scholar
  64. Kollerstrom, N. William Crabtree’s Venus transit observation. In D. W. Kurtz, editor, IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 34–40, April 2005.Google Scholar
  65. Kovalevsky, J. Modern Astrometry, 2nd edition, Springer, 2002.Google Scholar
  66. Kubo, Y. Position and radius of the Sun determined by solar eclipses in combination with lunar occultations. Publications Astronomical Society of Japan, 45:819–829, 1993.ADSGoogle Scholar
  67. Kurtz, D. W. (ed.). IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy. Cambridge University Press, 2005.Google Scholar
  68. Laclare, F., Delmas, C., Coin, J. P., and Irbah, A. Measurements and variations of the solar diameter. Solar Physics, 166:211–229, 1996.CrossRefADSGoogle Scholar
  69. Lalande, J. J. L’ Astronomie. 2nd. ed. Editions Desaimp, Paris, 1771.Google Scholar
  70. Lefebvre, S. and Rozelot, J.-P. The PICARD space mission: Ground-space synergy. In Societe Francaise d’Astronomie et d’Astrophysique, editor, SF2A-2001: Semaine de l’Astrophysique Francaise, pp. 61–62, 2001.Google Scholar
  71. Licchelli, D. The transit of Venus and the Black Drop Effect . Memorie della Societa Astronomica Italiana Supplement, 6:17–21, 2005.ADSGoogle Scholar
  72. Lisicki, A. Johannes Hevelius as an observer. In Glebocki & Zbierski (eds.). phOn the 300th phAnniversary of the Death of Johannes Hevelius, The Polish Academy of Science, pp. 23–42, 1992.Google Scholar
  73. Maeyama, Y. Ancient Stellar Observations: Timocharis, Aristyllus, Hipparcus, Ptolomy – the Dates and Accuracies. Centaurus, 27:280–310, 1984.MATHCrossRefADSMathSciNetGoogle Scholar
  74. Mancha, J. L. Egidius of Baisiu’s theory of pinhole images. Archive for History of Exact Sciences, 40:1–35, 1989.MATHCrossRefMathSciNetGoogle Scholar
  75. Mancha, J. L. Astronomical Use of Pinhole Images in William of Saint Cloud’s Alamanach Planetarum. Archive for History of Exact Sciences, 43:275–298, 1993.CrossRefADSMathSciNetGoogle Scholar
  76. Mancinelli, F. and Casanovas, J. La Torre dei Venti in Vaticano. Libreria Editrice Vaticana, 1980.Google Scholar
  77. Maor, E. Venus in Transit. Princeton University Press, 2004.Google Scholar
  78. Marov, M. Y. Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 209–219, 2005.Google Scholar
  79. Maunder, M. Transit: When Planets Cross the Sun. Practical Astronomy Series, Springer, 2000.Google Scholar
  80. McConnell, A. and Brech, A. Natahaniel and Edward Pigott, Itinerant Astronomers. Notes and Records of the Royal Society London, 53:305–318, 1999.CrossRefGoogle Scholar
  81. Meeus, J. Transits. Willmann-Bell Inc, Richmond, 1989.Google Scholar
  82. Meeus, J. phAstronomical Tables of the Sun, Moon and Planets. Willmann-Bell Inc., Richmond, p. 450, 1995.Google Scholar
  83. Messier, C. Observation du passage de Mercure sur le disque du soleil. Memoires Academie Royale des Sciences, 1782:652–657, 1782.Google Scholar
  84. Mignard, F. The Solar Parallax with the Transit of Venus. Observatoire de la Cote d’Azur, 2004.Google Scholar
  85. Mouton, G. Observationes Diametrorum Solis et Lunae apparentium. Lyon, 1670.Google Scholar
  86. Neugebauer, O. A History of Ancient Mathematical Astronomy. Part 1; Part 2; Part 3. Studies in the History of Mathematics and Physical Sciences, Berlin; Springer, 1975.Google Scholar
  87. Newcomb, S. Discussion of Observations of the Transits of Venus in 1761 and 1769, Astronomical Papers prepared for the use of the Americal Ephemeris and Nautical Almanac. U. S. Government Printing Office, part V, 259; Washington, 1890.Google Scholar
  88. O’dell, C. R. and Van Helden, A. How accurate were seventeenth-century measurements of solar diameter? Nature, 330:629–631, 1987.CrossRefADSGoogle Scholar
  89. Pap, J., Rozelot, J. P., Godier, S., and Varadi, F. On the relation between total irradiance and radius variations. phAstronomy and Astrophysics, 372, 2001.Google Scholar
  90. Parkinson, J. H., Morrison, L. V., and Stephenson, F. R. The constancy of the solar diameter over the past 250 years. Nature, 288:548–551, 1980.CrossRefADSGoogle Scholar
  91. Pasachoff, J. M., Schneider, G., and Golub, L. The black-drop effect explained. In D. W. Kurtz (ed.), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 242–253, 2005.Google Scholar
  92. Piñera Ramìrez, D. Sondeo historiografico sobre Astronomia en Baja California. In M. A. Moreno Corral (ed.), Historia de la Astronomía en Mexico, UNAM, pp. 193–214, 1982.Google Scholar
  93. Pigatto, L. The 1761 transit of Venus dispute between Audiffredi and Pingré. In D. W. Kurtz, editor, IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy, pp. 74–86, 2005.Google Scholar
  94. Proctor, R. A. Transits of Venus. Longmans, Green and Co., 1882.Google Scholar
  95. Ribes, E., Beardsley, B., Brown, T. M., Delache, P., Laclare, F., Kuhn, J. R., and Leister, N. V. The variability of the solar diameter. In C. P. Sonnett, M. S. Giampapa, and M. S. Matthews (eds.), The Sun in Time, pp. 59–97, 1991.Google Scholar
  96. Ribes, E., Merlin, P., Ribes, J.-C., and Barthalot, R. Absolute periodicities in the solar diameter, derived from historical and modern data. Annales Geophysicae, 7:321–329, 1989.ADSGoogle Scholar
  97. Ribes, J. C., and Nesme-Ribes, E. The solar sunspot cycle in the Maunder minimum AD1645 to AD1715, phAstronomy and Astrophysics, 276:549–563, 1993.ADSGoogle Scholar
  98. Ribes, E., Ribes, J. C., and Barthalot, R. Evidence for a larger sun with a slower rotation during the seventeenth century. Nature, 326:52–55, 1987.CrossRefADSGoogle Scholar
  99. Robinson, H. W. Jeremiah Dixon (1733–1779): A Biographical Note. Proceedings of the American Philosophical Society, 94:272–274, 1950.Google Scholar
  100. Rosa, P. Studii intorno al diametri solari. Roma, A. Befani., 1873.Google Scholar
  101. Rozelot, J. P. Possible links between the solar radius variations and the Earth’s climate evolution over the past four centuries. Journal of Atmospheric and Terrestrial Physics, 63:375–386, 2001.CrossRefADSGoogle Scholar
  102. Rumovski, M. Observations of the Transit of Mercury at St. Petersburg. In a Letter from M. Rumovski, Astronomer in the Imperial Academy, to Mr. J. H. de Magellan, F. R. S. Philosophical Transactions Series I, 77:48–49, 1787.Google Scholar
  103. Savery, S. A New Way of Measuring the Difference between the Apparent Diameter of the Sun at the Times of the Earth’s Perihelion and Aphelion, with a Micrometer placed in a Telescope Invented for that purpose. Philosophical Transactions, 48:167–178, 1754.Google Scholar
  104. Schneider, G., Pasachoff, J. M., and Golub, L. TRACE observations of the 15 November 1999 transit of Mercury and the Black Drop effect: Considerations for the 2004 transit of Venus. Icarus, 168:249–256, 2004.CrossRefADSGoogle Scholar
  105. Sellers, D. The Transit of Venus: The Quest to Find the Distance of the Sun. MagaVelda Press, 2001.Google Scholar
  106. Shapiro, I. I. Is the sun shrinking. Science, 208:51–53, 1980.CrossRefADSGoogle Scholar
  107. Sheenan, W. The Transits of Venus. Prometheus Books, 2004.Google Scholar
  108. Sigismondi, C. and Fraschetti, F. Measurements of the solar diameter in Kepler’s time. The Observatory, 121:380–385, 2001.ADSGoogle Scholar
  109. Smart, W. M. Textbook on Spherical Astronomy, sixth edition. Cambridge University Press, 1977.Google Scholar
  110. Sofia, S., Basu, S., Demarque, P., Li, L., and Thuillier, G. The Nonhomologous Nature of Solar Diameter Variations. Astrophysical Journal, 632:L147–L150, 2005.CrossRefADSGoogle Scholar
  111. Spencer Jones, H. Eros, On the suitability of, for the accurate determination of the solar parallax. Monthly Notices Royal Astronomical Society, 100:422–434, 1940.ADSGoogle Scholar
  112. Spiegel, E. A. and Weiss, N. O. Magnetic activity and variations in solar luminosity. Nature, 287:616–617, 1980.CrossRefADSGoogle Scholar
  113. Spruit, H. C. Theory of luminosity and radius variations. In C. P. Sonett, M. S. Giampapa, and M. S. Matthews (eds.), The Sun in Time, pp. 118–158, 1991.Google Scholar
  114. Stephenson, F. R. Historical Evidence concerning the Sun: Interpretation of Sunspot Records during the Telescopic and Pretelescopic Eras. Royal Society of London Philosophical Transactions Series A, 330:499–512, 1990.CrossRefADSGoogle Scholar
  115. Stephenson, F. R., Jones, J. E., and Morrison, L. V. The solar eclipse observed by Clavius in A.D. 1567. Astronomy and Astrophysics, 322:347–351, 1997.ADSGoogle Scholar
  116. Sterken, C. Astronomical heritages: Astronomical archives and Historic transits of Venus. Vrije Universiteit Brussel, 2005.Google Scholar
  117. Sveshnikov, M. L. Solar-radius variations from transits of mercury across the solar disk. Astronomy Letters, 28:115–120, 2002.CrossRefADSGoogle Scholar
  118. Taft, L. G. Computational Spherical Astronomy. Kriger Pub. Co., 1991.Google Scholar
  119. Thomas, J. H. Variations of the sun’s radius and temperature due to magnetic buoyancy. Nature, 280:662–663, 1979.CrossRefADSGoogle Scholar
  120. Toulmonde, M. The diameter of the Sun over the past three centuries. Astronomy and Astrophysics, 325:1174–1178, 1997.ADSGoogle Scholar
  121. Van Biesbroeck, G. Mercury, transit of, 1707. Monthly Notices Royal Astronomical Society, 73:34–36, 1912.ADSGoogle Scholar
  122. Van Brummelen, G. The Mathematics of the Heavens and the Earth: The Early History of Trigonometry. Princeton University Press, 2009.Google Scholar
  123. Van Helden, A. The importance of the transit of Mercury of 1631. Journal for the History of Astronomy, 7:1–9, 1976.ADSMathSciNetGoogle Scholar
  124. Van Helden, A. Measuring the Universe. University of Chicago Press, 1985.Google Scholar
  125. Vaquero, J. M., Gallego, M. C., and Trigo, R. M. Sunspot numbers during 1736–1739 revisited. Advances in Space Research, 40:1895–1903, 2007.CrossRefADSGoogle Scholar
  126. Volkoff, I. J. Hevelius and his Catalog of Stars. Brigham Young University Press, 1971.Google Scholar
  127. Wales, W. and Dymond, J. Astronomical observations made by order of the Royal Society, at Prince of Wales’s Fort, on the North-West Coast of Hudson’s Bay. Philosophical Transactions Series I, 59:467–488, 1769.Google Scholar
  128. Watts, C. B. The Marginal Zone of the Moon. Washington, US Government Printing Service, 1963.Google Scholar
  129. Waugh, A. E. Sundials: Their Theory and Construction. Dover, 1973.Google Scholar
  130. Whatton, A. B. Memoir of the Life and Labours of Jeremiah Horrocks, To Which Is Appended A Translation of His Celebrated Discourse The Transit of Venus across the Sun, London, 1859.Google Scholar
  131. Winthrop, J. A Letter from Mr. John Winthrop to C. Mortimer, M. ’D. Sec. R. S. concerning the Transit of Mercury Over the Sun, April 21. 1740. and of an Eclipse of the Moon, Dec. 21. 1740. Philosophical Transactions Series I, 42:572–578, 1742.Google Scholar
  132. Wittmann, A. Numerical simulation of the Mercury transit black drop phenomenon. Astronomy and Astrophysics, 31:239–243, 1974.ADSGoogle Scholar
  133. Wittmann, A. Tobias Mayer’s observations of the sun – Evidence against a secular decrease of the solar diameter. Solar Physics, 66:223–231, 1980.CrossRefADSGoogle Scholar
  134. Wittmann, A. D. The solar diameter derived from Tobias Mayer’s observations 1756-1761. Acta Historica Astronomiae, 3:49–51, 1998.ADSGoogle Scholar
  135. Wittmann, A. D. and Debarbat, S. The solar diameter and its variability. Sterne und Weltraum, 29:420–426, 1990.ADSGoogle Scholar
  136. Wittmann, A. D. and Neckel, H. On the Relation between the Sun’s (Geocentric) Angular Diameter and the Observed (Topocentric) ‘Drift Time’. Solar Physics, 163:1–5, 1996.CrossRefADSGoogle Scholar
  137. Wlodarczyk, J. Solar eclipse observations in the time of Copernicus: tradition or novelty? Journal for the History of Astronomy, 38:351–364, 2007.ADSGoogle Scholar
  138. Woolf, H. The Transits of Venus: A Study in Eighteen-Century Science. Princeton University Press, 1959.Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • J.M. Vaquero
    • 1
  1. 1.Depto. FisicaUniversidad Extremadura Fac. CienciasSpain

Personalised recommendations