Skip to main content

Role of Genetic Testing for Sudden Death Predisposing Heart Conditions in Athletes

  • Chapter
  • First Online:

Abstract

Sudden death in a young competitive athlete occurs with a prevalence of approximately 1 per 100,000 athletes per year [2, 3]. Despite its rarity, the sudden death of an athlete is devastating to both the family and community.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    1 Dr. Ackerman is a consultant for Boston Scientific, Medtronic, PGxHealth, and St. Jude Medical, Inc. and chairs PGxHealth’s Scientific Advisory Board with respect to their FAMILIONTM genetic tests for heritable channelopathies and cardiomyopathies. There is a royalty relationship between PGxHealth and Mayo Clinic Health Solutions with respect to genetic testing for long QT syndrome and catecholaminergic polymorphic ventricular tachycardia.

References

  1. Morozova O, Marra MA. 2008. Applications of next-generation sequencing technologies in functional genomics. Genomics. 92(5):255–264.

    Article  PubMed  CAS  Google Scholar 

  2. Maron BJ, Gohman TE, Aeppli D. 1998. Prevalence of sudden cardiac death during competitive sports activities in Minnesota High School athletes. J Am Coll Cardiol. 32(7):1881–1884.

    Article  PubMed  CAS  Google Scholar 

  3. Corrado D, Basso C, Schiavon M, Thiene G. 2006. Does sports activity enhance the risk of sudden cardiac death? J Cardiovasc Med. 7(4):228–233.

    Article  Google Scholar 

  4. Puranik R, Chow CK, Duflou JA, Kilborn MJ, McGuire MA. 2005. Sudden death in the young. Heart Rhythm. 2(12):1277–1282.

    Article  PubMed  Google Scholar 

  5. Ellsworth EG, Ackerman MJ. 2005. The changing face of sudden cardiac death in the young. Heart Rhythm. 2(12):1283–1285.

    Article  PubMed  Google Scholar 

  6. Tester DJ, Ackerman MJ. 2007. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol. 49(2):240–246.

    Article  PubMed  Google Scholar 

  7. Tester DJ, Ackerman MJ. 2006. The role of molecular autopsy in unexplained sudden cardiac death. Curr Opin Cardiol. 21(3):166–172.

    Article  PubMed  Google Scholar 

  8. Maron BJ. 2003. Sudden death in young athletes. N Engl J Med. 349(11):1064–1075.

    Article  PubMed  CAS  Google Scholar 

  9. Jarcho JA, McKenna W, Pare JA, Solomon SD, Holcombe RF, Dickie S, Levi T, Donis-Keller H, Seidman JG, Seidman CE. 1989. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med. 321(20):1372–1378.

    Article  PubMed  CAS  Google Scholar 

  10. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg H, McKenna W, Seidman CE, Seidman JG. 1990. A molecular basis for familial hypertrophic cardiomyopathy: A beta cardiac myosin heavy chain gene missense mutation. Cell. 62:999–1006.

    Article  PubMed  CAS  Google Scholar 

  11. Marian AJ, Roberts R. 2001. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol. 33:655–670.

    Article  PubMed  CAS  Google Scholar 

  12. Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ. 2005. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin Proc. 80(6):739–744.

    PubMed  Google Scholar 

  13. Binder J, Ommen SR, Gersh BJ, Van Driest SL, Tajik AJ, Nishimura RA, Ackerman MJ. 2006. Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: septal morphological features predict the presence of myofilament mutations. Mayo Clin Proc. 81(4):459–467.

    Article  PubMed  Google Scholar 

  14. Sen-Chowdhry S, Syrris P, McKenna WJ. 2007. Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 50(19):1813–1821.

    Article  PubMed  CAS  Google Scholar 

  15. Thiene G, Corrado D, Basso C. 2007. Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Orphanet J Rare Dis. 2:45.

    Article  PubMed  Google Scholar 

  16. Dalal D, Molin LH, Piccini J, Tichnell C, James C, Bomma C, Prakasa K, Towbin JA, Marcus FI, Spevak PJ, Bluemke DA, Abraham T, Russell SD, Calkins H, Judge DP. 2006. Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation. 113(13):1641–1649.

    Article  PubMed  CAS  Google Scholar 

  17. van Tintelen JP, Entius MM, Bhuiyan ZA, Jongbloed R, Wiesfeld ACP, Wilde AAM, van der Smagt J, Boven LG, Mannens MMAM, van Langen IM, Hofstra RMW, Otterspoor LC, Doevendans PAFM, Rodriguez L-M, van Gelder IC, Hauer RNW. 2006. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 113(13):1650–1658.

    Article  PubMed  Google Scholar 

  18. Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, Frigo G, Vettori A, Valente M, Towbin J, Thiene G, Danieli GA, Rampazzo A. 2006. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 113(9):1171–1179.

    Article  PubMed  CAS  Google Scholar 

  19. Zipes DP, Ackerman MJ, Estes Iii NAM, Grant AO, Myerburg RJ, Van Hare G. 2005. Task Force 7: Arrhythmias. J Am Coll Cardiol. 45(8):1354–1363.

    Article  PubMed  Google Scholar 

  20. Tester DJ, Ackerman MJ. 2007. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol. 49(2):240–246.

    Article  PubMed  Google Scholar 

  21. Tester DJ, Will ML, Haglund CM, Ackerman MJ. 2005. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2:507–517.

    Article  PubMed  Google Scholar 

  22. Tester DJ, Will ML, Haglund CM, Ackerman MJ. 2006. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 47(4):764–768.

    Article  PubMed  Google Scholar 

  23. Ackerman M, Tester D, Jones G, Will M, Burrow C, Curran M. 2003. Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc. 78(12):1479–1487.

    Article  PubMed  CAS  Google Scholar 

  24. Ackerman MJ, Splawski I, Makielski JC, Tester DJ, Will ML, Timothy KW, Keating MT, Jones G, Chadha M, Burrow CR, Stephens JC, Xu C, Judson R, Curran ME. 2004. Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: Implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm. 1(5):600–607.

    Article  PubMed  Google Scholar 

  25. Ackerman MJ, Tester DJ, Porter CJ. 1999. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc. 74(11):1088–1094.

    Article  PubMed  CAS  Google Scholar 

  26. Wilde AA, Jongbloed RJ, Doevendans PA, Duren DR, Hauer RN, van Langen IM, van Tintelen JP, Smeets HJ, Meyer H, Geelen JL. 1999. Auditory stimuli as a trigger for arrhythmic events differentiate HERG- related (LQTS2) patients from KVLQT1-related patients (LQTS1). J Am Coll Cardiol. 33(2):327–332.

    Article  PubMed  CAS  Google Scholar 

  27. Moss AJ, Robinson JL, Gessman L, Gillespie R, Zareba W, Schwartz PJ, Vincent GM, Benhorin J, Heilbron EL, Towbin JA, Priori SG, Napolitano C, Zhang L, Medina A, Andrews ML, Timothy K. 1999. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol. 84(8):876–879.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. 2001. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 103:89–95.

    Article  PubMed  CAS  Google Scholar 

  29. Khositseth A, Tester DJ, Will ML, Bell CM, Ackerman MJ. 2004. Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm. 1:60–64.

    Article  PubMed  Google Scholar 

  30. Khositseth A, Ackerman MJ. Clinical evaluation, risk stratification, and management of congenital long QT syndrome. In: Gussak I, Antzelevitch C, eds. Contemporary Cardiology: Cardiac Repolarization: Bridging Basic and Clinical Science. Totowa: Humana; 2003.

    Google Scholar 

  31. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, DeSimone L, Coltorti F, Bloise R, Keegan R, Cruz Filho FE, Vignati G, Benatar A, DeLogu A. 2002. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia [see comment]. Circulation. 106(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  32. Tester DJ, Kopplin LJ, Will ML, Ackerman MJ. 2005. Spectrum and prevalence of cardiac ryanodine receptor (RyR2) mutations in a cohort of unrelated patients referred explicitly for long QT syndrome genetic testing. Heart Rhythm. 2(10):1099–1105.

    Article  PubMed  Google Scholar 

  33. Eldar M, Pras E, Lahat H. 2003. A Missense mutation in the CASQ2 gene is associated with autosomal-recessive catecholamine-induced polymorphic ventricular tachycardia. Trends Cardiovasc Med. 13:148–151.

    Article  PubMed  CAS  Google Scholar 

  34. Chen PS, Priori SG. 2008. The Brugada syndrome. J Am Coll Cardiol. 51(12):1176–1180.

    Article  PubMed  Google Scholar 

  35. Probst V, Denjoy I, Meregalli PG, Amirault JC, Sacher F, Mansourati J, Babuty D, Villain E, Victor J, Schott JJ, Lupoglazoff JM, Mabo P, Veltmann C, Jesel L, Chevalier P, Clur SA, Haissaguerre M, Wolpert C, Le Marec H, Wilde AA. 2007. Clinical aspects and prognosis of Brugada syndrome in children. Circulation. 115(15):2042–2048.

    Article  PubMed  Google Scholar 

  36. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, Viswanathan PC, Pfahnl AE, Shang LL, Madhusudanan M, Baty CJ, Lagana S, Aleong R, Gutmann R, Ackerman MJ, McNamara DM, Weiss R, Dudley SC, Jr. 2007. Mutation in glycerol-3-phosphate dehydrogenase 1-like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 116(20):2260–2268.

    Article  PubMed  CAS  Google Scholar 

  37. Watanabe H, Koopmann T, Le Scouarnec S, Yang T, Ingram C, Schott J, Demolombe S, Probst V, Anselme F, Escande D, Wiesfeld A, Pfeufer A, Kääb S, Wichmann H, Hasdemir C, Aizawa Y, Wilde A, Roden D, Bezzina C. 2008. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 118(6):2260–2268.

    PubMed  CAS  Google Scholar 

  38. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP, Jr., Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu LF, Haissaguerre M, Schimpf R, Borggrefe M, Wolpert C. 2007. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 115(4):442–449.

    Article  PubMed  Google Scholar 

  39. Delpon E, Cordeiro JM, Nunez L, Bloch Thomsen PE, Guerchicoff A, Pollevick GD, Wu Y, Kanters JK, Larsen CT, Burashnikov E, Christiansen M, Antzelevitch C. 2008. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol. 1(3):209–218.

    Article  PubMed  CAS  Google Scholar 

  40. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, Bjerregaard P. 2000. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 94(2):99–102.

    Article  PubMed  CAS  Google Scholar 

  41. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P, Leone G, Maury P, Anttonen O, Haissaguerre M, Gaita F. 2006. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J. 27(20):2440–2447.

    Article  PubMed  Google Scholar 

  42. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C. 2004. Sudden death associated with short-QT syndrome linked mutations in HERG. Circulation. 109:30–35.

    Article  PubMed  CAS  Google Scholar 

  43. Taggart NW, Haglund MC, Tester DJ, Ackerman MJ. 2007. Diagnostic miscues in congenital long-QT syndrome. Circulation. 115(20):2613–2620.

    Article  PubMed  Google Scholar 

  44. Abernethy WB, III, Choo JK, Hutter AM, Jr. 2003. Echocardiographic characteristics of professional football players. J Am Coll Cardiol. 41(2):280–284.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Dideoxy DNA sequencing

To directly determine a DNA sequence, a primer binds to the region of interest on the sample DNA and initiates polymerization of DNA which is terminated in small amounts after each nucleotide addition. Each resulting oligonucleotide is labeled with a fluorescent tag identifying the sequence of the final nucleotide. The collection of fluorescent products is separated based on size, where the smallest fragment represents the first sequenced nucleotide, and the sequence is determined by the order of the nucleotide-specific fluorescent signals. Generally, this can yield a DNA sequence up to 800 nucleotides per reaction.

Exon

DNA sequence of a gene that is present in the mature mRNA after splicing removal of introns. Generally, the exonic DNA sequence ultimately codes for the corresponding amino acid sequence of the protein. There is exonic sequence at the termini of the mature mRNA of variable lengths which do not code for protein in this manner and remain untranslated (5′ and 3′ untranslated regions).

Gene

The basic hereditary unit of life which, in humans, is composed of a DNA sequence traditionally containing “coding” exonic sequence that is ultimately transcribed into mRNA and translated into protein as well as intervening “noncoding” intronic sequences which are removed during transcription and do not code for protein.

Genome

The hereditary information of an organism encoded by nucleic acid including all chromosomes. In humans, there are two complete homologous sets of DNA – one paternal and one maternal – and are thus considered diploid genomes.

Germline

The cells within an organism that pass genetic information to progeny. In humans, this refers to sperm and egg cells specifically.

Intron

A gene’s DNA sequence that is removed during splicing of the mature mRNA and does not ultimately code for protein during translation.

Mutation

Changes in the DNA sequence of an organism. In humans, mutations can generally be described as synonymous (does not ultimately alter the coding protein sequence) or nonsynonymous (does ultimately alter the original coding sequence). Nonsynonymous mutations include missense (altering a single amino acid), nonsense (changes an amino acid to a stop codon which truncates the protein), and insertion/deletion (addition or subtraction of DNA which often shifts the open reading frame of the gene resulting in an altered, “frame-shifted,” protein sequence after that point and usually an early truncation of the protein). For the hypertrophic cardiomyopathy-associated missense mutation, TNNT2-R92W, for example, the DNA mutation has changed an arginine amino acid (R) to a tryptophan (W) at position 92 of the protein troponin T which is encoded by TNNT2.

Next-generation DNA sequencing

A conglomeration of recently developed DNA sequencing methodologies capable of sequencing over 20 × 109 nucleotides per reaction depending on the platform [1].

Oligonucleotide hybridization mutation detection

Sample (patient) DNA is fluorescently labeled and exposed to a microarray chip containing thousands of short sequences of DNA (oligonucleotides) corresponding to mutated sequences of the genes of interest. If a mutation is present in the patient, it will bind (hybridize) to the known oligonucleotide on the chip and deliver an identifiable fluorescent signal.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Landstrom, A.P., Tester, D.J., Ackerman, M.J. (2011). Role of Genetic Testing for Sudden Death Predisposing Heart Conditions in Athletes. In: Lawless, C. (eds) Sports Cardiology Essentials. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92775-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92775-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92774-9

  • Online ISBN: 978-0-387-92775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics