Responses of Lactic Acid Bacteria to Heavy Metal Stress

  • Marc Solioz
  • Mélanie Mermod
  • Helge K. Abicht
  • Stefano Mancini
Part of the Food Microbiology and Food Safety book series (FMFS)


Lactic acid bacteria (LAB) are of great importance in the manufacture of food and dairy products, but also for an increasing number of biotechnological applications. When applied to industrial processes, these bacteria face various stress conditions, such as low pH, high temperature, osmotic shock, and metal stress. Of the last category, exposure to copper has received wide attention and detailed mechanistic insight is available. We thus have a comprehensive understanding of copper extrusion by adenosine triphosphatases, gene regulation by copper, and intracellular copper chaperoning. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems in general. Also, recent biochemical work has shed new light on the mechanism of copper toxicity. The response of LAB to metals other than copper has received only little attention and will be discussed for other organisms to the extent that it could be relevant for LAB.


Lactic Acid Bacterium Zinc Uptake Copper Homeostasis Thiyl Radical Copper Chaperone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Some of the work described in this chapter has been supported by Grant 3100A0_122551 from the Swiss National Foundation, a grant from the Swiss State Secretary for Education & Research, and a grant from the International Copper Association.


  1. Aagaard A, Brzezinski P (2001) Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen. FEBS Lett 494:157–160CrossRefGoogle Scholar
  2. Achard-Joris M, van den Berg van Saparoea HB, Driessen AJ, Bourdineaud JP (2005) Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli. Biochemistry 44:5916–5922Google Scholar
  3. Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59:1848–1858CrossRefGoogle Scholar
  4. Alvarez AH, Moreno-Sanchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400Google Scholar
  5. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237CrossRefGoogle Scholar
  6. Anjem A, Varghese S, Imlay JA (2009) Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 72:844–858CrossRefGoogle Scholar
  7. Archibald FS, Duong MN (1984) Manganese acquisition by Lactobacillus plantarum. J Bacteriol 158:1–8Google Scholar
  8. Arciero DM, Pierce BS, Hendrich MP, Hooper AB (2002) Nitrosocyanin, a red cupredoxin-like protein from Nitrosomonas europaea. Biochemistry 41:1703–1709CrossRefGoogle Scholar
  9. Arguello JM, Gonzalez-Guerrero M (2008) Cu+ -ATPases brake system. Structure 16:833–834CrossRefGoogle Scholar
  10. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O’Halloran TV (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12:255–271CrossRefGoogle Scholar
  11. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101CrossRefGoogle Scholar
  12. Baichoo N, Wang T, Ye R, Helmann JD (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629CrossRefGoogle Scholar
  13. Balasubramanian R, Rosenzweig AC (2008) Copper methanobactin: a molecule whose time has come. Curr Opin Chem Biol 12:245–249CrossRefGoogle Scholar
  14. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384CrossRefGoogle Scholar
  15. Barré O, Mourlane F, Solioz M (2007) Copper induction of lactate oxidase of Lactococcus lactis: a novel metal stress response. J Bacteriol 189:5947–5954CrossRefGoogle Scholar
  16. Battistoni A (2003) Role of prokaryotic Cu, Zn superoxide dismutase in pathogenesis. Biochem Soc Trans 31:1326–1329CrossRefGoogle Scholar
  17. Beard SJ, Hashim R, Wu G, Binet MR, Hughes MN, Poole RK (2000) Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol Lett 184:231–235CrossRefGoogle Scholar
  18. Benthin S, Nielsen J, Villadsen J (1994) Galactose expulsion during lactose metabolism in Lactococcus lactis subsp. cremoris FD1 due to dephosphorylation of intracellular galactose 6-phosphate. Appl Environ Microbiol 60:1254–1259Google Scholar
  19. Bird AJ (2008) Metallosensors, the ups and downs of gene regulation. Adv Microb Physiol 53:231–267CrossRefGoogle Scholar
  20. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753CrossRefGoogle Scholar
  21. Bon E, Delaherche A, Bilhere E, De Daruvar A, Lonvaud-Funel A, Le MC (2009) Oenococcus oeni genome plasticity is associated with fitness. Appl Environ Microbiol 75:2079–2090CrossRefGoogle Scholar
  22. Bourdineaud JP, Nehme B, Tesse S, Lonvaud-Funel A (2004) A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int J Food Microbiol 92:1–14CrossRefGoogle Scholar
  23. Brazeau BJ, Johnson BJ, Wilmot CM (2004) Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Arch Biochem Biophys 428:22–31CrossRefGoogle Scholar
  24. Brooijmans RJW, Poolman B, Schuurman-Wolters GK, De Vos WM, Hugenholtz J (2007) Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 189:5203–5209CrossRefGoogle Scholar
  25. Bsat N, Helmann JD (1999) Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol 181:4299–4307Google Scholar
  26. Burke BE, Pfister RM (1986) Cadmium transport by a Cd2+-sensitive and a Cd2+-resistant strain of Bacillus subtilis. Can J Microbiol 32:539–542CrossRefGoogle Scholar
  27. Bury NR, Grosell M, Grover AK, Wood CM (1999) ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol Appl Pharmacol 159:1–8CrossRefGoogle Scholar
  28. Campbell DR, Chapman KE, Waldron KJ, Tottey S, Kendall S, Cavallaro G, Andreini C, Hinds J, Stoker NG, Robinson NJ, Cavet JS (2007) Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent. J Biol Chem 282:32298–32310CrossRefGoogle Scholar
  29. Cantini F, Banci L, Solioz M (2009) The copper-responsive repressor CopR of Lactococcus lactis is a “winged helix” protein. Biochem J 417:493–499CrossRefGoogle Scholar
  30. Cavet JS, Meng W, Pennella MA, Appelhoff RJ, Giedroc DP, Robinson NJ (2002) A nickel-cobalt-sensing ArsR-SmtB family repressor. Contributions of cytosol and effector binding sites to metal selectivity. J Biol Chem 277:38441–38448CrossRefGoogle Scholar
  31. Cavet JS, Borrelly GP, Robinson NJ (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181CrossRefGoogle Scholar
  32. Cesselin B, Ali D, Gratadoux JJ, Gaudu P, Duwat P, Gruss A, El KM (2009) Inactivation of the Lactococcus lactis high affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. Microbiology 155:2274–2281CrossRefGoogle Scholar
  33. Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88:8915–8919CrossRefGoogle Scholar
  34. Chan SI, Chen KH, Yu SS, Chen CL, Kuo SS (2004) Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 43:4421–4430CrossRefGoogle Scholar
  35. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387CrossRefGoogle Scholar
  36. Chillappagari S, Miethke M, Trip H, Kuipers OP, Marahiel MA (2009) Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol 191:2362–2370CrossRefGoogle Scholar
  37. Claverys JP (2001) A new family of high-affinity ABC manganese and zinc permeases. Res Microbiol 152:231–243CrossRefGoogle Scholar
  38. Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30CrossRefGoogle Scholar
  39. Cobine P, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002a) Interaction of copper binding proteins from Enterococcus hirae. In: Massaro EJ (Ed.), Handbook of copper pharmacology and toxicology. Humana Press, Totowa, pp. 177–186CrossRefGoogle Scholar
  40. Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002b) Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: Metal coordination environments and protein interactions. Biochemistry 41:5822–5829CrossRefGoogle Scholar
  41. Cobine PA, Jones CE, Dameron CT (2002c) Role for zinc(II) in the copper(I) regulated protein CopY. J Inorg Biochem 88:192–196CrossRefGoogle Scholar
  42. Coleman JE (1998) Zinc enzymes. Curr Opin Chem Biol 2:222–234CrossRefGoogle Scholar
  43. Costa M, Salnikow K, Sutherland JE, Broday L, Peng W, Zhang Q, Kluz T (2002) The role of oxidative stress in nickel and chromate genotoxicity. Mol Cell Biochem 234–235:265–275CrossRefGoogle Scholar
  44. Crichton RR, Pierre J-L (2001) Old iron, young copper: from Mars to Venus. Biometals 14:99–112CrossRefGoogle Scholar
  45. Dalet K, Gouin E, Cenatiempo Y, Cossart P, Hechard Y (1999) Characterisation of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocytogenes. FEMS Microbiol Lett 174:111–116CrossRefGoogle Scholar
  46. Davis AV, O’Halloran TV (2008) A place for thioether chemistry in cellular copper ion recognition and trafficking. Nat Chem Biol 4:148–151CrossRefGoogle Scholar
  47. De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds. A review. Mutat Res 238:99–172Google Scholar
  48. De Pina K, Desjardin V, Mandrand-Berthelot MA, Giordano G, Wu LF (1999) Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol 181:670–674Google Scholar
  49. Diaz-Perez C, Cervantes C, Campos-Garcia J, Julian-Sanchez A, Riveros-Rosas H (2007) Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J 274: 6215–6227CrossRefGoogle Scholar
  50. Dintilhac A, Alloing G, Granadel C, Claverys JP (1997) Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739CrossRefGoogle Scholar
  51. Dunn KL, Farrant JL, Langford PR, Kroll JS (2003) Bacterial [Cu,Zn]-cofactored superoxide dismutase protects opsonized, encapsulated Neisseria meningitidis from phagocytosis by human monocytes/macrophages. Infect Immun 71:1604–1607CrossRefGoogle Scholar
  52. Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9CrossRefGoogle Scholar
  53. Eitinger T, Suhr J, Moore L, Smith JA (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405CrossRefGoogle Scholar
  54. Ellis MJ, Grossmann JG, Eady RR, Hasnain SS (2007) Genomic analysis reveals widespread occurrence of new classes of copper nitrite reductases. J Biol Inorg Chem 12:1119–1127CrossRefGoogle Scholar
  55. Endo G, Silver S (1995) CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J Bacteriol 177:4437–4441Google Scholar
  56. Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–5821Google Scholar
  57. Gaballa A, Helmann JD (2002) A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 45:997–1005CrossRefGoogle Scholar
  58. Galvez A, Abriouel H, Lopez RL, Ben ON (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70CrossRefGoogle Scholar
  59. Garcia-Castellanos R, Mallorqui-Fernandez G, Marrero A, Potempa J, Coll M, Gomis-Ruth FX (2004) On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J Biol Chem 279:17888–17896CrossRefGoogle Scholar
  60. Gonzalez-Guerrero M, Arguello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci USA 105:5992–5997CrossRefGoogle Scholar
  61. Gostick DO, Griffin HG, Shearman CA, Scott C, Green J, Gasson MJ, Guest JR (1999) Two operons that encode FNR-like proteins in Lactococcus lactis. Mol Microbiol 31:1523–1535CrossRefGoogle Scholar
  62. Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188CrossRefGoogle Scholar
  63. Hanson SR, Donley SA, Linder MC (2001) Transport of silver in virgin and lactating rats and relation to copper. J Trace Elem Med Biol 15:243–253CrossRefGoogle Scholar
  64. Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202CrossRefGoogle Scholar
  65. Hao Z, Reiske HR, Wilson DB (1999) Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants. Appl Environ Microbiol 65:4741–4745Google Scholar
  66. Harris RM, Webb DC, Howitt SM, Cox GB (2001) Characterization of PitA and PitB from Escherichia coli. J Bacteriol 183:5008–5014CrossRefGoogle Scholar
  67. Hasman H, Kempf I, Chidaine B, Cariolet R, Ersboll AK, Houe H, Bruun Hansen HC, Aarestrup FM (2006) Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol 72:5784–5789CrossRefGoogle Scholar
  68. Hazlett KR, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, La Vake ME, Maguire ME, Perry RD, Radolf JD (2003) The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J Biol Chem 278:20687–20694CrossRefGoogle Scholar
  69. Himeno T, Imanaka T, Aiba S (1986) Nucleotide sequence of the penicillinase repressor gene penI of Bacillus licheniformis and regulation of penP and penI by the repressor. J Bacteriol 168:1128–1132Google Scholar
  70. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002a) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286CrossRefGoogle Scholar
  71. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ (2002b) Manganese: elemental defence for a life with oxygen. Trends Microbiol 10:496–501CrossRefGoogle Scholar
  72. Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701CrossRefGoogle Scholar
  73. Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183:5426–5430CrossRefGoogle Scholar
  74. Imbert M, Blondeau R (1998) On the iron requirement of lactobacilli grown in chemically defined medium. Curr Microbiol 37:64–66CrossRefGoogle Scholar
  75. Jackson RJ, Binet MR, Lee LJ, Ma R, Graham AI, McLeod CW, Poole RK (2008) Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol Lett 289:219–224CrossRefGoogle Scholar
  76. Jakubovics NS, Smith AW, Jenkinson HF (2000) Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol Microbiol 38:140–153CrossRefGoogle Scholar
  77. Janulczyk R, Pallon J, Bjorck L (1999) Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol 34:596–606CrossRefGoogle Scholar
  78. Joseph P, Muchnok TK, Klishis ML, Roberts JR, Antonini JM, Whong WZ, Ong T (2001) Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci 61:295–303CrossRefGoogle Scholar
  79. Kaim W, Rall J (1996) Copper – a “modern” bioelement. Angew Chem Int Ed Engl 35:43–60CrossRefGoogle Scholar
  80. Kanamaru K, Kashiwagi S, Mizuno T (1994) A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol Microbiol 13:369–377CrossRefGoogle Scholar
  81. Kaneko T, Takahashi M, Suzuki H (1990) Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu. Appl Environ Microbiol 56:2644–2649Google Scholar
  82. Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science 261: 701–708CrossRefGoogle Scholar
  83. Kasting JF, Siefert JL (2002) Life and the evolution of Earth’s atmosphere. Science 296: 1066–1068CrossRefGoogle Scholar
  84. Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann NY Acad Sci 829:242–249CrossRefGoogle Scholar
  85. Keasling JD, Hupf GA (1996) Genetic manipulation of polyphosphate metabolism affects ­cadmium tolerance in Escherichia coli. Appl Microbiol Biotechnol 62:743–746Google Scholar
  86. Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100CrossRefGoogle Scholar
  87. Kiermeier F, Kyrein HJ (1971) Einfluß des Kupfers auf den Acetoin-Diacetyl- und Pyruvatgehalt von Käse [in German]. Z Lebensmittelunters -Forschung A 147:128–133Google Scholar
  88. Kihlken MA, Leech AP, Le Brun NE (2002) Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis. Biochem J 368:729–739CrossRefGoogle Scholar
  89. Kihlken MA, Singleton C, Le Brun NE (2008) Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis. J Biol Inorg Chem 13:1011–1023CrossRefGoogle Scholar
  90. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185CrossRefGoogle Scholar
  91. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615CrossRefGoogle Scholar
  92. Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1–9CrossRefGoogle Scholar
  93. Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc Natl Acad Sci USA 94:36–41CrossRefGoogle Scholar
  94. Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G (2004) Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430:803–806CrossRefGoogle Scholar
  95. Lane TW, Morel FM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631CrossRefGoogle Scholar
  96. Lindsay JA, Foster SJ (2001) zur: a Zn2+-responsive regulatory element of Staphylococcus aureus. Microbiology 147:1259–1266Google Scholar
  97. Liu CQ, Khunajakr N, Chia LG, Deng YM, Charoenchai P, Dunn NW (1997) Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38:79–90CrossRefGoogle Scholar
  98. Liu KJ, Shi X (2001) In vivo reduction of chromium (VI) and its related free radical generation. Mol Cell Biochem 222:41–47CrossRefGoogle Scholar
  99. Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, Talaat AM, Sacchettini JC, Giedroc DP (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68CrossRefGoogle Scholar
  100. Llull D, Poquet I (2004) New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol 70:5398–5406CrossRefGoogle Scholar
  101. Lopez-Serrano D, Solano F, Sanchez-Amat A (2004) Identification of an operon involved in ­tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Gene 342:179–187CrossRefGoogle Scholar
  102. Lu ZH, Solioz M (2001) Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem 276:47822–47827Google Scholar
  103. Lutsenko S, Kaplan JH (1995) Organization of P-type ATPases: significance of structural diversity. Biochemistry 34:15607–15613CrossRefGoogle Scholar
  104. Ma Z, Cowart D, Scott R, Giedroc DP (2009) Molecular insights into the metal selectivity of the Cu(I)-sensing repressor CsoR from Bacillus subtilis. Biochemistry 48:3325–3334CrossRefGoogle Scholar
  105. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349CrossRefGoogle Scholar
  106. Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626CrossRefGoogle Scholar
  107. Magnani D, Barré O, Gerber SD, Solioz M (2008) Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190:536–545CrossRefGoogle Scholar
  108. Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF (2000) Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35:1065–1078CrossRefGoogle Scholar
  109. Marty-Teysset C, de la Torre F, Garel J (2000) Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. Appl Environ Microbiol 66:262–267CrossRefGoogle Scholar
  110. McEwan AG (2009) New insights into the protective effect of manganese against oxidative stress. Mol Microbiol 72:812–814CrossRefGoogle Scholar
  111. Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54CrossRefGoogle Scholar
  112. Mitrakul K, Loo CY, Hughes CV, Ganeshkumar N (2004) Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. Oral Microbiol Immunol 19:395–402CrossRefGoogle Scholar
  113. Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Oxidative stress in Lactococcus lactis. Genet Mol Res 2:348–359Google Scholar
  114. Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195CrossRefGoogle Scholar
  115. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261CrossRefGoogle Scholar
  116. Multhaup G, Strausak D, Bissig K-D, Solioz M (2001) Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288:172–177CrossRefGoogle Scholar
  117. Narindrasorasak S, Zhang X, Roberts EA, Sarkar B (2004) Comparative analysis of metal binding characteristics of copper chaperone proteins, Atx1 and ATOX1. Bioinorg Chem Appl 2:105–123CrossRefGoogle Scholar
  118. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726Google Scholar
  119. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339CrossRefGoogle Scholar
  120. Nigam D, Shukla GS, Agarwal AK (1999) Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol Lett 106:151–157CrossRefGoogle Scholar
  121. Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548CrossRefGoogle Scholar
  122. Odermatt A, Solioz M (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270:4349–4354CrossRefGoogle Scholar
  123. Odermatt A, Suter H, Krapf R, Solioz M (1992) An ATPase operon involved in copper resistance by Enterococcus hirae. Ann NY Acad Sci 671:484–486CrossRefGoogle Scholar
  124. Odermatt A, Krapf R, Solioz M (1994) Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem Biophys Res Commun 202:44–48CrossRefGoogle Scholar
  125. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492CrossRefGoogle Scholar
  126. Outten FW, Outten CE, Hale J, O’Halloran TV (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275:31024–31029CrossRefGoogle Scholar
  127. Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677CrossRefGoogle Scholar
  128. Patzer SI, Hantke K (2000) The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275:24321–24332CrossRefGoogle Scholar
  129. Pedersen PL, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150CrossRefGoogle Scholar
  130. Penaud S, Fernandez A, Boudebbouze S, Ehrlich SD, Maguin E, van de Guchte M (2006) Induction of heavy-metal-transporting CPX-type ATPases during acid adaptation in Lactobacillus bulgaricus. Appl Environ Microbiol 72:7445–7454CrossRefGoogle Scholar
  131. Pennella MA, Shokes JE, Cosper NJ, Scott RA, Giedroc DP (2003) Structural elements of metal selectivity in metal sensor proteins. Proc Natl Acad Sci USA 100:3713–3718CrossRefGoogle Scholar
  132. Perez JM, Calderon IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, Sandoval JM, Castro ME, Elias AO, Vasquez CC (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS ONE 2:e211CrossRefGoogle Scholar
  133. Portmann R, Magnani D, Stoyanov JV, Schmechel A, Multhaup G, Solioz M (2004) Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae. J Biol Inorg Chem 9:396–402CrossRefGoogle Scholar
  134. Portmann R, Poulsen KR, Wimmer R, Solioz M (2006) CopY-like copper inducible repressors are putative “winged helix” proteins. Biometals 19:61–70CrossRefGoogle Scholar
  135. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454SGoogle Scholar
  136. Pufahl RA, Singer CP, Peariso KL, Lin S, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853–856CrossRefGoogle Scholar
  137. Radford DS, Kihlken MA, Borrelly GP, Harwood CR, Le Brun NE, Cavet JS (2003) CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 220:105–112CrossRefGoogle Scholar
  138. Ragsdale SW (2009) Nickel-based enzyme systems. J Biol Chem 284:18571–18575CrossRefGoogle Scholar
  139. Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332CrossRefGoogle Scholar
  140. Rapisarda VA, Chehin RN, De Las Rivas J, Rodriguez-Montelongo L, Farias RN, Massa EM (2002) Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli OADH dehydrogenase-2. Arch Biochem Biophys 405:87–94CrossRefGoogle Scholar
  141. Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR (2002) ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-­induced copper toxicity. Mol Microbiol 43:981–991CrossRefGoogle Scholar
  142. Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66CrossRefGoogle Scholar
  143. Richer E, Courville P, Bergevin I, Cellier MF (2003) Horizontal gene transfer of “prototype” Nramp in bacteria. J Mol Evol 57:363–376CrossRefGoogle Scholar
  144. Ridge PG, Zhang Y, Gladyshev VN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS One 3:e1378CrossRefGoogle Scholar
  145. Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, van de Guchte M (2006) Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol 72:5143–5149CrossRefGoogle Scholar
  146. Rodriguez-Montelongo L, Volentini SI, Farias RN, Massa EM, Rapisarda VA (2006) The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys 451:1–7CrossRefGoogle Scholar
  147. Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119–128CrossRefGoogle Scholar
  148. Saier MH Jr, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847CrossRefGoogle Scholar
  149. Schirawski J, Hagens W, Fitzgerald GF, Van Sinderen D (2002) Molecular characterization of cadmium resistance in Streptococcus thermophilus strain 4134: an example of lateral gene transfer. Appl Environ Microbiol 68:5508–5516CrossRefGoogle Scholar
  150. Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647CrossRefGoogle Scholar
  151. Scott C, Rawsthorne H, Upadhyay M, Shearman CA, Gasson MJ, Guest JR, Green J (2000) Zinc uptake, oxidative stress and the FNR-like proteins of Lactococcus lactis. FEMS Microbiol Lett 192:85–89CrossRefGoogle Scholar
  152. Sharma VK, Hackbarth CJ, Dickinson TM, Archer GL (1998) Interaction of native and mutant MecI repressors with sequences that regulate mecA, the gene encoding penicillin binding ­protein 2a in methicillin-resistant staphylococci. J Bacteriol 180:2160–2166Google Scholar
  153. Singleton C, Le Brun NE (2009) The N-terminal soluble domains of Bacillus subtilis CopA exhibit a high affinity and capacity for Cu(I) ions. Dalton Trans 28:688–696CrossRefGoogle Scholar
  154. Singleton C, Banci L, Ciofi-Baffoni S, Tenori L, Kihlken MA, Boetzel R, Le Brun NE (2008) Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA. Biochem J 411:571–579CrossRefGoogle Scholar
  155. Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221CrossRefGoogle Scholar
  156. Solioz M, Odermatt A, Krapf R (1994) Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett 346:44–47CrossRefGoogle Scholar
  157. Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195CrossRefGoogle Scholar
  158. Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241Google Scholar
  159. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  160. Stadtman ER, Berlett BS, Chock PB (1990) Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc Natl Acad Sci USA 87:384–388CrossRefGoogle Scholar
  161. Steffen C, Eberhad P, Bosset JM, Rüegg M (2009) Swiss-type varieties. In: Fox PF (Ed.) Cheese: chemistry, physics and microbiology. Aspen Publishers, Gaithersburg, pp. 83–110Google Scholar
  162. Stoyanov JV, Magnani D, Solioz M (2003) Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546:391–394CrossRefGoogle Scholar
  163. Strausak D, Solioz M (1997) CopY is a copper-inducible repressor of the Enterococcus hirae ­copper ATPases. J Biol Chem 272:8932–8936CrossRefGoogle Scholar
  164. Sun HW, Plapp BV (1992) Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family. J Mol Evol 34:522–535CrossRefGoogle Scholar
  165. Tikhonov KG, Zastrizhnaya OM, Kozlov YN, Klimov VV (2006) Composition and catalase-like activity of Mn(II)-bicarbonate complexes. Biochemistry (Mosc) 71:1270–1277CrossRefGoogle Scholar
  166. Tottey S, Rich PR, Rondet SA, Robinson NJ (2001) Two Menkes-type atpases supply copper for photosynthesis in Synechocystis PCC 6803. J Biol Chem 276:19999–20004CrossRefGoogle Scholar
  167. Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal sensors and metallochaperones. Acc Chem Res 38:775–783CrossRefGoogle Scholar
  168. Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP ­analogue. Nature 430:529–535CrossRefGoogle Scholar
  169. Toyoshima C, Nomura H, Sugita Y (2003) Crystal structures of Ca2+-ATPase in various physiological states. Ann NY Acad Sci 986:1–8CrossRefGoogle Scholar
  170. Tsai TY, Lee YH (1998) Roles of copper ligands in the activation and secretion of Streptomyces tyrosinase. J Biol Chem 273:19243–19250CrossRefGoogle Scholar
  171. Turner MS, Tan YP, Giffard PM (2007) Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Appl Environ Microbiol 73:6144–6149CrossRefGoogle Scholar
  172. Tynecka Z, Gos Z, Zajac J (1981) Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J Bacteriol 147:305–312Google Scholar
  173. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208CrossRefGoogle Scholar
  174. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73: 79–118CrossRefGoogle Scholar
  175. Van Melckebeke H, Vreuls C, Gans P, Filee P, Llabres G, Joris B, Simorre JP (2003) Solution structural study of BlaI: implications for the repression of genes involved in β-lactam antibiotic resistance. J Mol Biol 333:711–720CrossRefGoogle Scholar
  176. Van Veen HW, Abee T, Kortstee GJ, Konings WN, Zehnder AJ (1994a) Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33:1766–1770CrossRefGoogle Scholar
  177. Van Veen HW, Abee T, Kortstee GJ, Pereira H, Konings WN, Zehnder AJ (1994b) Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Biol Chem 269:29509–29514Google Scholar
  178. Van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci USA 93:10668–10672CrossRefGoogle Scholar
  179. Vats N, Lee SF (2001) Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147:653–662Google Scholar
  180. Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583Google Scholar
  181. Wimmer R, Herrmann T, Solioz M, Wüthrich K (1999) NMR structure and metal interactions of the CopZ copper chaperone. J Biol Chem 274:22597–22603CrossRefGoogle Scholar
  182. Wittman V, Wong HC (1988) Regulation of the penicillinase genes of Bacillus licheniformis: interaction of the pen repressor with its operators. J Bacteriol 170:3206–3212Google Scholar
  183. Wunderli-Ye H, Solioz M (2001) Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae. Biochem Biophys Res Commun 280:713–719CrossRefGoogle Scholar
  184. Zhang Y, Gladyshev VN (2008) Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol 379:881–899CrossRefGoogle Scholar
  185. Zhang Y, Turanov AA, Hatfield DL, Gladyshev VN (2008) In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait. BMC Genomics 9:251CrossRefGoogle Scholar
  186. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics 10:78–103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marc Solioz
    • 1
  • Mélanie Mermod
    • 1
  • Helge K. Abicht
    • 1
  • Stefano Mancini
    • 1
  1. 1.Department Clinical ResearchUniversity of BernBerneSwitzerland

Personalised recommendations