Responses of Lactic Acid Bacteria to Cell Envelope Stresses

  • João P. C. Pinto
  • Oscar P. Kuipers
  • Jan Kok
Part of the Food Microbiology and Food Safety book series (FMFS)


The bacterial cell envelope is an essential structure required for cellular viability. Because it is the target of many forms of environmental aggressions, bacteria have developed strategies to monitor the integrity of the cell envelope and to minimize possible damage inflicted on it. These responses can be roughly divided into two main categories: those that directly target the source of aggression and those that correct the physiological consequences that result from it. Lactic acid bacteria (LAB) have developed particular strategies as a consequence of the specific ecological niches in which they thrive. A thorough understanding of the responses of LAB to cell envelope stresses is required not only to understand their lifestyle but also because of the implications these responses might have with respect to, for instance, antibiotic resistance development and interactions of pathogenic LAB with their hosts, the applicability of certain strains of LAB as probiotics, and the use of LAB in novel advanced applications, such as oral vaccines or the production of (medically relevant) proteins. Here we present an overview of the current knowledge of cell envelope stress responses in LAB.


Lactic Acid Bacterium Cytoplasmic Membrane Cell Envelope Teichoic Acid Bacterial Cell Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Avall-Jääskeläinen S, Palva A (2005) Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29:511–529CrossRefGoogle Scholar
  2. Benachour A, Muller C, Dabrowski-Coton M, Le Breton Y, Giard J, Rincé A, Auffray Y, Hartke A (2005) The Enterococcus faecalis sigV protein is an extracytoplasmic function sigma factor contributing to survival following heat, acid, and ethanol treatments. J Bacteriol 187:1022–1035CrossRefGoogle Scholar
  3. Bernard R, Guiseppi A, Chippaux M, Foglino M, Denizot F (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189:8636–8642CrossRefGoogle Scholar
  4. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589CrossRefGoogle Scholar
  5. Brissette JL, Weiner L, Ripmaster TL, Model P (1991) Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol 220:35–48CrossRefGoogle Scholar
  6. Bugg TD, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:10408–10415CrossRefGoogle Scholar
  7. Carballido-López R, Formstone A (2007) Shape determination in Bacillus subtilis. Curr Opin Microbiol 10:611–616CrossRefGoogle Scholar
  8. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7:113–130Google Scholar
  9. Chambers HF (1999) Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis 179 Suppl 2:S353–S359CrossRefGoogle Scholar
  10. Chapot-Chartier M, Vinogradov E, Sadovskaya I, Andre G, Mistou M, Trieu-Cuot P, Furlan S, Bidnenko E, Courtin P, Pechoux C, Hols P, Dufrene YF, Kulakauskas S (2010) The cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J Biol Chem 285:10464–10471CrossRefGoogle Scholar
  11. Chong P, Drake L, Biswas I (2008) LiaS regulates virulence factor expression in Streptococcus mutans. Infect Immun 76:3093–3099CrossRefGoogle Scholar
  12. Comenge Y, Quintiliani R, Li L, Dubost L, Brouard J, Hugonnet J, Arthur M (2003) The CroRS two-component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J Bacteriol 185:7184–7192CrossRefGoogle Scholar
  13. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  14. Dagkessamanskaia A, Moscoso M, Hénard V, Guiral S, Overweg K, Reuter M, Martin B, Wells J, Claverys J (2004) Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51:1071–1086CrossRefGoogle Scholar
  15. Dawid S, Sebert ME, Weiser JN (2009) Bacteriocin activity of Streptococcus pneumoniae is controlled by the serine protease HtrA via posttranscriptional regulation. J Bacteriol 191:1509–1518CrossRefGoogle Scholar
  16. de Kruijff B, van Dam V, Breukink E (2008) Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot Essent Fatty Acids 79:117–121CrossRefGoogle Scholar
  17. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199CrossRefGoogle Scholar
  18. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek 76:159–184CrossRefGoogle Scholar
  19. Driessen AJM, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667CrossRefGoogle Scholar
  20. Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Håvarstein LS (2009) Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology (Reading, Engl) 155:2223–2234CrossRefGoogle Scholar
  21. Eldholm V, Gutt B, Johnsborg O, Brückner R, Maurer P, Hakenbeck R, Mascher T, Håvarstein LS (2010) The pneumococcal cell envelope stress-sensing system LiaFSR is activated by murein hydrolases and lipid II-interacting antibiotics. J Bacteriol 192:1761–1773CrossRefGoogle Scholar
  22. Engelhardt H (2007) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:115–124CrossRefGoogle Scholar
  23. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580CrossRefGoogle Scholar
  24. Fontana R, Canepari P, Lleò MM, Satta G (1990) Mechanisms of resistance of enterococci to beta-lactam antibiotics. Eur J Clin Microbiol Infect Dis 9:103–105CrossRefGoogle Scholar
  25. Gauntlett JC, Gebhard S, Keis S, Manson JM, Pos KM, Cook GM (2008) Molecular analysis of BcrR, a membrane-bound bacitracin sensor and DNA-binding protein from Enterococcus faecalis. J Biol Chem 283:8591–8600CrossRefGoogle Scholar
  26. Gram H (1884) Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin 2:185–189Google Scholar
  27. Grisshammer R (2006) Understanding recombinant expression of membrane proteins. Curr Opin Biotechnol 17:337–340CrossRefGoogle Scholar
  28. Guenzi E, Gasc AM, Sicard MA, Hakenbeck R (1994) A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 12:505–515CrossRefGoogle Scholar
  29. Haas W, Kaushal D, Sublett J, Obert C, Tuomanen EI (2005) Vancomycin stress response in a sensitive and a tolerant strain of Streptococcus pneumoniae. J Bacteriol 187:8205–8210CrossRefGoogle Scholar
  30. Hancock LE, Perego M (2004) Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 186:7951–7958CrossRefGoogle Scholar
  31. Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110CrossRefGoogle Scholar
  32. Hong H, Hutchings MI, Buttner MJ (2008) Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol 631:200–213CrossRefGoogle Scholar
  33. Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ (2004) Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J Bacteriol 186:5258–5266CrossRefGoogle Scholar
  34. Irisawa T, Okada S (2009) Lactobacillus sucicola sp. nov., a motile lactic acid bacterium isolated from oak tree (Quercus sp.) sap. Int J Syst Evol Microbiol 59:2662–2665CrossRefGoogle Scholar
  35. Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166CrossRefGoogle Scholar
  36. Jordan S, Rietkotter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD, Mascher T (2007) LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. Microbiology 153:2530–2540CrossRefGoogle Scholar
  37. Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146CrossRefGoogle Scholar
  38. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198CrossRefGoogle Scholar
  39. Kemper MA, Urrutia MM, Beveridge TJ, Koch AL, Doyle RJ (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol 175:5690–5696Google Scholar
  40. Koch AL, Doyle RJ (1985) Inside-to-outside growth and turnover of the wall of Gram-positive rods. J Theor Biol 117:137–157CrossRefGoogle Scholar
  41. Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 82:3–27CrossRefGoogle Scholar
  42. Kramer NE, van Hijum SAFT, Knol J, Kok J, Kuipers OP (2006) Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50:1753–1761CrossRefGoogle Scholar
  43. Kristich CJ, Wells CL, Dunny GM (2007) A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc Natl Acad Sci USA 104:3508–3513CrossRefGoogle Scholar
  44. Kunji ERS, Chan KW, Slotboom DJ, Floyd S, O’Connor R, Monné M (2005) Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol 16:546–551CrossRefGoogle Scholar
  45. Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821CrossRefGoogle Scholar
  46. Lancefield RC (1933) A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 57:571–595CrossRefGoogle Scholar
  47. Le Breton Y, Boël G, Benachour A, Prévost H, Auffray Y, Rincé A (2003) Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 5:329–337CrossRefGoogle Scholar
  48. Le Breton Y, Muller C, Auffray Y, Rincé A (2007) New insights into the Enterococcus faecalis CroRS two-component system obtained using a differential-display random arbitrarily primed PCR approach. Appl Environ Microbiol 73:3738–3741CrossRefGoogle Scholar
  49. Le Jeune A, Torelli R, Sanguinetti M, Giard J, Hartke A, Auffray Y, Benachour A (2010) The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. PLoS One 5: e9658CrossRefGoogle Scholar
  50. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100CrossRefGoogle Scholar
  51. MacRitchie DM, Buelow DR, Price NL, Raivio TL (2008) Two-component signaling and gram negative envelope stress response systems. Adv Exp Med Biol 631:80–110CrossRefGoogle Scholar
  52. Maillard J (2002) Bacterial target sites for biocide action. J Appl Microbiol 92 Suppl:16S–27SCrossRefGoogle Scholar
  53. Mandlik A, Swierczynski A, Das A, Ton-That H (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40CrossRefGoogle Scholar
  54. Mandon EC, Trueman SF, Gilmore R (2009) Translocation of proteins through the Sec61 and SecYEG channels. Curr Opin Cell Biol 21:501–507CrossRefGoogle Scholar
  55. Manson JM, Keis S, Smith JMB, Cook GM (2004) Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob Agents Chemother 48:3743–3748CrossRefGoogle Scholar
  56. Marreddy RKR, Pinto JPC, Wolters JC, Geertsma ER, Fusetti F, Permentier HP, Kuipers OP, Kok J, Poolman B (2010) The response of Lactococcus lactis to membrane protein production. Submitted Google Scholar
  57. Martínez B, Zomer AL, Rodríguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the Lactococcal two-component system CesSR. Mol Microbiol 64:473–486CrossRefGoogle Scholar
  58. Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367CrossRefGoogle Scholar
  59. Mascher T (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144CrossRefGoogle Scholar
  60. Massova I, Mobashery S (1998) Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 42:1–17CrossRefGoogle Scholar
  61. Matos R, Pinto VV, Ruivo M, Lopes MDFS (2009) Study on the dissemination of the bcrABDR cluster in Enterococcus spp. reveals that the BcrAB transporter is sufficient to confer high-level bacitracin resistance. Int J Antimicrob Agents 34:142–147CrossRefGoogle Scholar
  62. Maurer SE, Deamer DW, Boncella JM, Monnard P (2009) Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9:979–987CrossRefGoogle Scholar
  63. Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58CrossRefGoogle Scholar
  64. Muller C, Le Breton Y, Morin T, Benachour A, Auffray Y, Rincé A (2006) The response regulator CroR modulates expression of the secreted stress-induced SalB protein in Enterococcus faecalis. J Bacteriol 188:2636–2645CrossRefGoogle Scholar
  65. Myhre AE, Aasen AO, Thiemermann C, Wang JE (2006) Peptidoglycan – an endotoxin in its own right? Shock 25:227–235CrossRefGoogle Scholar
  66. Nielsen DS, Schillinger U, Franz CMAP, Bresciani J, Amoa-Awua W, Holzapfel WH, Jakobsen M (2007) Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 57:1468–1472CrossRefGoogle Scholar
  67. O’Connell-Motherway M, van Sinderen D, Morel-Deville F, Fitzgerald GF, Ehrlich SD, Morel P (2000) Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146 (Pt 4):935–947Google Scholar
  68. Osborn MJ, Rothfield L (2007) Cell shape determination in Escherichia coli. Curr Opin Microbiol 10:606–610CrossRefGoogle Scholar
  69. Panno J (2004) The cell: evolution of the first organism. Facts on File, New YorkGoogle Scholar
  70. Perry JA, Lévesque CM, Suntharaligam P, Mair RW, Bu M, Cline RT, Peterson SN, Cvitkovitch DG (2008) Involvement of Streptococcus mutans regulator RR11 in oxidative stress response during biofilm growth and in the development of genetic competence. Lett Appl Microbiol 47:439–444CrossRefGoogle Scholar
  71. Pietiäinen M, François P, Hyyryläinen H, Tangomo M, Sass V, Sahl H, Schrenzel J, Kontinen VP (2009) Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics 10:429CrossRefGoogle Scholar
  72. Pinto JPC, Kuipers OP, Marreddy RKR, Poolman B, Kok J (2010) Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR. Submitted Google Scholar
  73. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176CrossRefGoogle Scholar
  74. Qi F, Merritt J, Lux R, Shi W (2004) Inactivation of the ciaH Gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72:4895–4899CrossRefGoogle Scholar
  75. Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob Agents Chemother 49:21–25CrossRefGoogle Scholar
  76. Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315CrossRefGoogle Scholar
  77. Roces C, Campelo AB, Veiga P, Pinto JPC, Rodríguez A, Martínez B (2009) Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness. Int J Food Microbiol 133:279–285CrossRefGoogle Scholar
  78. Rogers PD, Liu TT, Barker KS, Hilliard GM, English BK, Thornton J, Swiatlo E, McDaniel LS (2007) Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J Antimicrob Chemother 59:616–626CrossRefGoogle Scholar
  79. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258CrossRefGoogle Scholar
  80. Sebert ME, Palmer LM, Rosenberg M, Weiser JN (2002) Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect Immun 70:4059–4067CrossRefGoogle Scholar
  81. Sebert ME, Patel KP, Plotnick M, Weiser JN (2005) Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J Bacteriol 187:3969–3979CrossRefGoogle Scholar
  82. Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95CrossRefGoogle Scholar
  83. Sillanpää J, Prakash VP, Nallapareddy SR, Murray BE (2009) Distribution of genes encoding MSCRAMMs and pili in clinical and natural populations of Enterococcus faecium. J Clin Microbiol 47:896–901CrossRefGoogle Scholar
  84. Silver LL (2003) Novel inhibitors of bacterial cell wall synthesis. Curr Opin Microbiol 6:431–438CrossRefGoogle Scholar
  85. Silver LL (2006) Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol 71:996–1005CrossRefGoogle Scholar
  86. Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260CrossRefGoogle Scholar
  87. Summers AO (2006) Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Anim Biotechnol 17:125–135CrossRefGoogle Scholar
  88. Suntharalingam P, Senadheera MD, Mair RW, Lévesque CM, Cvitkovitch DG (2009) The LiaFSR system regulates cell envelope stress response in Streptococcus mutans. J Bacteriol 191:2973–2984CrossRefGoogle Scholar
  89. Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11:35–45CrossRefGoogle Scholar
  90. Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in Gram-positive pathogens. Nat Rev Microbiol 4:509–519CrossRefGoogle Scholar
  91. Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T (2002) Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46:3756–3764CrossRefGoogle Scholar
  92. Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56CrossRefGoogle Scholar
  93. Van Bambeke F, Mingeot-Leclercq M, Struelens MJ, Tulkens PM (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci 29:124–134CrossRefGoogle Scholar
  94. van Dam V, Sijbrandi R, Kol M, Swiezewska E, de Kruijff B, Breukink E (2007) Transmembrane transport of peptidoglycan precursors across model and bacterial membranes. Mol Microbiol 64:1105–1114CrossRefGoogle Scholar
  95. Veiga P, Bulbarela-Sampieri C, Furlan S, Maisons A, Chapot-Chartier M, Erkelenz M, Mervelet P, Noirot P, Frees D, Kuipers OP, Kok J, Gruss A, Buist G, Kulakauskas S (2007) SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis. J Biol Chem 282:19342–19354CrossRefGoogle Scholar
  96. Walker A (2009) Genome watch: probiotics stick it to the man. Nat Rev Microbiol 7:843CrossRefGoogle Scholar
  97. Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038CrossRefGoogle Scholar
  98. Walsh SE, Maillard JY, Simons C, Russell AD (1999) Studies on the mechanisms of the antibacterial action of ortho-phthalaldehyde. J Appl Microbiol 87:702–710CrossRefGoogle Scholar
  99. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571CrossRefGoogle Scholar
  100. Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361–385CrossRefGoogle Scholar
  101. Zhu L, Kreth J (2010) Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Arch Oral Biol 55:385–390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • João P. C. Pinto
    • 1
  • Oscar P. Kuipers
    • 1
    • 2
    • 3
  • Jan Kok
    • 1
    • 2
    • 3
  1. 1.Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
  2. 2.Top Institute Food and NutritionWageningenThe Netherlands
  3. 3.The Netherlands Kluyver Centre for Genomics of Industrial FermentationsNCSBDelftThe Netherlands

Personalised recommendations