Skip to main content

Responses of Lactic Acid Bacteria to Oxidative Stress

  • Chapter
  • First Online:
Stress Responses of Lactic Acid Bacteria

Abstract

Lactic acid bacteria (LAB) include those designated as generally recognized as safe (LABGRAS), used in dairy industries, and opportunistic pathogens like most of the streptococceae. They are usually classified as strict fermentative bacteria producing mainly lactic acid as the end product of carbohydrate catabolism and they are oxygen-sensitive. Oxygen, in conjunction with the reducing environment, can generate highly toxic byproducts: superoxide (O2.−), hydrogen peroxide (H2O2), and hydroxyl radical (HO.). These species damage macromolecules like enzymes, leading to growth arrest or mortality in LAB. However, in the last decade, a basic functional oxygen-dependent respiratory chain has been identified in several LAB, suggesting that they might be better adapted to an oxygen environment than we thought previously. Interestingly, LAB are defective in their capacity to synthesize heme (and quinone in some LAB), both essential cofactors in respiratory chains. This chapter focuses on recent studies of oxygen toxicity, the respiratory metabolism in LAB, exemplified by Lactococcus lactis, and the signaling pathway associated with oxidative stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald FS, Fridovich I (1981a) Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol 145:442–451

    CAS  Google Scholar 

  • Archibald FS, Fridovich I (1981b) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936

    CAS  Google Scholar 

  • Barre O, Mourlane F, Solioz M (2007) Copper induction of lactate oxidase of Lactococcus lactis: a novel metal stress response. J Bacteriol 189:5947–5954

    Article  CAS  Google Scholar 

  • Bermudez-Humaran LG, Cortes-Perez NG, Ah-Leung S, Lefevre F, Yang G, Pang Q, Wu C, Zeng Y, Adel-Patient K, Langella P (2008) Current prophylactic and therapeutic uses of a recombinant Lactococcus lactis strain secreting biologically active interleukin-12. J Mol Microbiol Biotechnol 14:80–89

    Article  CAS  Google Scholar 

  • Blank LM, Koebmann BJ, Michelsen O, Nielsen LK, Jensen PR (2001) Hemin reconstitutes proton extrusion in an H(+)-ATPase-negative mutant of Lactococcus lactis. J Bacteriol 183:6707–6709

    Article  CAS  Google Scholar 

  • Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch Biochem Biophys 474:266–273

    Article  CAS  Google Scholar 

  • Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J (2009a) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 8:28

    Article  Google Scholar 

  • Brooijmans RJ, de Vos WM, Hugenholtz J (2009b) Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 75:3580–3585

    Article  CAS  Google Scholar 

  • Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E (2005) Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5:4794–4807

    Article  CAS  Google Scholar 

  • Cesselin B, Ali D, Gratadoux JJ, Gaudu P, Duwat P, Gruss A, El Karoui M (2009) Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. Microbiology 155:2274–2281

    Article  CAS  Google Scholar 

  • Chatterji D, Fujita N, Ishihama A (1998) The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells 3:279–287

    Article  CAS  Google Scholar 

  • Chen PM, Chen HC, Ho CT, Jung CJ, Lien HT, Chen JY, Chia JS (2008) The two-component system ScnRK of Streptococcus mutans affects hydrogen peroxide resistance and murine macrophage killing. Microbes Infect 10:293–301

    Article  CAS  Google Scholar 

  • Chuang MH, Wu MS, Lo WL, Lin JT, Wong CH, Chiou SH (2006) The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci USA 103:2552–2557

    Article  CAS  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104:7617–7621

    Article  CAS  Google Scholar 

  • Duwat P, Ehrlich SD, Gruss A (1995) The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol 17:1121–1131

    Article  CAS  Google Scholar 

  • Duwat P, Ehrlich SD, Gruss A (1999) Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol Microbiol 31:845–858

    Article  CAS  Google Scholar 

  • Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubiere P, Gruss A (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516

    Article  CAS  Google Scholar 

  • Farr SB, D’Ari R, Touati D (1986) Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci USA 83:8268–8272

    Article  CAS  Google Scholar 

  • Frankenberg L, Brugna M, Hederstedt L (2002) Enterococcus faecalis heme-dependent catalase. J Bacteriol 184:6351–6356

    Article  CAS  Google Scholar 

  • Frees D, Varmanen P, Ingmer H (2001) Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol 41:93–103

    Article  CAS  Google Scholar 

  • Fuangthong M, Helmann JD (2002) The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci USA 99:6690–6695

    Article  CAS  Google Scholar 

  • Galvez A, Abriouel H, Lopez RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  CAS  Google Scholar 

  • Gaudu P, Lamberet G, Poncet S, Gruss A (2003) CcpA regulation of aerobic and respiration growth in Lactococcus lactis. Mol Microbiol 50:183–192

    Article  CAS  Google Scholar 

  • Gaudu P, Niviere V, Petillot Y, Kauppi B, Fontecave M (1996) The irreversible inactivation of ribonucleotide reductase from Escherichia coli by superoxide radicals. FEBS Lett 387:137–140

    Article  CAS  Google Scholar 

  • Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, Rezaiki L, Lamberret G, Sourice S, Duwat P, Gruss A (2002) Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82:263–269

    Article  CAS  Google Scholar 

  • Goffin P, Muscariello L, Lorquet F, Stukkens A, Prozzi D, Sacco M, Kleerebezem M, Hols P (2006) Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth. Appl Environ Microbiol 72:7933–7940

    Article  CAS  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270:13681–23687

    Article  CAS  Google Scholar 

  • Gostick DO, Griffin HG, Shearman CA, Scott C, Green J, Gasson MJ, Guest JR (1999) Two operons that encode FNR-like proteins in Lactococcus lactis. Mol Microbiol 31:1523–1535

    Article  CAS  Google Scholar 

  • Hassan HM, Fridovich I (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395

    Article  CAS  Google Scholar 

  • Higuchi M, Yamamoto Y, Kamio Y (2000) Molecular biology of oxygen tolerance in lactic acid bacteria: functions of NADH oxidases and Dpr in oxidative stress. J Biosc Bioeng 90:484–493

    CAS  Google Scholar 

  • Higuchi M, Yamamoto Y, Poole LB, Shimada M, Sato Y, Takahashi N, Kamio Y (1999) Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J Bacteriol 181:5940–5947

    CAS  Google Scholar 

  • Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003–1013

    CAS  Google Scholar 

  • Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S, Guedon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    CAS  Google Scholar 

  • Huycke MM, Moore D, Joyce W, Wise P, Shepard L, Kotake Y, Gilmore MS (2001) Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 42:729–740

    Article  CAS  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  Google Scholar 

  • Imlay JA, Fridovich I (1991) Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266:6957–6965

    CAS  Google Scholar 

  • Jensen NB, Melchiorsen CR, Jokumsen KV, Villadsen J (2001) Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl Environ Microbiol 67:2677–2682

    Article  CAS  Google Scholar 

  • Kaneko T, Takahashi M, Suzuki H (1990) Acetoin Fermentation by Citrate-Positive Lactococcus lactis subsp. lactis 3022 Grown Aerobically in the Presence of Hemin or Cu. Appl Environ Microbiol 56:2644–2649

    CAS  Google Scholar 

  • Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93:13635–13640

    Article  CAS  Google Scholar 

  • Koebmann B, Blank LM, Solem C, Petranovic D, Nielsen LK, Jensen PR (2008) Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Biotechnol Appl Biochem 50:25–33

    Article  CAS  Google Scholar 

  • Kono Y, Fridovich I (1983) Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J Biol Chem 258:6015–6019

    CAS  Google Scholar 

  • Korshunov S, Imlay JA (2006) Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol 188:6326–6334

    Article  CAS  Google Scholar 

  • Lechardeur D, Fernandez A, Robert B, Gaudu P, Trieu-Cuot P, Lamberet G, Gruss A (2010) The 2-Cys peroxiredoxin alkyl hydroperoxide reductase c binds heme and participates in its intracellular availability in Streptococcus agalactiae. J Biol Chem 285:16032–16041

    Article  CAS  Google Scholar 

  • Lee JW, Helmann JD (2006) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367

    Article  CAS  Google Scholar 

  • Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804–3808

    CAS  Google Scholar 

  • Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P (2004) Characterization and functional analysis of the poxB gene, which encodes pyruvate oxidase in Lactobacillus plantarum. J Bacteriol 186:3749–3759

    Article  CAS  Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349

    Article  CAS  Google Scholar 

  • Madsen SM, Hindre T, Le Pennec JP, Israelsen H, Dufour A (2005) Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB. Mol Microbiol 56:735–746

    Article  CAS  Google Scholar 

  • Magnusson LU, Farewell A, Nystrom T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13:236–242

    Article  CAS  Google Scholar 

  • Martinez A, Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179:5188–5194

    CAS  Google Scholar 

  • Melchiorsen CR, Jokumsen KV, Villadsen J, Johnsen MG, Israelsen H, Arnau J (2000) Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. J Bacteriol 182:4783–4788

    Article  CAS  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  Google Scholar 

  • Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58

    Article  CAS  Google Scholar 

  • O’Connell-Motherway M, van Sinderen D, Morel-Deville F, Fitzgerald GF, Ehrlich SD, Morel P (2000) Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146:935–947

    Google Scholar 

  • Ocana VS, Pesce de Ruiz Holgado AA, Nader-Macias ME (1999) Selection of vaginal H2O2-generating Lactobacillus species for probiotic use. Curr Microbiol 38:279–284

    Article  CAS  Google Scholar 

  • Ouameur AA, Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2005) A Comparative study of Fe(II) and Fe(III) interactions with DNA duplex: major and minor grooves bindings. DNA Cell Biol 24:394–401

    Article  CAS  Google Scholar 

  • Pedersen MB, Garrigues C, Tuphile K, Brun C, Vido K, Bennedsen M, Mollgaard H, Gaudu P, Gruss A (2008) Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 190:4903–4911

    Article  CAS  Google Scholar 

  • Poole RK, Cook GM (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–224

    Article  CAS  Google Scholar 

  • Rallu F, Gruss A, Ehrlich SD, Maguin E (2000) Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol 35:517–528

    Article  CAS  Google Scholar 

  • Rezaiki L, Cesselin B, Yamamoto Y, Vido K, van West E, Gaudu P, Gruss A (2004) Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 53:1331–1342

    Article  CAS  Google Scholar 

  • Rezaiki L, Lamberet G, Derre A, Gruss A, Gaudu P (2008) Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. Mol Microbiol 67:947–957

    Article  CAS  Google Scholar 

  • Rowland P NS, Jensen KF, Larsen S (2000) Structure of dihydroorotate dehydrogenase B: electron transfer between two flavin groups bridged by an iron-sulphur cluster. Structure 8:1227–35

    Article  CAS  Google Scholar 

  • Solem C, Koebmann BJ, Jensen PR (2003) Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J Bacteriol 185:1564–1571

    Article  CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008

    CAS  Google Scholar 

  • Stillman TJ, Upadhyay M, Norte VA, Sedelnikova SE, Carradus M, Tzokov S, Bullough PA, Shearman CA, Gasson MJ, Williams CH, Artymiuk PJ, Green J (2005) The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol 57:1101–1112

    Article  CAS  Google Scholar 

  • Tachon S, Michelon D, Chambellon E, Cantonnet M, Mezange C, Henno L, Cachon R, Yvon M (2009) Experimental conditions affect the site of tetrazolium violet reduction in the electron transport chain of Lactococcus lactis. Microbiology 155:2941–2948

    Article  CAS  Google Scholar 

  • Thibessard A, Borges F, Fernandez A, Gintz B, Decaris B, Leblond-Bourget N (2004) Identification of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress. Appl Environ Microbiol 70:2220–2229

    Article  CAS  Google Scholar 

  • Turner MS, Tan YP, Giffard PM (2007) Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Appl Environ Microbiol 73:6144–6149

    Article  CAS  Google Scholar 

  • van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216

    Article  Google Scholar 

  • Veiga P, Bulbarela-Sampieri C, Furlan S, Maisons A, Chapot-Chartier MP, Erkelenz M, Mervelet P, Noirot P, Frees D, Kuipers OP, Kok J, Gruss A, Buist G, Kulakauskas S (2007) SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis. J Biol Chem 282:19342–19354

    Article  CAS  Google Scholar 

  • Verneuil N, Rince A, Sanguinetti M, Posteraro B, Fadda G, Auffray Y, Hartke A, Giard JC (2005) Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 151:3997–4004

    Article  CAS  Google Scholar 

  • Verneuil N, Sanguinetti M, Le Breton Y, Posteraro B, Fadda G, Auffray Y, Hartke A, Giard JC (2004) Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 72:4424–4431

    Article  CAS  Google Scholar 

  • Vido K, Diemer H, Van Dorsselaer A, Leize E, Juillard V, Gruss A, Gaudu P (2005) Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. J Bacteriol 187:601–610

    Article  CAS  Google Scholar 

  • Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P (2004) Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol 186:1648–1657

    Article  CAS  Google Scholar 

  • Vinella D, Albrecht C, Cashel M, D’Ari R (2005) Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 56:958–970

    Article  CAS  Google Scholar 

  • Wang E, Bauer MC, Rogstam A, Linse S, Logan DT, von Wachenfeldt C (2008) Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol 69:466–478

    Article  CAS  Google Scholar 

  • Willemoes M, Kilstrup M, Roepstorff P, Hammer K (2002) Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase. Proteomics 2:1041–1046

    Article  CAS  Google Scholar 

  • Winstedt L, Frankenberg L, Hederstedt L, von Wachenfeldt C (2000) Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J Bacteriol 182:3863–3866

    Article  CAS  Google Scholar 

  • Yamamoto Y, Fukui K, Koujin N, Ohya H, Kimura K, Kamio Y (2004) Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. J Bacteriol 186:5997–6002

    Article  CAS  Google Scholar 

  • Yamamoto Y, Pargade V, Lamberet G, Gaudu P, Thomas F, Texereau J, Gruss A, Trieu-Cuot P, Poyart C (2006) The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence. Mol Microbiol 62:772–785

    Article  CAS  Google Scholar 

  • Yamamoto Y, Poole LB, Hantgan RR, Kamio Y (2002) An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 184:2931–2939

    Article  CAS  Google Scholar 

  • Yamamoto Y, Poyart C, Trieu-Cuot P, Lamberet G, Gruss A, Gaudu P (2005) Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence. Mol Microbiol 56:525–534

    Article  CAS  Google Scholar 

  • You C, Sekowska A, Francetic O, Martin-Verstraete I, Wang Y, Danchin A (2008) Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis. BMC Microbiol 8:128

    Article  Google Scholar 

  • Zhang W, Wong KK, Magliozzo RS, Kozarich JW (2001) Inactivation of pyruvate formate-lyase by dioxygen: defining the mechanistic interplay of glycine 734 and cysteine 419 by rapid freeze-quench EPR. Biochemistry 40:4123–4130

    Article  CAS  Google Scholar 

  • Zuber P (2004) Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 186:1911–1918

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the UBLO laboratory for stimulating discussions on the dynamics between bacteria and their environment. As the subjects we cover concern a broad scientific area, we apologize for any oversights in failing to mention topics related to the present review. Work reported from our laboratory in this review benefited from funding by the French Research Ministry (the ANR “StrepRespire” project) and Chr. Hansen A/S (Denmark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Gaudu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cesselin, B. et al. (2011). Responses of Lactic Acid Bacteria to Oxidative Stress. In: Tsakalidou, E., Papadimitriou, K. (eds) Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92771-8_6

Download citation

Publish with us

Policies and ethics