Responses of Lactic Acid Bacteria to Osmotic Stress

  • Claire Le Marrec
Part of the Food Microbiology and Food Safety book series (FMFS)


In industrial processes, during human infection, and in nature, lactic acid bacteria (LAB) are frequently exposed to adverse environmental conditions. Among the challenges posed by an ever-changing environment, osmotic stress is a prominent constraint that can stop cell growth and activate specific mechanisms that prevent cell death. This chapter will discuss the current knowledge about the molecular players that allow LAB to contend with hyper- and hypoosmotic stresses. We summarize how these bacteria control turgor by actively modulating the pool of osmotically active solutes in their cytoplasm. The major adaptive strategy to high osmolality is the intracellular accumulation of organic compounds, which are both effective osmoprotectants (efficient at increasing cytoplasmic osmolality, and growth rate) and compatible solutes (without deleterious effects on biopolymer functions, including stability and activity). Coupled with the movement and accumulation of solutes are the induction of stress proteins and the transcriptional regulation of key enzymes. In addition, the emerging mechanisms that sense and transduce the osmotic signal in the cell will be discussed.


Salt Stress Lactic Acid Bacterium Osmotic Stress Compatible Solute Glycine Betaine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Marguerite Dols and Prof. Mohamed Jebbar are gratefully acknowledged for their helpful comments as well as Cate Evans for her help in preparing the manuscript.


  1. Abranches J, Lemos JA, Burne RA (2006) Osmotic responses of Streptococcus mutans UA159. FEMS Microbiol Lett 255:240–246CrossRefGoogle Scholar
  2. Baliarda A, Robert H, Jebbar M, Blanco C, Deschamps A, Le Marrec C (2003a) Potential osmoprotectants for the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila. Int J Food Microbiol 84:13–20CrossRefGoogle Scholar
  3. Baliarda A, Robert H, Jebbar M, Blanco C, Le Marrec C (2003b) Isolation and characterization of ButA, a secondary glycine betaine transport system operating in Tetragenococcus halophila. Curr Microbiol 47:347–351CrossRefGoogle Scholar
  4. Biemans-Oldehinkel E, Poolman B (2003) On the role of the two extracytoplasmic substrate-binding domains in the ABC transporter OpuA. EMBO J 22:5983–5993CrossRefGoogle Scholar
  5. Biemans-Oldehinkel E, Mahmood NA, Poolman B (2006) A sensor for intracellular ionic strength. Proc Natl Acad Sci USA 103:10624–10629CrossRefGoogle Scholar
  6. Bourdineaud JP, Nehmé B, Tesse S, Lonvaud-Funel A (2003) The ftsH gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress. Appl Environ Microbiol 69:2512–2520CrossRefGoogle Scholar
  7. Bourdineaud JP, Nehmé B, Tesse S, Lonvaud-Funel A (2004) A bacterial gene homologous to ABC transporters protects Oenococcus oeni from ethanol and other stress factors in wine. Int J Food Microbiol 92:1–14CrossRefGoogle Scholar
  8. Bouvier J, Bordes P, Romeo Y, Fourçans A, Bouvier I, Gutierrez C (2000) Characterization of OpuA, a glycine-betaine uptake system of Lactococcus lactis. Mol Microbiol Biotechnol 2:199–205Google Scholar
  9. Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145:2543–2548Google Scholar
  10. Cayley S, Record MT (2004) Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein-DNA interactions and growth rate in osmotically stressed Escherichia coli K-12. J Mol Recog 17:488–496CrossRefGoogle Scholar
  11. Csonka LN, Epstein W (1996) Osmoregulation. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (Eds.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC, pp.1210–1223Google Scholar
  12. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122CrossRefGoogle Scholar
  13. Diamant S, Elaihu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591CrossRefGoogle Scholar
  14. El-Sharoud WM (2005) Two-component signal transduction systems as key players in stress response of lactic acid bacteria. Science Progress 88:203–228CrossRefGoogle Scholar
  15. Fang F, Flynn S, Li Y, Claesson MJ, van Pijkeren JP, Collins JK, van Sinderen D, O’Toole PW (2008) Characterization of endogenous plasmids from Lactobacillus salivarius UCC118. Appl Environ Microbiol 74:3216–3228CrossRefGoogle Scholar
  16. Flahaut S, Benachour A, Giard JC, Boutibonnes P, Auffray Y (1996) Defence against lethal treatments and de novo protein synthesis induced by NaCl in Enterococcus faecalis ATCC19433. Arch Microbiol 165:317–324CrossRefGoogle Scholar
  17. Flynn S (2001) Molecular characterisation of bacteriocin producing genes and plasmid encoded functions of the probiotic strain Lactobacillus salivarius subsp. salivarius UCC118. PhD thesis. University College Cork, IrelandGoogle Scholar
  18. Folgering JH, Moe PC, Schuurman-Wolters GK, Blount P, Poolman B (2005) Lactococcus lactis uses MscL as its principal mechanosensitive channel. J Biol Chem 280:8784–8792CrossRefGoogle Scholar
  19. Froger A, Rolland JP, Bron P, Lagrée V, Le Cahérec F, Deschamps S, Hubert JF, Pellerin I, Thomas D, Delamarche C (2001) Functional characterization of a microbial aquaglyceroporin. Microbiology 147:1129–1135Google Scholar
  20. Fukuda D, Watanabe M, Sonezaki S, Sugimoto S, Sonomoto K, Ishizaki A (2002) Molecular characterization and regulatory analysis of dnaK operon of halophilic lactic acid bacterium Tetragenococcus halophila. J Biosci Bioeng 93:388–394Google Scholar
  21. Giard JC, Rincé A, Capiaux H, Auffray Y, Hartke A (2000) Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotrophic effect on cell morphology, stress sensitivity and gene expression in Enterococcus faecalis. J Bacteriol 182:4512–4520CrossRefGoogle Scholar
  22. Glaasker E, Konings WN, Poolman B (1996a) Glycine betaine fluxes in Lactobacillus plantarum during osmostasis and hyper- and hypo-osmotic shock. J Biol Chem 271:10060–10065CrossRefGoogle Scholar
  23. Glaasker E, Konings WN, Poolman B (1996b) Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol 178:575–582Google Scholar
  24. Glaasker E, Tjan FS, Ter Steeg PF, Konings WN, Poolman B (1998a) Physiological response of Lactobacillus plantarum to salt and nonelectrolyte stress. J Bacteriol 180:4718–4723Google Scholar
  25. Glaasker E, Heuberger EH, Konings WN, Poolman B (1998b) Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum. J Bacteriol 180:5540–5546Google Scholar
  26. Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51CrossRefGoogle Scholar
  27. Hörmann S, Scheyhing C, Behr J, Pavlovic M, Ehrmann M, Vogel RF (2006) Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451(T). Proteomics 6:1878–1885CrossRefGoogle Scholar
  28. Hutkins RW, Ellefson WL, Kashket ER (1987) Betaine transport imparts osmotolerance on a strain of Lactobacillus acidophilus. Appl Environ Microbiol 53:2275–2281Google Scholar
  29. Ingraham JL, Marr AG (1996) Effects of temperature, pressure, pH, and osmotic stress on growth. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (Eds.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC, pp. 1570–1578Google Scholar
  30. Itoi S, Abe T, Washio S, Ikuno E, Kanomata Y, Sugita H (2008) Isolation of halotolerant Lactococcus lactis subsp. lactis from intestinal tract of coastal fish. Int J Food Microbiol 21:116–121CrossRefGoogle Scholar
  31. Jewell JB, Kashket ER (1991) Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532. Appl Environ Microbiol 57:2829–2833Google Scholar
  32. Jung H (2002) The sodium/substrate symporter family: structural and functional features. FEBS Lett 529:73–77CrossRefGoogle Scholar
  33. Kets EP, de Bont JAM (1994) Protective effects of betaine on survival of Lactobacillus plantarum subjected to drying. FEMS Microbiol Lett 116:251–256CrossRefGoogle Scholar
  34. Kets EP, Galinski EA, de Bont JAM (1994) Carnitine: a novel compatible solute in Lactobacillus plantarum. Arch Microbiol 162:243–248CrossRefGoogle Scholar
  35. Kets EP, Teunissen P, de Bont JAM (1996) Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Appl Environ Microbiol 62:259–261Google Scholar
  36. Kets EP, Groot M, Galinski EA, de Bont JAM (1997) Choline and acetylcholine: novel cationic osmolytes in Lactobacillus plantarum. Appl Microbiol Biotechnol 48:94–98CrossRefGoogle Scholar
  37. Kilstrup M, Jacobsen S, Hammer K, Voensen FK (1997) Induction of heat shock proteins Dank, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol 63:1826–1837Google Scholar
  38. Koch S, Oberson G, Eugster-Meier E, Meile L, Lacroix C (2007) Osmotic stress induced by salt increases cell yield, autolytic activity, and survival of lyophilization of Lactobacillus delbrueckii subsp. lactis. Int J Food Microbiol 117:36–42CrossRefGoogle Scholar
  39. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Systems 4:6Google Scholar
  40. Le Breton Y, Pichereau V, Flahaut S, Auffray Y, Rincé A (2002) Identification of new genes related to osmotic adaptation in Enterococcus faecalis. Sci Alim 22:87–96CrossRefGoogle Scholar
  41. Le Marrec C, Bon E, Lonvaud-Funel A (2007) Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int J Food Microbiol 115:335–342CrossRefGoogle Scholar
  42. Liu Y, Bolen DW (1995) The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34:12884–12891CrossRefGoogle Scholar
  43. Liu M, Hanks TS, Zhang J, McClure MJ, Siemsen DW, Elser J, Quinn MT, Lei B (2006) Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator vicR. Microbiol 152:967–978CrossRefGoogle Scholar
  44. Lorca GL, Barabote RD, Zlotopolski V, Tran C, Winnen B, Hvorup RN, Stonestrom AJ, Nguyen E, Huang LW, Kim DS, Saier MH Jr (2007) Transport capabilities of eleven Gram-positive bacteria: comparative genomic analyses. Biochim Biophys Acta 1768:1342–1366CrossRefGoogle Scholar
  45. Machado MC, Lopez CS, Heras H, Rivas EA (2004) Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422:61–70CrossRefGoogle Scholar
  46. Mahmood NA, Biemans-Oldehinkel E, Poolman B (2009) Engineering of ion sensing by the cystathionine beta-synthase module of the ABC transporter OpuA. J Biol Chem 284:14368–14376CrossRefGoogle Scholar
  47. Marceau A, Zagorec M, Chaillou S, Méra T, Champomier-Vergès MC (2004) Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperature and addition of NaCl. Appl Environ Microbiol 70:7260–7268CrossRefGoogle Scholar
  48. Mille Y, Obert JP, Beney L, Gervais P (2004) New drying process for lactic bacteria based on their dehydration behavior in liquid medium. Biotechnol Bioeng 88:71–76CrossRefGoogle Scholar
  49. Mille Y, Beney L, Gervais P (2005) Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test. Biotechnol Bioeng 92:479–484CrossRefGoogle Scholar
  50. Molenaar D, Hagting A, Alkema H, Driessen AJ, Konings WN (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol 175:5438–5444Google Scholar
  51. Molina-Höppner A, Doster W, Vogel RF, Gänzle MG (2004) Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol 70:2013–2020CrossRefGoogle Scholar
  52. Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY (1999) Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 181:6238–6246Google Scholar
  53. Obis D, Guillot A, Mistou MY (2001) Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system. FEMS Microbiol Lett 202:39–44CrossRefGoogle Scholar
  54. O’Connell-Motherway M, van Sinderen D, Morel-Deville F, Fitzgerald GF, Ehrlich SD, Morel P (2000) Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146:935–947Google Scholar
  55. Patzlaff JS, van der Heide T, Poolman B (2003) The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J Biol Chem 278:29546–29551CrossRefGoogle Scholar
  56. Pichereau V, Bourot S, Flahaut S, Blanco C, Auffray Y, Bernard T (1999) The osmoprotectant glycine betaine inhibits salt-induced cross-tolerance towards lethal treatment in Enterococcus faecalis. Microbiology 145:427–435CrossRefGoogle Scholar
  57. Piuri M, Sanchez-Rivas C, Ruzal SM (2003) Adaptation to high salt in Lactobacillus: role of peptides and proteolytic enzymes. J Appl Microbiol 95:372–379CrossRefGoogle Scholar
  58. Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98:84–95CrossRefGoogle Scholar
  59. Poirier I, Marechal PJ, Gervais P (1997) Effects of kinetics of water potential variation on bacterial viability. J Appl Microbiol 82:101–106CrossRefGoogle Scholar
  60. Poirier I, Marechal PJ, Gervais P (1998) Escherichia coli and Lactobacillus plantarum responses to osmotic stress. Appl Microbiol Biotechnol 50:704–709CrossRefGoogle Scholar
  61. Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925CrossRefGoogle Scholar
  62. Robert H, Le Marrec C, Blanco C, Jebbar M (2000) Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl Environ Microbiol 66:509–517CrossRefGoogle Scholar
  63. Romantsov T, Guan Z, Wood JM (2009) Cardiolipin and the osmotic stress responses of bacteria. Biochim Biophys Acta 1788:2092–2100CrossRefGoogle Scholar
  64. Romeo Y, Obis D, Bouvier J, Guillot A, Fourçans A, Bouvier I, Gutierrez C, Mistou MY (2003) Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA. Mol Microbiol 47:1135–1147CrossRefGoogle Scholar
  65. Romeo Y, Bouvier J, Gutierrez C (2007) Osmotic regulation of transcription in Lactococcus lactis: ionic strength-dependent binding of the BusR repressor to the busA promoter. FEBS Lett 581:3387–3390CrossRefGoogle Scholar
  66. Santivarangkna C, Kulozik U, Foerst P (2008a) Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. J Appl Microbiol 105:1–13CrossRefGoogle Scholar
  67. Santivarangkna C, Higl B, Foerst P (2008b) Protection mechanism of sugars during stages of preparation process during dried lactic acid starter cultures. Food Microbiol 25:429–441CrossRefGoogle Scholar
  68. Shabala L, Bowman J, Brown J, Ross T, McMeekin T, Shaabala S (2009) Ion transport and osmotic adjustment in response to ionic and non-ionic osmotic. Environ Microbiol 11:137–148CrossRefGoogle Scholar
  69. Sheehan VM, Sleator RD, Fitzgerald GF, Hill C (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:2170–2177CrossRefGoogle Scholar
  70. Sheehan VM, Sleator RD, Hill C, Fitzgerald GF (2007) Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology 153:3563–3571CrossRefGoogle Scholar
  71. Smeds A, Varmanen P, Palva A (1998) Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. J Bacteriol 180:6148–6153Google Scholar
  72. Smith LT (1996) Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces. Appl Environ Microbiol 62:3088–3093Google Scholar
  73. Sunny-Roberts EO, Knorr D (2008) Evaluation of the response of Lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress. Food Microbiol 25:183–189CrossRefGoogle Scholar
  74. Svensäter G, Sjögreen B, Hamilton IR (2000) Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146:107–117Google Scholar
  75. Tymczyszyn EE, Gómez-Zavaglia A, Disalvo EA (2005) Influence of the growth at high ­osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. Arch Biochem Biophys 443:66–73CrossRefGoogle Scholar
  76. Uguen P, Hamelin, J, Le Pennec JP, Blanco C (1999) Influence of osmolarity and the presence of an osmoprotectant on Lactococcus lactis growth and bacteriocin production. Appl Environ Microbiol 65:291–293Google Scholar
  77. van Der Heide T, Poolman B (2000a) Glycine betaine transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity. J Bacteriol 182:203–206CrossRefGoogle Scholar
  78. van der Heide T, Poolman B (2000b) Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc Natl Acad Sci USA 97:7102–7106CrossRefGoogle Scholar
  79. Velamakanni S, Lau CH, Gutmann DA, Venter H, Barrera NP, Seeger MA, Woebking B, Matak-Vinkovic D, Balakrishnan L, Yao Y, U EC, Shilling RA, Robinson CV, Thorn P, van Veen HW (2009) A multidrug ABC transporter with a taste for salt. PLoS One 4:6137CrossRefGoogle Scholar
  80. Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290CrossRefGoogle Scholar
  81. Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: possible role for K  +  in turgor regulation. J Gen Microbiol 136:2521–2526Google Scholar
  82. Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70:6738–6747CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Ecole Nationale Supérieure de Chimie Biologie Physique, Institut Polytechnique de BordeauxUnité de Recherche Œnologie - EA 4577 - USC 1219 INRA.Villenave d’OrnonFrance

Personalised recommendations