Responses of Lactic Acid Bacteria to Heat Stress

Part of the Food Microbiology and Food Safety book series (FMFS)


Lactic acid bacteria (LAB), like other living cells, need to adjust their physiology to cope with heat stress. Commonly, bacteria respond to a sudden increase in temperature by rapid changes in gene expression that increase the levels of a set of proteins called heat-shock proteins (HSPs). The two most common classes of HSPs are molecular chaperones (which refold denatured proteins) and energy-dependent proteases (which proteolytically dispose of denatured proteins). Although HSPs are universally conserved, the mechanisms behind their regulated expression exhibit considerable variation. Much of our current understanding of bacterial heat-stress-response gene-regulation mechanisms is derived from the Escherichia coli and Bacillus subtilis model systems. Here we discuss specific aspects of the heat-shock response and its regulation in LAB and Bifidobacteria, with a focus on mechanistic studies.


Lactic Acid Bacterium Bifidobacterium Longum Lactobacillus Bulgaricus Follow Heat Shock Nonnative Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912CrossRefGoogle Scholar
  2. Bellier A, Mazodier P (2004) ClgR, a novel regulator of clp and lon expression in Streptomyces. J Bacteriol 186:3238–3248CrossRefGoogle Scholar
  3. Chastanet A, Msadek T (2003) ClpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in gram-positive bacteria. J Bacteriol 185:683–687CrossRefGoogle Scholar
  4. Chastanet A, Fert J, Msadek T (2003) Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol 47:1061–1073CrossRefGoogle Scholar
  5. Chaussee MA, Callegari EA, Chaussee MS (2004) Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in Streptococcus pyogenes. J Bacteriol 186:7091–7099CrossRefGoogle Scholar
  6. Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184:5661–5671CrossRefGoogle Scholar
  7. Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–132CrossRefGoogle Scholar
  8. Derré I, Rapoport G, Msadek T (2000) The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37°C. Mol Microbiol 38:335–347CrossRefGoogle Scholar
  9. Duwat P, Ehrlich SD, Gruss A (1995a) The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol 17:1121–1131CrossRefGoogle Scholar
  10. Duwat P, Sourice S, Ehrlich SD, Gruss A (1995b) recA Gene involvement in oxidative and thermal stress in Lactococcus lactis. Dev Biol Stand 85:455–467Google Scholar
  11. Duwat P, Ehrlich SD, Gruss A (1999) Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol Microbiol 31:845–858CrossRefGoogle Scholar
  12. Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52:285–302CrossRefGoogle Scholar
  13. Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S (2005) The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57:576–591CrossRefGoogle Scholar
  14. Fiocco D, Collins M, Muscariello L, Hols P, Kleerebezem M, Msadek T, Spano G (2009) The Lactobacillus plantarum ftsH gene is a novel member of the CtsR stress response regulon. J Bacteriol 191:1688–1694CrossRefGoogle Scholar
  15. Fiocco D, Capozzi V, Collins M, Gallone A, Hols P, Guzzo J, Weidmann S, Rieu A, Msadek T, Spano G (2010) Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol 192:896–900CrossRefGoogle Scholar
  16. Frees D, Ingmer H (1999) ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 31:79–87CrossRefGoogle Scholar
  17. Frees D, Varmanen P, Ingmer H (2001) Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol 41:93–103CrossRefGoogle Scholar
  18. Frees D, Chastanet A, Qazi S, Sørensen K, Hill P, Msadek T, Ingmer H (2004) Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54:1445–1462CrossRefGoogle Scholar
  19. Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63:1285–1295CrossRefGoogle Scholar
  20. Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634CrossRefGoogle Scholar
  21. Gerth U, Krüger E, Derre I, Msadek T, Hecker M (1998) Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28:787–802CrossRefGoogle Scholar
  22. Gerth U, Kirstein J, Mostertz J, Waldminghaus T, Miethke M, Kock H, Hecker M (2004) Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol 186:179–191CrossRefGoogle Scholar
  23. Giliberti G, Naclerio G, Martirani L, Ricca E, De Felice M (2002) Alteration of cell morphology and viability in a recA mutant of Streptococcus thermophilus upon induction of heat shock and nutrient starvation. Gene 295:1–6Google Scholar
  24. Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823CrossRefGoogle Scholar
  25. Graham MR, Smoot LM, Migliaccio CA, Virtaneva K, Sturdevant DE, Porcella SF, Federle MJ, Adams GJ, Scott JR, Musser JM (2002) Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci USA 99:13855–13860CrossRefGoogle Scholar
  26. Grandvalet C, Coucheney F, Beltramo C, Guzzo J (2005) CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 187:5614–5623CrossRefGoogle Scholar
  27. Han MJ, Yun H, Lee SY (2008) Microbial small heat shock proteins and their use in biotechnology. Biotechnol Adv 26:591–609CrossRefGoogle Scholar
  28. Hendrick JP, Hartl F-U (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384CrossRefGoogle Scholar
  29. Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231CrossRefGoogle Scholar
  30. Kirstein J, Turgay K (2005) A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis. J Mol Microbiol Biotechnol 9:182–188CrossRefGoogle Scholar
  31. Kirstein J, Zuhlke D, Gerth U, Turgay K, Hecker M (2005) A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J 24:3435–3445CrossRefGoogle Scholar
  32. Kirstein J, Schlothauer T, Dougan DA, Lilie H, Tischendorf G, Mogk A, Bukau B, Turgay K (2006) Adaptor protein controlled oligomerization activates the AAA  +  protein ClpC. EMBO J 25:1481–1491CrossRefGoogle Scholar
  33. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995CrossRefGoogle Scholar
  34. Koch B, Kilstrup M, Vogensen FK, Hammer K (1998) Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J Bacteriol 180:3873–3881Google Scholar
  35. Kock H, Gerth U, Hecker M (2004) The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J Bacteriol 186:5856–5864Google Scholar
  36. Krüger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180:6681–6688Google Scholar
  37. Krüger E, Msadek T, Hecker M (1996) Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 20:713–723CrossRefGoogle Scholar
  38. Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M (2000) The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 182:3259–3265CrossRefGoogle Scholar
  39. Krüger E, Zühlke D, Witt E, Ludwig H, Hecker M (2001) Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20:852–863CrossRefGoogle Scholar
  40. Miethke M, Hecker M, Gerth U (2006) Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188:4610–4619CrossRefGoogle Scholar
  41. Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590CrossRefGoogle Scholar
  42. Nakano S, Zheng G, Nakano MM, Zuber P (2002) Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis. J Bacteriol 184:3664–3670CrossRefGoogle Scholar
  43. Nakano S, Nakano MM, Zhang Y, Leelakriangsak M, Zuber P (2003) A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci USA 100:4233–4238CrossRefGoogle Scholar
  44. Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8CrossRefGoogle Scholar
  45. Nilsson D, Lauridsen AA, Tomoyasu T, Ogura T (1994) A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product. Microbiology 140:2601–2610CrossRefGoogle Scholar
  46. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051CrossRefGoogle Scholar
  47. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517CrossRefGoogle Scholar
  48. Robertson GT, Ng WL, Foley J, Gilmour R, Winkler ME (2002) Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 184:3508–3520CrossRefGoogle Scholar
  49. Robertson GT, Ng WL, Gilmour R, Winkler ME (2003) Essentiality of clpX, but not clpP, clpL, clpC, or clpE, in Streptococcus pneumoniae R6. J Bacteriol 185:2961–2966CrossRefGoogle Scholar
  50. Savijoki K, Ingmer H, Frees D, Vogensen FK, Palva A, Varmanen P (2003) Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Mol Microbiol 50:609–621CrossRefGoogle Scholar
  51. Savijoki K, Suokko A, Palva A, Valmu L, Kalkkinen N, Varmanen P (2005) Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by [35S]methionine labelling and two-dimensional gel electrophoresis. FEMS Microbiol Lett 248:207–215CrossRefGoogle Scholar
  52. Schumann W, Hecker M, Msadek T (2002) Regulation and function of heat-inducible genes in Bacillus subtilis. In: Sonenshein AL, Hoch JA, Losick R (Eds.), Bacillus subtilis and its closest relatives: From genes to cells. ASM Press, Washington, DC, pp. 359–368Google Scholar
  53. Schlothauer T, Mogk A, Dougan DA, Bukau B, Turgay K (2003) MecA, an adaptor protein necessary for ClpC chaperone activity. Proc Natl Acad Sci USA 100:2306–2311CrossRefGoogle Scholar
  54. Smeds A, Varmanen P, Palva A (1998) Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. J Bacteriol 180:6148–6153Google Scholar
  55. Suokko A, Savijoki K, Malinen E, Palva A, Varmanen P (2005) Characterization of a mobile clpL gene from Lactobacillus rhamnosus. Appl Environ Microbiol 71:2061–2069CrossRefGoogle Scholar
  56. Suokko A, Poutanen M, Savijoki K, Kalkkinen N, Varmanen P (2008) ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8:1029–1041CrossRefGoogle Scholar
  57. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessieres P, Weissenbach J, Ehrlich SD, Maguin E (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279CrossRefGoogle Scholar
  58. Varhimo E, Savijoki K, Jalava J, Kuipers OP, Varmanen P (2007) Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis. J Bacteriol 189:5210–5222CrossRefGoogle Scholar
  59. Varmanen P, Ingmer H, Vogensen FK (2000) ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Microbiology 146:1447–1455Google Scholar
  60. Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H (2003) ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J Bacteriol 185:5117–5124CrossRefGoogle Scholar
  61. Ventura M, Zhang Z, Cronin M, Canchaya C, Kenny JG, Fitzgerald GF, van Sinderen D (2005a) The ClgR protein regulates transcription of the clpP operon in Bifidobacterium breve UCC 2003. J Bacteriol 187:8411–8426CrossRefGoogle Scholar
  62. Ventura M, Fitzgerald GF, van Sinderen D (2005b) Genetic and transcriptional organization of the clpC locus in Bifidobacterium breve UCC 2003. Appl Environ Microbiol 71:6282–6291CrossRefGoogle Scholar
  63. Ventura M, Kenny JG, Zhang Z, Fitzgerald GF, van Sinderen D (2005c) The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction. Microbiology 151:2861–2872CrossRefGoogle Scholar
  64. Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D (2006) How high G  +  C Gram-positive bacteria and in particular Bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiol Rev 30:734–759CrossRefGoogle Scholar
  65. Ventura M, Canchaya C, Zhang Z, Fitzgerald GF, van Sinderen D (2007) Molecular characterization of hsp20, encoding a small heat shock protein of Bifidobacterium breve UCC2003. Appl Environ Microbiol 73:4695–703CrossRefGoogle Scholar
  66. Wilson AC, Wu CC, Yates JR III, Tan M (2005) Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein. J Bacteriol 187:7535–7342CrossRefGoogle Scholar
  67. Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70:6738–6747CrossRefGoogle Scholar
  68. Zomer A, Fernandez M, Kearney B, Fitzgerald GF, Ventura M, van Sinderen D (2009) An interactive regulatory network controls stress response in Bifidobacterium breve UCC2003. J Bacteriol 191:7039–7049CrossRefGoogle Scholar
  69. Zotta T, Asterinou K, Rossano R, Ricciardi A, Varcamonti M, Parente E (2009) Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39. Int J Food Microbiol 129:211–220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations