Skip to main content

Future Challenges in Lactic Acid Bacteria Stress Physiology Research

  • Chapter
  • First Online:
Stress Responses of Lactic Acid Bacteria

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

Over the past few decades, the stress physiology of lactic acid bacteria (LAB) has been a field of rigorous research. The economic importance of starter and probiotic LAB and, in some instances, the severe pathogenic nature of certain LAB species have been the key reasons fueling stress research in this group of bacteria. The field has greatly benefited from recent advances in sequencing technologies, bioinformatics, functional genomics, and proteomics/metabolomics. In the preceding parts of this book, the state of the art of the stress physiology of LAB has been presented. In this concluding chapter, we will attempt to summarize the most important areas that could be the focus of research in the field and that we consider will significantly improve our understanding of stress behavior in LAB. Stressful conditions can have a profound effect on cell proliferation, and in many cases they induce deoxyribonucleic acid (DNA) damage. However, almost nothing is known about how LAB regulate cell cycle progression, monitor genome integrity, and repair DNA damage. Stress-induced mutagenesis is an established stress response in several bacteria and other organisms, but the overall phenomenon and its importance have been very rarely investigated in LAB. Despite the work that has been done on two-component systems, our understanding of how LAB sense and signal stress is still rather basic. Sensing mechanisms and signal transduction pathways are important targets for manipulating the robustness of LAB. Advances in single-cell technologies may also allow us to better assess the role of intrapopulation diversity that has already been shown to exist within stressed LAB cells. Another topic that appeared in the literature only recently is the stress imposed to LAB during growth in mixed cultures. Such research can shed light on how LAB overcome the fierce competition of other micro-organisms in the ecological niches they occupy. Finally, it will be critical to expand stress research to more LAB species and strains than those traditionally employed by researchers in the field to identify novel stress responses or to better appreciate mechanisms that are species- or even subspecies-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aertsen A, Michiels CW (2005) Diversify or die: generation of diversity in response to stress. Crit Rev Microbiol 31:69–78

    Article  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    Article  CAS  Google Scholar 

  • Booth IR (2002) Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19–30

    Article  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 68:538–559

    Article  CAS  Google Scholar 

  • Davidson CJ, Surette MG (2008) Individuality in bacteria. Annu Rev Genet 42:253–268

    Article  CAS  Google Scholar 

  • Delcour J, Ferain T, Hols P (2000) Advances in the genetics of thermophilic lactic acid bacteria. Curr Opin Biotechnol 11:497–504

    Article  CAS  Google Scholar 

  • Ducret A, Maisonneuve E, Notareschi P, Grossi A, Mignot T, Dukan S (2009) A microscope automated fluidic system to study bacterial processes in real time. PLoS One 4:e7282

    Article  Google Scholar 

  • Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  CAS  Google Scholar 

  • Ercolini D, Hill PJ, Dodd CE (2003) Bacterial community structure and location in Stilton cheese. Appl Environ Microbiol 69:3540–3548

    Article  CAS  Google Scholar 

  • Even S, Charlier C, Nouaille S, Ben Zakour NL, Cretenet M, Cousin FJ, Gautier M, Cocaign-Bousquet M, Loubière P, Le Loir Y (2009) Staphylococcus aureus virulence expression is impaired by Lactococcus lactis in mixed cultures. Appl Environ Microbiol 75:4459–4472

    Article  CAS  Google Scholar 

  • Fitzsimons NA, Cogan TM, Condon S, Beresford T (2001) Spatial and temporal distribution of non-starter lactic acid bacteria in Cheddar cheese. J Appl Microbiol 90:600–608

    Article  CAS  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  CAS  Google Scholar 

  • Frenkiel-Krispin D, Minsky A (2006) Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans. J Struct Biol 156:311–319

    Article  CAS  Google Scholar 

  • Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435

    Article  CAS  Google Scholar 

  • Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM (2008) Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 4:e1000208

    Article  Google Scholar 

  • Grandvalet C, Coucheney F, Beltramo C, Guzzo J (2005) CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 187:5614–5623

    Article  CAS  Google Scholar 

  • Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J (2010) RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8:857–866

    Article  CAS  Google Scholar 

  • Hassan AN, Ipsen R, Janzen T, Qvist KB (2003) Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. J Dairy Sci 86:1632–1638

    Article  CAS  Google Scholar 

  • Hemm MR, Paul BJ, Miranda-Rios J, Zhang A, Soltanzad N, Storz G (2010) Small stress response proteins in Escherichia coli: proteins missed by classical proteomic studies. J Bacteriol 192:46–58

    Article  CAS  Google Scholar 

  • Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F (2009) Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75:2062–2073

    Article  CAS  Google Scholar 

  • Hoch JA, Varughese KI (2001) Keeping signals straight in phosphorelay signal transduction. J Bacteriol 183:4941–4949

    Article  CAS  Google Scholar 

  • Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S, Guédon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    CAS  Google Scholar 

  • Jeanson S, Chadoeuf J, Madec MN, Aly S, Floury J, Brocklehurst TF, Lortal S (2011) Spatial distribution of bacterial colonies in a model cheese. Appl Environ Microbiol. 77:1493–1500

    Article  CAS  Google Scholar 

  • Katayama T, Ozaki S, Keyamura K, Fujimitsu K (2010) Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 8:163–170

    Article  CAS  Google Scholar 

  • Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E (2005) Genomic features of lactic acid bacteria affecting bioprocessing and health. FEMS Microbiol Rev 29:393–409

    Article  CAS  Google Scholar 

  • Klein G, Dartigalongue C, Raina S (2003) Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol 48:269–285

    Article  CAS  Google Scholar 

  • Kramer R (2010) Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Rec 10:217–229

    Article  Google Scholar 

  • Lacour S, Doublet P, Obadia B, Cozzone AJ, Grangeasse C (2006) A novel role for protein-tyrosine kinase Etk from Escherichia coli K-12 related to polymyxin resistance. Res Microbiol 157:637–641

    Article  CAS  Google Scholar 

  • Levine A, Vannier F, Absalon C, Kuhn L, Jackson P, Scrivener E, Labas V, Vinh J, Courtney P, Garin J, Séror SJ (2006) Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6:2157–2173

    Article  CAS  Google Scholar 

  • Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6:705–712

    Article  CAS  Google Scholar 

  • Liu JM, Camilli A (2010) A broadening world of bacterial small RNAs. Curr Opin Microbiol 13:18–23

    Article  CAS  Google Scholar 

  • Lopez C, Maillard MB, Briard-Bion V, Camier B, Hannon JA (2006) Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J Agric Food Chem 54:5855–5867

    Article  CAS  Google Scholar 

  • Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320:65–68

    Article  CAS  Google Scholar 

  • Ly-Chatain MH, Le ML, Thanh ML, Belin J-M, Wachι Y (2010) Cell surface properties affect colonisation of raw milk by lactic acid bacteria at the microstructure level. Food Res Int 43:1594–1602

    Article  CAS  Google Scholar 

  • Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6:697–707

    Article  CAS  Google Scholar 

  • Machielsen R, van Alen-Boerrigter IJ, Koole LA, Bongers RS, Kleerebezem M, Van Hylckama Vlieg JE (2010) Indigenous and environmental modulation of frequencies of mutation in Lactobacillus plantarum. Appl Environ Microbiol 76:1587–1595

    Article  CAS  Google Scholar 

  • MacLean D, Jones JD, Studholme DJ (2009) Application of “next-generation” sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296

    Google Scholar 

  • Majakovic I (2010) Protein phosphorylation in bacteria. Microbe 5:21–25

    Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  Google Scholar 

  • Marcellino SN, Benson DR (1992) Scanning electron and light microscopic study of microbial succession on Bethlehem St. Nectaire cheese. Appl Environ Microbiol 58:3448–3454

    CAS  Google Scholar 

  • Mills DA (2001) Mutagenesis in the post genomics era: tools for generating insertional mutations in the lactic acid bacteria. Curr Opin Biotechnol 12:503–509

    Article  CAS  Google Scholar 

  • Mott ML, Berger JM (2007) DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5:343–354

    Article  CAS  Google Scholar 

  • Muller S, Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587

    Google Scholar 

  • Parker ML, Gunning PA, Macedo AC, Malcata FX, Brocklehurst TF (1998) The microstructure and distribution of micro-organisms within mature Serra cheese. J Appl Microbiol 84:523–530

    Article  CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  Google Scholar 

  • Rajagopal L, Clancy A, Rubens CE (2003) A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 278:14429–14441

    Article  CAS  Google Scholar 

  • Rehman S-U, Farkye NY, Drake M (2003) Reduced-fat Cheddar cheese from a mixture of cream and liquid milk protein concentrate. Int J Dairy Technol 56:94–98

    Article  Google Scholar 

  • Robleto EA, Yasbin R, Ross C, Pedraza-Reyes M (2007) Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress. Crit Rev Biochem Mol Biol 42:327–339

    Article  CAS  Google Scholar 

  • Romby P, Charpentier E (2010) An overview of RNAs with regulatory functions in Gram-positive bacteria. Cell Mol Life Sci 67:217–237

    Article  CAS  Google Scholar 

  • Rosen R, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004) Highly phosphorylated bacterial proteins. Proteomics 4:3068–3077

    Article  CAS  Google Scholar 

  • Schlacher K, Goodman MF (2007) Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat Rev Mol Cell Biol 8:587–594

    Article  CAS  Google Scholar 

  • Schumann W (2007) Bacterial stress sensors. In: Atassi MZ (Ed.), Protein reviews. Springer, New York

    Google Scholar 

  • Siezen RJ, Wilson G (2010) Probiotics genomics. Microb Biotechnol 3:1–9

    Article  CAS  Google Scholar 

  • Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, Mijakovic I, Macek B (2008a) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8:3486–3493

    Article  CAS  Google Scholar 

  • Soufi B, Jers C, Hansen ME, Petranovic D, Mijakovic I (2008b) Insights from site-specific phosphoproteomics in bacteria. Biochim Biophys Acta 1784:186–192

    CAS  Google Scholar 

  • Storz G, Hengge-Aronis R (2000) Bacterial stress responses. ASM Press, Washington, DC

    Google Scholar 

  • Sugimoto S, Abdullah Al M, Sonomoto K (2008) Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties. J Biosci Bioeng 106:324–336

    Article  CAS  Google Scholar 

  • Sun X, Ge F, Xiao CL, Yin XF, Ge R, Zhang LH, He QY (2010) Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res 9:275–282

    Article  CAS  Google Scholar 

  • Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167:523–530

    Article  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56

    Article  CAS  Google Scholar 

  • van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216

    Article  Google Scholar 

  • van Schaik W, Abee T (2005) The role of sigmaB in the stress response of Gram-positive bacteria—targets for food preservation and safety. Curr Opin Biotechnol 16:218–224

    Article  Google Scholar 

  • Varhimo E, Savijoki K, Jalava J, Kuipers OP, Varmanen P (2007) Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis. J Bacteriol 189:5210–5222

    Article  CAS  Google Scholar 

  • Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210

    Article  CAS  Google Scholar 

  • Walker GC, Smith BT, Sutton M (2000) The SOS response to DNA damage. In: Storz G, Hengge-Aronis R (Eds.), Bacterial stress responses. ASM Press, Washington, DC, pp. 131–144

    Google Scholar 

  • Wang JD, Levin PA (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7:822–827

    Article  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  CAS  Google Scholar 

  • Yother J, Trieu-Cuot P, Klaenhammer TR, De Vos WM (2002) Genetics of streptococci, lactococci, and enterococci: review of the Sixth International Conference. J Bacteriol 184:6085–6092

    Article  CAS  Google Scholar 

  • Zhong J, Molina H, Pandey A (2007) Phosphoproteomics. Curr Protoc Protein Sci, Chapter 24:Unit 24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Papadimitriou, K., Kok, J. (2011). Future Challenges in Lactic Acid Bacteria Stress Physiology Research. In: Tsakalidou, E., Papadimitriou, K. (eds) Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92771-8_21

Download citation

Publish with us

Policies and ethics