Skip to main content

Storing Lactic Acid Bacteria: Current Methodologies and Physiological Implications

  • Chapter
  • First Online:
Book cover Stress Responses of Lactic Acid Bacteria

Abstract

The high viability of lactic acid bacteria (LAB) during storage is greatly important for starter cultures used for the direct inoculation to food matrices and for the development of probiotic products. The established methods for preservation are freezing and freeze-drying, in which cells are maintained in frozen and dried forms. The frozen cells should be kept at a low storage temperature, such as −80°C, and rapid thawing is recommended for cells frozen with liquid nitrogen. The dried cells should have a low moisture content (<4%). They should be stored at a low relative humidity and temperature and rehydrated in a warm rehydration medium. In addition to these established methodologies, dried cells can be prepared by alternative drying processes such as spray-, fluidized bed-, and vacuum-drying. The viability of frozen and dried cells can be improved by the addition of protectants such as skim milk and sugars. The physiological state of LAB plays a crucial role, and an increased viability can be obtained by the sublethal stress treatment of cells. Exposing LAB cells to a mild stress triggers cells’ protective mechanisms to subsequent stresses occurring during the preservation processes. These stresses are, for example, the entry of cells to the stationary phase; osmotic, heat, cold, and acid shock; as well as genetic modification of genes related to those stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera JM, Karel M (1997) Preservation of biological materials under desiccation. Crit Rev Food Sci Nutr 37:287–309

    Article  CAS  Google Scholar 

  • Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15:399–409

    Article  CAS  Google Scholar 

  • Andersen AB, Fog-Peterson MS, Larsen H, Skibsted LH (1999) Storage stability of freeze-dried starter cultures (Streptococcus thermophilus) as related to physical state of freezing matrix. Food Sci Technol 32:540–547

    CAS  Google Scholar 

  • Baati L, Fabre-Gea C, Auriol D, Blanc PJ (2000) Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels. Int J Food Microbiol 59:241–247

    Article  CAS  Google Scholar 

  • Baumann DP, Reinbold GW (1966) Freezing of lactic cultures. J Dairy Sci 49:259–264

    Article  CAS  Google Scholar 

  • Beal C, Corrieu G (1994) Viability and acidification activity of pure and mixed starters of Streptococcus salivarius ssp thermophilus-404 and Lactobacillus delbrueckii ssp bulgaricus-398 at the different steps of their production. Food Sci Technol 27:86–92

    Google Scholar 

  • Beal C, Fonseca F, Corrieu G (2001) Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Sci 84:2347–2356

    Article  CAS  Google Scholar 

  • Beaufils S, Sauvageot N, Maze A, Laplace JM, Auffray Y, Deutscher J, Hartke A (2007) The cold shock response of Lactobacillus casei: relation between HPr phosphorylation and resistance to freeze/thaw cycles. J Mol Microbiol Biotechnol 13:65–75

    Article  CAS  Google Scholar 

  • Bielecka M, Majkowska A (2000) Effect of spray drying temperature of yoghurt on the survival of starter cultures, moisture content and sensoric properties of yoghurt powder. Nahrung-Food 44:257–260

    Article  CAS  Google Scholar 

  • Brennan M, Wanismail B, Johnson MC, Ray B (1986) Cellular-damage in dried Lactobacillus acidophilus. J Food Prot 49:47–53

    CAS  Google Scholar 

  • Broadbent JR, Lin C (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology 39:88–102

    Article  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  Google Scholar 

  • Carcoba R, Rodriguez A (2000) Influence of cryoprotectants on the viability and acidifying activity of frozen and freeze-dried cells of the novel starter strain Lactococcus lactis ssp lactis CECT 5180. Eur Food Res Technol 211:433–437

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2002) Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnol Lett 24:1587–1591

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003a) Effects of addition of sucrose and salt, and of starvation upon thermotolerance and survival during storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. J Food Sci 68:2538–2541

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003b) Protective effect of sorbitol and monosodium glutamate during storage of freeze-dried lactic acid bacteria. Lait 83:203–210

    Article  CAS  Google Scholar 

  • Castro HP, Teixeira P, Kirby R (1995) Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Appl Microbiol Biotechnol 44:172–176

    Article  CAS  Google Scholar 

  • Castro HP, Teixeira PM, Kirby R (1996) Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying. Biotechnol Lett 18:99–104

    Article  CAS  Google Scholar 

  • Champagne CP, Gardner N, Brochu E, Beaulieu Y (1991) The freeze drying of lactic acid bacteria – a review. Can Inst Food Sci Technol J 24:118–128

    Google Scholar 

  • Chou LS, Weimer B (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31

    Article  CAS  Google Scholar 

  • Clementi F, Rossi J (1984) Effect of drying and storage conditions on survival of Leuconostoc oenos. Am J Enol Vitic 35:183–186

    Google Scholar 

  • Conrad PB, Miller DP, Cielenski PR, de Pablo JJ (2000) Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology 41:17–24

    Article  CAS  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    Article  CAS  Google Scholar 

  • Coulibaly I, Amenan AY, Lognay G, Fauconnier ML, Thonart P (2009) Survival of freeze-dried Leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage. Appl Biochem Biotechnol 157:70–84

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Mouradian R (1983) Stabilization of biological membranes at low water activities. Cryobiology 20:346–356

    Article  CAS  Google Scholar 

  • De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    Article  CAS  Google Scholar 

  • De Antoni GL, Perez P, Abraham A, Anon MC (1989) Trehalose, a cryoprotectant for Lactobacillus bulgaricus. Cryobiology 26:149–153

    Article  Google Scholar 

  • De Urraza P, De Antoni G (1997) Induced cryotolerance of Lactobacillus delbrueckii supsp. bulgaricusb LBB by preincubation at suboptimal temperatures with a fermentable sugar. Cryobiology 35:159–164

    Article  Google Scholar 

  • De Valdez GF (2001) Maintenance of lactic acid bacteria. In: Spencer JFT, De Spencer ALG (Eds.), Food microbiology protocols. Humana Press, Totawa, pp. 163–172

    Google Scholar 

  • De Valdez GF, Degiori GS, Holgado APD, Oliver G (1985) Effect of the rehydration medium on the recovery of freeze dried lactic acid bacteria. Appl Environ Microbiol 50:1339–1341

    Google Scholar 

  • Derzelle S, Hallet B, Francis KP, Ferain T, Delcour J, Hols P (2000) Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J Bacteriol 182:5105–5113

    Article  CAS  Google Scholar 

  • Derzelle S, Hallet B, Ferain T, Delcour J, Hols P (2003) Improved adaptation to cold-shock, ­stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl Environ Microbiol 69:4285–4290

    Article  CAS  Google Scholar 

  • Desmond C, Ross RP, O’Callaghan E, Fitzgerald G, Stanton C (2002a) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 93:1003–1011

    Article  CAS  Google Scholar 

  • Desmond C, Stanton C, Fitzgerald GF, Collins K, Ross RP (2002b) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 12:183–190

    Article  CAS  Google Scholar 

  • Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936

    Article  CAS  Google Scholar 

  • Dumont F, Marechal PA, Gervais P (2004) Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Appl Environ Microbiol 70:268–272

    Article  CAS  Google Scholar 

  • Duong T, Barrangou R, Russell WM, Klaenhammer TR (2006) Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 72:1218–1225

    Article  CAS  Google Scholar 

  • Efiuvwevwere BJO, Gorris LGM, Smid EJ, Kets EPW (1999) Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Appl Microbiol Biotechnol 51:100–104

    Article  CAS  Google Scholar 

  • Fernandez A, Varez-Ordonez A, Lopez M, Bernardo A (2009) Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium. Food Microbiol 26:497–503

    Article  CAS  Google Scholar 

  • Fonseca F, Beal C, Corrieu G (2000) Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. J Dairy Res 67:83–90

    Article  CAS  Google Scholar 

  • Fonseca F, Beal C, Corrieu G (2001) Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage. Cryobiology 43:189–198

    Article  CAS  Google Scholar 

  • Fonseca F, Marin M, Morris GJ (2006) Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: freezing kinetics and storage temperature effects. Appl Environ Microbiol 72:6474–6482

    Article  CAS  Google Scholar 

  • Foschino R, Fiori E, Galli A (1996) Survival and residual activity of Lactobacillus acidophilus frozen cultures under different conditions. J Dairy Res 63:295–303

    Article  CAS  Google Scholar 

  • Gardiner GE, O’Sullivan E, Kelly J, Auty MA, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612

    Article  CAS  Google Scholar 

  • Gehrke H (1991) Untersuchungen zur Gefriertrocknung von Mikroorganismen [in German]. Dissertation, Universität Braunschweig

    Google Scholar 

  • Giard JC, Hartke A, Flahaut S, Benachour A, Boutibonnes P, Auffray Y (1996) Starvation-induced multiresistance in Enterococcus faecalis JH2–2. Curr Microbiol 32:264–271

    Article  CAS  Google Scholar 

  • Glaasker E, Konings WN, Poolman B (1996) Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol 178:575–582

    CAS  Google Scholar 

  • Glaasker E, Tjan FSB, Ter Steeg PF, Konings WN, Poolman B (1998) Physiological response of Lactobacillus plantarum to salt and nonelectrolyte stress. J Bacteriol 180:4718–4723

    CAS  Google Scholar 

  • Grout BWW, Morris GJ (2008) Contaminated liquid nitrogen storage vessels as potential vectors for pathogens. Cryo-Lett 29:74–75

    Google Scholar 

  • Grout BWW, Morris GJ (2009) Contaminated liquid nitrogen vapour as a risk factor in pathogen transfer. Theriogenology 71:1079–1082

    Article  CAS  Google Scholar 

  • Heckly RJ (1961) Preservation of bacteria by lyophilization. Adv Appl Microbiol 3:1–76

    Article  CAS  Google Scholar 

  • Higl B, Kurtmann L, Carlsen CU, Ratjen J, Forst P, Skibsted LH, Kulozik U, Risbo J (2007) Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix. Biotechnol Prog 23:794–800

    CAS  Google Scholar 

  • Higl B, Santivarangkna C, Foerst P (2008) Bewertung und Optimierung von Gefrier-und Vakuumtrocknungsverfahren in der Herstellung von mikrobiellen Starterkulturen [in German]. Chemie Inginieur Technik 80: 1157–1164

    Article  CAS  Google Scholar 

  • Hua L, Zhao WY, Wang H, Li ZC, Wang AL (2009) Influence of culture pH on freeze-drying viability of Oenococcus oeni and its relationship with fatty acid composition. Food Bioprod Process 87:56–61

    Article  CAS  Google Scholar 

  • Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229

    Article  CAS  Google Scholar 

  • Hutkins RW, Ellefson WL, Kashket ER (1987) Betaine transport imparts osmotolerance on a strain of Lactobacillus acidophilus. Appl Environ Microbiol 53:2275–2281

    CAS  Google Scholar 

  • Jewell JB, Kashket ER (1991) Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532. Appl Environ Microbiol 57:2829–2833

    CAS  Google Scholar 

  • Johannsen E (1972) Influence of various factors on the survival of Lactobacillus leichmannii during freezing and thawing. J Appl Bacteriol 35:415–421

    CAS  Google Scholar 

  • Juarez TMS, Ocana VS, Nader-Macias ME (2004) Viability of vaginal probiotic lactobacilli during refrigerated and frozen storage. Anaerobe 10:1–5

    Article  Google Scholar 

  • Juarez TMS, Bru E, Martos G, Nader-Macias ME (2009) Stability of freeze-dried vaginal Lactobacillus strains in the presence of different lyoprotectors. Can J Microbiol 55:544–552

    Article  CAS  Google Scholar 

  • Keogh BP (1970) Survival and activity of frozen starter cultures for cheese manufacture. Appl Microbiol 19:928–931

    CAS  Google Scholar 

  • Kets EPW, De Bont JAM (1994) Protective effect of betaine on survival of Lactobacillus plantarum subjected to drying. FEMS Microbiol Lett 116:251–255

    Article  CAS  Google Scholar 

  • Kets EPW, Teunissen PJM, De Bont JAM (1996) Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Appl Environ Microbiol 62:259–261

    CAS  Google Scholar 

  • Kets EPW, Groot MN, Galinski EA, De Bont JAM (1997) Choline and acetylcholine: novel cationic osmolytes in Lactobacillus plantarum. Appl Microbiol Biotechnol 48:94–98

    Article  CAS  Google Scholar 

  • Kilimann KV, Doster W, Vogel RF, Hartmann C, Ganzle MG (2006) Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: an FT-IR study. Biochim Biophys Acta 1764:1188–1197

    CAS  Google Scholar 

  • Kilstrup M, Jacobsen S, Hammer K, Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress is Lactococcus lactis. Appl Environ Microbiol 63:1826–1837

    CAS  Google Scholar 

  • Kim SJ, Kim JH, Park JY, Kim HT, Jeong SJ, Ha YL, Yun HD, Kim JH (2004) Cold adaptation of Lactobacillus paraplantarum C7 isolated from kimchi. J Microbiol Biotechnol 14:1071–1074

    CAS  Google Scholar 

  • Kim SS, Bhowmik SR (1990) Survival of lactic acid bacteria during spray drying of plain yogurt. J Food Sci 55:1008–1011

    Article  Google Scholar 

  • Kim WS, Dunn NW (1997) Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr Microbiol 35:59–63

    Article  CAS  Google Scholar 

  • Kim WS, Khunajakr N, Dunn NW (1998) Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiology 37:86–91

    Article  CAS  Google Scholar 

  • Kim WS, Ren J, Dunn NW (1999) Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol Lett 171:57–65

    Article  CAS  Google Scholar 

  • King VAE, Su JT (1993) Dehydration of Lactobacillus acidophilus. Proc Biochem 28:47–52

    Article  CAS  Google Scholar 

  • King VAE, Lin HJ, Liu CF (1998) Accelerated storage testing of freeze-dried and controlled low-temperature vacuum dehydrated Lactobacillus acidophilus. J Gen Appl Microbiol 44:161–165

    Article  CAS  Google Scholar 

  • Knorr D (1998) Technology aspects related to microorganisms in functional foods. Trends Food Sci Technol 9:295–306

    Article  CAS  Google Scholar 

  • Kurtmann L, Carlsen CU, Risbo J, Skibsted LH (2009a) Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology 58:175–180

    Article  CAS  Google Scholar 

  • Kurtmann L, Carlsen CU, Skibsted LH, Risbo J (2009b) Water activity-temperature state diagrams of freeze-dried Lactobacillus acidophilus (La-5): influence of physical state on bacterial survival during storage. Biotechnol Prog 25:265–270

    Article  CAS  Google Scholar 

  • Kurtmann L, Skibsted LH, Carlsen CU (2009c) Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage. J Agric Food Chem 57:6736–6741

    Article  CAS  Google Scholar 

  • Le MC, Bon E, Lonvaud-Funel A (2007) Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int J Food Microbiol 115:335–342

    Article  CAS  Google Scholar 

  • Lee K (2004) Cold shock response in Lactococcus lactis ssp. diacetylactis: a comparison of the protection generated by brief pre-treatment at less severe temperatures. Proc Biochem 39:2233–2239

    Article  CAS  Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    CAS  Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74:79–86

    Article  Google Scholar 

  • Linders LJM, Meerdink G, Vantriet K (1997a) Effect of growth parameters on the residual activity of Lactobacillus plantarum after drying. J Appl Microbiol 82:683–688

    Article  Google Scholar 

  • Linders LJM, Wolkers WF, Hoekstra FA, Vantriet K (1997b) Effect of added carbohydrates on membrane phase behavior and survival of dried Lactobacillus plantarum. Cryobiology 35:31–40

    Article  CAS  Google Scholar 

  • Lorca GL, De Valdez GF (1998) Temperature adaptation and cryotolerance in Lactobacillus acidophilus. Biotechnol Lett 20:847–849

    Article  CAS  Google Scholar 

  • Mauriello G, Aponte M, Andolfi R, Moschetti G, Villani F (1999) Spray-drying of bacteriocin-producing lactic acid bacteria. J Food Prot 62:773–777

    CAS  Google Scholar 

  • Mazur P (1970) Cryobiology – freezing of biological systems. Science 168:939–949

    Article  CAS  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C125-C142

    CAS  Google Scholar 

  • Melin AM, Perromat A, Deleris G (1999) Pharmacologic application of FTIR spectroscopy: effect of ascorbic acid-induced free radicals on Deinococcus radiodurans. Biospectroscopy 5:229–236

    Article  CAS  Google Scholar 

  • Mille Y, Obert JP, Beney L, Gervais P (2004) New drying process for lactic bacteria based on their dehydration behavior in liquid medium. Biotechnol Bioeng 88:71–76

    Article  CAS  Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiology 52:27–32

    Article  Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2008) Survival of freeze-dried bacteria. J Gen Appl Microbiol 54:9–24

    Article  CAS  Google Scholar 

  • Modesto M, Mattarelli P, Biavati B (2004) Resistance to freezing and freeze-drying storage processes of potential probiotic bifidobacteria. Ann Microbiol 54:43–48

    Google Scholar 

  • Monnet C, Beal C, Corrieu G (2003) Improvement of the resistance of Lactobacillus delbrueckii ssp. bulgaricus to freezing by natural selection. J Dairy Sci 86:3048–3053

    Article  CAS  Google Scholar 

  • Morice M, Bracquart P, Linden G (1992) Colonial variation and freeze-thaw resistance of Streptococcus thermophilus. J Dairy Sci 75:1197–1203

    Article  Google Scholar 

  • Morris GJ (2005) The origin, ultrastructure, and microbiology of the sediment accumulating in liquid nitrogen storage vessels. Cryobiology 50:231–238

    Article  CAS  Google Scholar 

  • Nakamura LK (1996) Preservation and maintenance of eubacteria. In: Hunter-Cevera JC, Belt A (Eds.), Maintaining cultures for biotechnology and industry. Academic, London, pp. 65–84

    Google Scholar 

  • Obis D, Guillot A, Mistou MY (2001) Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system. FEMS Microbiol Lett 202:39–44

    Article  CAS  Google Scholar 

  • Panoff JM, Thammavongs B, Laplace JM, Hartke A, Boutibonnes P, Auffray Y (1995) Cryotolerance and cold adaptation in Lactococcus lactis subsp lactis IL1403. Cryobiology 32:516–520

    Article  Google Scholar 

  • Panoff JM, Thammavongs B, Gueguen M (2000) Cryoprotectants lead to phenotypic adaptation to freeze-thaw stress in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027T. Cryobiology 40:264–269

    Article  CAS  Google Scholar 

  • Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925

    Article  CAS  Google Scholar 

  • Rivals JP, Beal C, Thammavongs B, Gueguen M, Panoff JM (2007) Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is modified by acquisition of antibiotic resistance. Cryobiology 55:19–26

    Article  CAS  Google Scholar 

  • Roelans E, Taeymans D (1990) Effect of drying conditions on survival and enzyme activity of microorganims. In: Spiess WEL, Schubert H (Eds.), Engineering and food, Vol. 3: advanced processes. Elsevier Applied Science, London, pp. 559–569

    Google Scholar 

  • Sanders JW, Venema G, Kok J (1999) Environmental stress responses in Lactococcus lactis. FEMS Microbiol Rev 23:483–501

    Article  CAS  Google Scholar 

  • Sandine WE (1996) Commercial production of dairy starter cultures. In: Cogan TM, Accolas JP (Eds.), Dairy starter cultures. VCH, New York, pp. 191–206

    Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2006) Effect of carbohydrates on the survival of Lactobacillus helveticus during vacuum drying. Lett Appl Microbiol 42:271–276

    Article  CAS  Google Scholar 

  • Santivarangkna C, Wenning M, Foerst P, Kulozik U (2007) Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J Appl Microbiol 102:748–756

    Article  CAS  Google Scholar 

  • Santivarangkna C, Higl B, Foerst P (2008) Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol 25:429–441

    Article  CAS  Google Scholar 

  • Schoug A, Fischer J, Heipieper HJ, Schnurer J, Hakansson S (2008) Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3. J Ind Microbiol Biotechnol 35:175–181

    Article  CAS  Google Scholar 

  • Schweigart F (1971) The drying of lactic acid bacteria cultures for Mahewu production. Lebensmittel-Wissenschaft und -Technologie 4:20–23

    CAS  Google Scholar 

  • Selmer-Olsen E, Birkeland SE, Sorhaug T (1999a) Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration. J Appl Microbiol 87:429–437

    Article  Google Scholar 

  • Selmer-Olsen E, Sorhaug T, Birkeland SE, Pehrson R (1999b) Survival of Lactobacillus helveticus entrapped in Ca-alginate in relation to water content, storage and rehydration. J Ind Microbiol Biotechnol 23:79–85

    Article  CAS  Google Scholar 

  • Serror P, Dervyn R, Ehrlich SD, Maguin E (2003) csp-like genes of Lactobacillus delbrueckii ssp. bulgaricus and their response to cold shock. FEMS Microbiol Lett 226:323–330

    Article  CAS  Google Scholar 

  • Sheehan VM, Sleator RD, Fitzgerald GF, Hill C (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:2170–2177

    Article  CAS  Google Scholar 

  • Silva J, Carvalho AS, Teixeira P, Gibbs PA (2002) Bacteriocin production by spray-dried lactic acid bacteria. Lett Appl Microbiol 34:77–81

    Article  CAS  Google Scholar 

  • Silva J, Carvalho AS, Pereira H, Teixeira P, Gibbs PA (2004) Induction of stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus by the addition of sucrose to the growth medium. J Dairy Res 71:121–125

    Article  CAS  Google Scholar 

  • Silva J, Carvalho AS, Ferreira R, Vitorino R, Amado F, Domingues P, Teixeira P, Gibbs PA (2005) Effect of the pH of growth on the survival of Lactobacillus delbrueckii subsp. bulgaricus to stress conditions during spray-drying. J Appl Microbiol 98:775–782

    Article  CAS  Google Scholar 

  • Sinha RN, Dudani AT, Ranganathan B (1974) Protective effect of fortified skim milk as suspending medium for freeze drying of different lactic acid bacteria. J Food Sci 39:641–642

    Article  Google Scholar 

  • Strasser S, Neureiter M, Geppl M, Braun R, Danner H (2009) Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol 107:167–177

    Article  CAS  Google Scholar 

  • Streit F, Corrieu G, Beal C (2007) Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1. J Biotechnol 128:659–667

    Article  CAS  Google Scholar 

  • Streit F, Delettre J, Corrieu G, Beal C (2008) Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol 105:1071–1080

    Article  CAS  Google Scholar 

  • Succi M, Tremonte P, Reale A, Sorrentino E, Coppola R (2007) Preservation by freezing of potentially probiotic strains of Lactobacillus rhamnosus. Ann Microbiol 57:537–544

    Article  Google Scholar 

  • Sunny-Roberts EO, Knorr D (2007) Physiological analysis of Lactobacillus rhamnosus VTT E-97800 – adaptive response to osmotic stress induced by trehalose. Br Food J 109:735–748

    Article  Google Scholar 

  • Sunny-Roberts EO, Knorr D (2008) Evaluation of the response of Lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress. Food Microbiol 25:183–189

    Article  CAS  Google Scholar 

  • Sunny-Roberts EO, Knorr D (2009) The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders. Int Dairy J 19:209–214

    Article  CAS  Google Scholar 

  • Teixeira P, Castro H, Kirby R (1993) Inducible thermotolerance in Lactobacillus bulgaricus. Lett Appl Microbiol 18:218–221

    Article  Google Scholar 

  • Teixeira P, Castro H, Kirby R (1995a) Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J Appl Bacteriol 78:456–462

    Google Scholar 

  • Teixeira PC, Castro MH, Malcata FX, Kirby RM (1995b) Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray-drying. J Dairy Sci 78:1025–1031

    Article  CAS  Google Scholar 

  • Teixeira P, Castro H, Kirby R (1996) Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Lett Appl Microbiol 22:34–38

    Article  CAS  Google Scholar 

  • Termont S, Vandenbroucke K, Iserentant D, Neirynck S, Steidler L, Remaut E, Rottiers P (2006) Intracellular accumulation of trehalose protects Lactococcus lactis from freeze-drying damage and bile toxicity and increases gastric acid resistance. Appl Environ Microbiol 72:7694–7700

    Article  CAS  Google Scholar 

  • Thunell RK, Sandine WE, Bodyfelt FW (1984) Frozen starters from internal pH control grown cultures. J Dairy Sci 67:24–36

    Article  CAS  Google Scholar 

  • To BCS, Etzel MR (1997) Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J Food Sci 62:576–585

    Article  CAS  Google Scholar 

  • Tsvetkov T, Brankova R (1983) Viability of micrococci and lactobacilli upon freezing and freeze drying in the presence of different cryoprotectants. Cryobiology 20:318–323

    Article  CAS  Google Scholar 

  • Tsvetkov T, Shishkova I (1982) Studies on the effects of low temperatures on lactic acid bacteria. Cryobiology 19:211–214

    Article  CAS  Google Scholar 

  • van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie von Leeuwenhoek 82:187–216

    Article  Google Scholar 

  • Varcamonti M, Arsenijevic S, Martirani L, Fusco D, Naclerio G, De Felice M (2006) Expression of the heat shock gene ClpL of Streptococcus thermophilus is induced by both heat and cold shock. Microb Cell Fact. doi: 10.1186/1475–2859–5-6

  • Volkert M, Ananta E, Luscher C, Knorr D (2008) Effect of air freezing, spray freezing, and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG. J Food Eng 87:532–540

    Google Scholar 

  • Walker DC, Girgis HS, Klaenhammer TR (1999) The groESL chaperone operon of Lactobacillus johnsonii. Appl Environ Microbiol 65:3033–3041

    CAS  Google Scholar 

  • Wang YC, Yu RC, Chou CC (2004) Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int J Food Microbiol 93:209–217

    Article  CAS  Google Scholar 

  • Wang Y, Corrieu G, Beal C (2005) Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. J Dairy Sci 88:21–29

    Article  CAS  Google Scholar 

  • Welsh DT, Herbert RA (1999) Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli. FEMS Microbiol Lett 174:57–63

    Article  CAS  Google Scholar 

  • Wolfe J (1987) Lateral stresses in membranes at low water potential. Aust J Plant Physiol 14:311–318

    Article  Google Scholar 

  • Wolff E, Louvet P, Gilbert H (1986) Atmospheric freeze drying: design and energy considerations. In: Arun S, Mujumdar (Eds.), Drying’86. 5th International Symposium on Drying, Cambridge, MA, August. Hemisphere Publishing, Washington, pp. 432–439

    Google Scholar 

  • Wolff E, Delisle B, Corrieu G, Gibert H (1990) Freeze-drying of Streptococcus thermophilus: a comparison between the vacuum and the atmospheric method. Cryobiology 27:569–575

    Article  CAS  Google Scholar 

  • Wouters JA, Jeynov B, Rombouts FM, De Vos WM, Kuipers OP, Abee T (1999a) Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology 145:3185–3194

    CAS  Google Scholar 

  • Wouters JA, Rombouts FM, De Vos WM, Kuipers OP, Abee T (1999b) Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Appl Environ Microbiol 65:4436–4442

    CAS  Google Scholar 

  • Wouters JA, Mailhes M, Rombouts FM, De Vos WM, Kuipers OP, Abee T (2000) Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363. Appl Environ Microbiol 66:3756–3763

    Article  CAS  Google Scholar 

  • Yao AA, Coulibaly I, Lognay G, Fauconnier ML, Thonart P (2008) Impact of polyunsaturated fatty acid degradation on survival and acidification activity of freeze-dried Weissella paramesenteroides LC11 during storage. Appl Microbiol Biotechnol 79:1045–1052

    Article  CAS  Google Scholar 

  • Zhao G, Zhang G (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J Appl Microbiol 99:333–338

    Article  CAS  Google Scholar 

  • Zimmermann K (1987) Einflussparameter und mathematische Modellierung der schonenden Trocknung von Starterkulturen [in German]. Dissertation, Technische Universität München

    Google Scholar 

  • Zotta T, Ricciardi A, Ciocia F, Rossano R, Parente E (2008) Diversity of stress responses in dairy thermophilic streptococci. Int J Food Microbiol 124:34–42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chalat Santivarangkna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Santivarangkna, C., Kulozik, U., Foerst, P. (2011). Storing Lactic Acid Bacteria: Current Methodologies and Physiological Implications. In: Tsakalidou, E., Papadimitriou, K. (eds) Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92771-8_20

Download citation

Publish with us

Policies and ethics