Responses of Lactic Acid Bacteria to Bacteriocins and Other Antimicrobials

  • Sikder M. Asaduzzaman
  • Kenji Sonomoto
Part of the Food Microbiology and Food Safety book series (FMFS)


The antibacterial compounds produced by bacteria historically have been an invaluable source of antibiotics. Bacteria produce and use agents called bacteriocins as “weapons” against each other. The knowledge regarding many aspects of bacteriocins has been accumulated very fast and the term “bacteriocin” is used to cover a wide range of chemically assorted substances. To date, numerous lactic acid bacteria (LAB) bacteriocins have been identified and characterized. This chapter discusses responses of LAB to bacteriocins and to other antimicrobials. Based on the nature of the antimicrobials, the responses of a bacterium vary widely. Bacteriocin-producing LAB have their self-defense mechanisms through immunity systems, which are optimized by the producer strain. Because bacteriocins act against the closely related bacteria, the sensitivity of the bacterial strains is quite diverse. Some LAB strains are killed by some bacteriocins with more than one mechanism (the inhibition of cell wall biosynthesis and the formation of pores into the bacterial membrane are well-established mechanisms for many bacteriocins). On the contrary, some bacteria are killed or growth is inhibited by a single mechanism. So far, bacteria have no known natural resistance mechanism against bacteriocins.


Lactic Acid Bacterium Lactic Acid Bacterium Strain Cell Wall Biosynthesis Immunity Protein Subtilis Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Asaduzzaman SM, Nagao J, Aso Y, Nakayama J, Sonomoto K (2006) Lysine-oriented charges trigger the membrane binding and activity of nukacin ISK-1. Appl Environ Microbiol 72:6012–6017CrossRefGoogle Scholar
  2. Asaduzzaman SM, Nagao J, Iida H, Zendo T, Nakayama J, Sonomoto K (2009) Nukacin ISK-1, a bacteriostatic lantibiotics. Antimicrob Agents Chemother 53:3595–3598CrossRefGoogle Scholar
  3. Aso Y, Okuda K, Nagao J, Kanemasa Y, Thi Bich Phuong N, Koga H, Shioya K, Sashihara T, Nakayama J, Sonomoto K (2005) A novel type of immunity protein, NukH, for the lantibiotic nukacin ISK-1 produced by Staphylococcus warneri ISK-1. Biosci Biotechnol Biochem 69:1403–1410CrossRefGoogle Scholar
  4. Benz R, Jung G, Sahl HG (1991) Mechanism of channel-formation by lantibiotics in black lipid membranes. In: Jung G, Sahl HG (Eds.), Nisin and novel lantibiotics. ESCOM, Leiden, The Netherlands, pp. 359–372Google Scholar
  5. Bonelli RR, Schneider T, Sahl HG, Wiedemann I (2006) Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother 50:1449–1457CrossRefGoogle Scholar
  6. Bonev BB, Breukink E, Swiezewska E, De Kruijff B, Watts A (2004) Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB J 18:1862–1869CrossRefGoogle Scholar
  7. Breukink E, van Kraaij CR, Demel A, Siezen RJ, Kuipers OP, de Kruijff B (1997) The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 36:6968–6976CrossRefGoogle Scholar
  8. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364CrossRefGoogle Scholar
  9. Breukink E, van Heusden HE, Vollmerhaus PJ, Swiezewska E, Brunner L, Walker S, Heck AJ, de Kruijff B (2003) Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 278:19898–19903CrossRefGoogle Scholar
  10. Brötz H, Bierbaum G, Reynolds PE, Sahl HG (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 246:193–199CrossRefGoogle Scholar
  11. Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G, Sahl HG (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327CrossRefGoogle Scholar
  12. Chen Y, Ludescher RD, Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777Google Scholar
  13. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nature Rev Microbiol 3:777–788CrossRefGoogle Scholar
  14. de Vos WM, Kuipers OP, van der Meer JR, Siezen RJ (1995) Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol 17:427–437CrossRefGoogle Scholar
  15. Demel RA, Peelen T, Siezen RJ, de Kruijff B, Kuipers OP (1996) Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. Eur J Biochem 235:267–274CrossRefGoogle Scholar
  16. Draper LA, Grainger K, Deegan LH, Cotter PD, Hill C, Ross RP (2009) Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. Mol Microbiol 71:1043–1054CrossRefGoogle Scholar
  17. Driessen AJ, van den Hooven HW, Kuiper W, van de Kamp M, Sahl HG, Konings RN, Konings WN (1995) Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34:1606–1614CrossRefGoogle Scholar
  18. García Garcerá MJ, Elferink MG, Driessen AJ, Konings WN (1993) In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem 212:417–422CrossRefGoogle Scholar
  19. Giffard CJ, Dodd HM, Horn N, Ladha S, Mackie AR, Parr A, Gasson MJ, Sanders D (1997) Structure-function relations of variant and fragments of nisin studied with model membrane systems. Biochemistry 36:3802–3810CrossRefGoogle Scholar
  20. Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176:7335–7344CrossRefGoogle Scholar
  21. Gross E, Morell JL (1971) The structure of nisin. J Am Chem Soc 93:4634–4635CrossRefGoogle Scholar
  22. Guinane CM, Cotter PD, Hill C, Ross RP (2006) Spontaneous resistance in Lactococcus lactis IL1403 to the lantibiotic lacticin 3147. FEMS Microbiol Lett 260:77–83CrossRefGoogle Scholar
  23. Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313:1636–1637CrossRefGoogle Scholar
  24. He Z, Yuan C, Zhang L, Yousef AE (2008) N-terminal acetylation in paenibacillin, a novel lantibiotic. FEBS Lett 582:2787–2792CrossRefGoogle Scholar
  25. Hsu STD, Breukink E, Bierbaum G, Sahl HG, de Kruijff B, Kaptein R, van Nuland NA, Bonvin AM (2003) NMR study of mersacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity. J Biol Chem 278:13110–13117CrossRefGoogle Scholar
  26. Hsu STD, Breukink E, Tischenko E, Lutters MA, de Kruijff B, Kaptein R, Bonvin AM, van Nuland NA (2004) The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11:963–967CrossRefGoogle Scholar
  27. Hyde AJ, Parisot J, McNichol A, Bonev BB (2006) Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc Natl Acad Sci USA 103:19896–19901CrossRefGoogle Scholar
  28. Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding site, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166CrossRefGoogle Scholar
  29. Jordan S, Htchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146CrossRefGoogle Scholar
  30. Kheadr E, Dabour N, Le Lay C, Lacroix C, Fliss I (2007) Antibiotic susceptibility profile of Bifidobacteria as affected by oxgall, acid and hydrogen peroxide stress. Antimicrob Agents Chemother 51:169–174CrossRefGoogle Scholar
  31. Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–105CrossRefGoogle Scholar
  32. Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci USA 101:11448–11453CrossRefGoogle Scholar
  33. Kordel M, Benz R, Sahl HG (1988) Mode of action of the staphylococcin like peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes. J Bacteriol 170:84–88Google Scholar
  34. Kramer NE, van Hijum SA, Knol J, Kok J, Kuipers OP (2006) Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50:1753–1761CrossRefGoogle Scholar
  35. Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821CrossRefGoogle Scholar
  36. Madera C, Garcia P, Rodriguez A, Suarez JE, Martinez B (2009) Prophage induction in Lactococcus lactis by the bacteriocin Lactococcin 972. Int J Food Microbiol 129:99–102CrossRefGoogle Scholar
  37. Martinez B, Zomer A, Rodriguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the lactococcal two-component system CesSR. Mol Microbiol 64:473–486CrossRefGoogle Scholar
  38. Marty-Teysset C, de la Torre F, Garel JR (2000) Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. Bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. Appl Environ Microbiol 66:262–267CrossRefGoogle Scholar
  39. Marx R, Stein T, Entian KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1 H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20:501–506CrossRefGoogle Scholar
  40. Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604CrossRefGoogle Scholar
  41. Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896CrossRefGoogle Scholar
  42. McAuliffe O, O’Keeffe T, Hill C, Ross RP (2001) Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol Microbiol 39:982–993CrossRefGoogle Scholar
  43. Moll GN, Clark J, Chan WC, Bycroft BW, Roberts GC, Konings WN, Driessen AJ (1997) Role of transmembrane pH gradient and membrane binding in nisin pore formation. J Bacteriol 179:135–140Google Scholar
  44. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ (2008) Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulation and genes responsive to membrane depolarization. Antimicrob Agents Chemother 52:980–990CrossRefGoogle Scholar
  45. Nissen-Meyer J, Nes IF (1997) Ribosomally synthesized antimicrobial peptides: their function, biogenesis, and mechanism of action. Arch Microbiol 167:67–77CrossRefGoogle Scholar
  46. Okuda K, Aso Y, Nagao J, Shioya K, Kanemasa Y, Nakayama J, Sonomoto K (2005) Characterization of functional domains of lantibiotic-binding immunity protein, NukH, from Staphylococcus warneri ISK-1. FEMS Microbiol Lett 250:19–25CrossRefGoogle Scholar
  47. Okuda K, Yanagihara S, Shioya K, Harada Y, Nagao J, Aso Y, Zendo T, Nakayama J, Sonomoto K (2008) Binding specificity of the lantibiotic-binding immunity protein NukH. Appl Environ Microbiol 74:7613–7619CrossRefGoogle Scholar
  48. Ottenwälder B, Kupke T, Brecht S, Gnau V, Metzger J, Jung G, Götz F (1995) Isolation and characterization of genetically engineered gallidermin and epidermin analogs. Appl Environ Microbiol 61:3894–3903Google Scholar
  49. Quintiliani R Jr, Evers S, Courvalin P (1993) The vanB gene confers various levels of self-transferable resistance to vancomycin in enterococci. J Infect Dis 167:1220–1223CrossRefGoogle Scholar
  50. Rochat T, Gratadoux J, Corthier G, Coqueran B, Nader-Macias ME, Gruss A, Langella P (2005) Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains. Appl Environ Microbiol 71:2782–2788CrossRefGoogle Scholar
  51. Sahl HG (1991) Pore formation in bacterial membranes by cationic lantibiotics. In: Jung G, Sahl HG (Eds.), Nisin and novel lantibiotics. ESCOM, Leiden, The Netherlands, pp. 347–358Google Scholar
  52. Sahl HG, Kordel M, Benz R (1987) Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol 149:120–124CrossRefGoogle Scholar
  53. Sahl HG, Jack RW, Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230:827–853CrossRefGoogle Scholar
  54. Sass P, Jansen A, Szekat C, Sass V, Sahl HG, Bierbaum G (2008) The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus. BMC Microbiol 8:186CrossRefGoogle Scholar
  55. Stein T, Heinzmann S, Solovieva I, Entian KD (2003) Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278:89–94CrossRefGoogle Scholar
  56. Storm DR, Strominger J (1974) Binding of bacitracin to cells and protoplasts of Micrococcus lysodeikticus. J Biol Chem 249:1823–1827Google Scholar
  57. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756Google Scholar
  58. Takala TM, Saris PE (2006) C terminus of NisI provides specificity to nisin. Microbiology 152:3543–3549CrossRefGoogle Scholar
  59. van de Guchte M, Ehrlich SD, Maguin E (2001) Production of growth-inhibiting factors by Lactobacillus delbrueckii. J Appl Microbiol 91:147–153CrossRefGoogle Scholar
  60. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216CrossRefGoogle Scholar
  61. van Heijenoort Y, Gomez M, Derrien M, Ayala J, van Heijenoort J (1992) Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J Bacteriol 174:3549–3557Google Scholar
  62. van Kraaij C, Breukink E, Noordermeer MA, Demel RA, Siezen RJ, Kuipers OP, de Kruijff B (1998) Pore formation by nisin involves translocation of its C-terminal part across the membrane. Biochemistry 37:16033–16040CrossRefGoogle Scholar
  63. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbial Biotechnol 7:204–211CrossRefGoogle Scholar
  64. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376CrossRefGoogle Scholar
  65. Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779Google Scholar
  66. Wiedemann I, Bottiger T, Bonelli RR, Schneider T, Sahl HG, Martínez B (2006a) Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl Environ Microbiol 72:2809–2814CrossRefGoogle Scholar
  67. Wiedemann I, Böttiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006b) The mode of action of the lantibiotic lacticin 3147 – a complex mechanism involving specific interaction of two-peptides and the cell wall precursor lipid II. Mol Microbiol 61:285–297CrossRefGoogle Scholar
  68. Zhou JS, Pillidge CJ, Gopal PK, Gill HS (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 98:211–217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Tissue Banking and Biomaterial Research UnitAtomic Energy Research EstablishmentDhakaBangladesh
  2. 2.Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Graduate SchoolKyushu UniversityFukuokaJapan
  3. 3.Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan
  4. 4.Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture CenterKyushu UniversityFukuokaJapan

Personalised recommendations