Engineering Robust Lactic Acid Bacteria

  • Peter A. Bron
  • Hermien van Bokhorst-van de Veen
  • Michiel Wels
  • Michiel Kleerebezem
Part of the Food Microbiology and Food Safety book series (FMFS)


For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged, which has led to the introduction of many products containing these probiotic strains. Within this rapidly growing market for the food industry, there is increasing interest in unraveling the molecular mechanisms involved in the stress resistance and robustness of these starter and probiotic strains. This chapter reviews the tools available in the postgenomics era to reveal these molecular mechanisms and the current strategies employed to utilize the information obtained for the rational design of more robust industrial LAB strains.


Lactic Acid Bacterium Comparative Genome Hybridization Lactic Acid Bacterium Strain Lactic Acid Bacterium Species Simulated Gastric Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altermann E, Buck LB, Cano R, Klaenhammer TR (2004) Identification and phenotypic characterization of the cell-division protein CdpA. Gene 342:189–197CrossRefGoogle Scholar
  2. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912CrossRefGoogle Scholar
  3. Bachmann H, Kleerebezem M, van Hylckama Vlieg JE (2008) High-throughput identification and validation of in situ-expressed genes of Lactococcus lactis. Appl Environ Microbiol 74:4727–4736CrossRefGoogle Scholar
  4. Bachmann H, Kruijswijk Z, Molenaar D, Kleerebezem M, van Hylckama Vlieg JE (2009a) A high-throughput cheese manufacturing model for effective cheese starter culture screening. J Dairy Sci 92:5868–5882CrossRefGoogle Scholar
  5. Bachmann H, Starrenburg MJC, Dijkstra A, Molenaar D, Kleerebezem M, Rademaker JLW, van Hylckama Vlieg JET (2009b) Regulatory phenotyping reveals important diversity within the species Lactococcus lactis. Appl Environ Microbiol 75:5687–5694CrossRefGoogle Scholar
  6. Bachmann H, de Wilt L, Kleerebezem M, van Hylckama Vlieg JE (2010) Timeresolved genetic responses of Lactococcus lactis to a dairy environment. Environ Microbiol 12:1260–1270Google Scholar
  7. Boekhorst J, Siezen RJ, Zwahlen MC, Vilanova D, Pridmore RD, Mercenier A, Kleerebezem M, de Vos WM, Brüssow H, Desiere F (2004) The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 150:3601–3611CrossRefGoogle Scholar
  8. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753CrossRefGoogle Scholar
  9. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558CrossRefGoogle Scholar
  10. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759CrossRefGoogle Scholar
  11. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  12. Bron PA, Grangette C, Mercenier A, de Vos WM, Kleerebezem M (2004a) Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J Bacteriol 186:5721–5729CrossRefGoogle Scholar
  13. Bron PA, Marco M, Hoffer SM, Van Mullekom E, de Vos WM, Kleerebezem M (2004b) Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J Bacteriol 186:7829–7835CrossRefGoogle Scholar
  14. Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738CrossRefGoogle Scholar
  15. Bron PA, Meijer M, Bongers RS, de Vos WM, Kleerebezem M (2007) Dynamics of competitive population abundance of Lactobacillus plantarum ivi gene mutants in faecal samples after passage through the gastrointestinal tract of mice. J Appl Microbiol 103:1424–1434CrossRefGoogle Scholar
  16. Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J (2009) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 8:28CrossRefGoogle Scholar
  17. Bruno-Barcena JM, Andrus JM, Libby SL, Klaenhammer TR, Hassan HM (2004) Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol 70:4702–4710CrossRefGoogle Scholar
  18. Bruno-Barcena JM, Azcarate-Peril MA, Klaenhammer TR, Hassan HM (2005) Marker-free ­chromosomal integration of the manganese superoxide dismutase gene (sodA) from Streptococcus thermophilus into Lactobacillus gasseri. FEMS Microbiol Lett 246:91–101CrossRefGoogle Scholar
  19. Coconnier MH, Lievin V, Hemery E, Servin AL (1998) Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol 64:4573–4580Google Scholar
  20. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71:3060–3067CrossRefGoogle Scholar
  21. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2007) Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology 153:291–299CrossRefGoogle Scholar
  22. Corcoran BM, Stanton C, Fitzgerald G, Ross RP (2008) Life under stress: the probiotic stress response and how it may be manipulated. Curr Pharm Des 14:1382–1399CrossRefGoogle Scholar
  23. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122CrossRefGoogle Scholar
  24. De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147:1863–1873Google Scholar
  25. De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70:1336–1346CrossRefGoogle Scholar
  26. De Vries MC (2006) Analyzing global gene expression of Lactobacillus plantarum in the human gastrointestinal tract. PhD thesis. Wageningen University, The NetherlandsGoogle Scholar
  27. de Vos WM, Bron PA, Kleerebezem M (2004) Post-genomics of lactic acid bacteria and other food-grade bacteria to discover gut functionality. Curr Opin Biotechnol 15:86–93Google Scholar
  28. Denou E, Berger B, Barretto C, Panoff JM, Arigoni F, Brussow H (2007) Gene expression of ­commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut. J Bacteriol 189:8109–8119CrossRefGoogle Scholar
  29. Desmond C, Ross RP, O’Callaghan E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 93:1003–1011CrossRefGoogle Scholar
  30. Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936CrossRefGoogle Scholar
  31. Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubière P, Gruss A (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516CrossRefGoogle Scholar
  32. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. London, Ontario, CanadaGoogle Scholar
  33. Fiocco D, Capozzi V, Goffin P, Hols P, Spano G (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77:909–915CrossRefGoogle Scholar
  34. Fiocco D, Capozzi V, Collins M, Gallone A, Hols P, Guzzo J, Weidmann S, Rieu A, Msadek T, Spano G (2010) Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol 192:896–900CrossRefGoogle Scholar
  35. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefGoogle Scholar
  36. Frees D, Ingmer H (1999) ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 31:79–87CrossRefGoogle Scholar
  37. Gotteland M, Cruchet S (2003) Suppressive effect of frequent ingestion of Lactobacillus johnsonii La1 on Helicobacter pylori colonization in asymptomatic volunteers. J Antimicrob Chemother 51:1317–1319Google Scholar
  38. Gresham D, Kruglyak L (2008) Rise of the machines. PLoS Genet 4:e1000134CrossRefGoogle Scholar
  39. Gross G, van der Meulen J, Snel J, van der Meer R, Kleerebezem M, Niewold TA, Hulst MM, Smits MA (2008) Mannose-specific interaction of Lactobacillus plantarum with porcine ­jejunal epithelium. FEMS Immunol Med Microbiol 54:215–223CrossRefGoogle Scholar
  40. Gross G, Snel J, Boekhorst J, Smits MA, Kleerebezem M (2010) Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the ­mannose-adhesin. Beneficial Microbes 1:61–66CrossRefGoogle Scholar
  41. Guzzo J, Jobin M-P, Delmas F, Fortier L-C, Garmyn D, Tourdot-Maréchal R, Lee B, Diviès C (2000) Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int J Food Microbiol 55:27–31CrossRefGoogle Scholar
  42. Hartke A, Bouche S, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol 33:194–199CrossRefGoogle Scholar
  43. Hartke A, Frere J, Boutibonnes P, Auffray Y (1997) Differential induction of the chaperonin GroEL and the Co-chaperonin GroES by heat, acid, and UV-irradiation in Lactococcus lactis subsp. lactis. Curr Microbiol 34:23–26CrossRefGoogle Scholar
  44. Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E (2008) Physiology of Streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 8:4273–4286CrossRefGoogle Scholar
  45. Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F (2009) Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75:2062–2073CrossRefGoogle Scholar
  46. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S, Guédon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463Google Scholar
  47. Hufner E, Markieton T, Chaillou S, Crutz-Le Coq AM, Zagorec M, Hertel C (2007) Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth. Appl Environ Microbiol 73:2522–2531CrossRefGoogle Scholar
  48. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, De Keersmaecker SC, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198CrossRefGoogle Scholar
  49. Kets E, Teunissen P, de Bont J (1996) Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Appl Environ Microbiol 62:259–261Google Scholar
  50. Kilstrup M, Jacobsen S, Hammer K, Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol 63:1826–1837Google Scholar
  51. Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW (2001) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol 43:346–350CrossRefGoogle Scholar
  52. Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E (2005) Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 29:393–409CrossRefGoogle Scholar
  53. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995CrossRefGoogle Scholar
  54. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230CrossRefGoogle Scholar
  55. Kleerebezem M, Vaughan EE (2009) Probiotic and Gut Lactobacilli and Bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290Google Scholar
  56. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764, table of contentsGoogle Scholar
  57. Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, Vanderleyden J, De Keersmaecker SC (2009) Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol 75:3554–3563CrossRefGoogle Scholar
  58. Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69:3809–3818CrossRefGoogle Scholar
  59. Lorca GL, Font de Valdez G, Ljungh A (2002) Characterization of the protein-synthesis dependent adaptive acid tolerance response in Lactobacillus acidophilus. J Mol Microbiol Biotechnol 4:525–532Google Scholar
  60. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616CrossRefGoogle Scholar
  61. Marco ML, Peters TH, Bongers RS, Molenaar D, van Hemert S, Sonnenburg JL, Gordon JI, Kleerebezem M (2009) Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ Microbiol 11:2747–2757CrossRefGoogle Scholar
  62. Macro ML, Wels M, de vos WM, Vaughan EE, Kleerebezem M (2010) Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J 11:1481–1484CrossRefGoogle Scholar
  63. Martini MC, Lerebours EC, Lin WJ, Harlander SK, Berrada NM, Antoine JM, Savaiano DA (1991) Strains and species of lactic acid bacteria in fermented milks (yogurts): effect on in vivo lactose digestion. Am J Clin Nutr 54:1041–1046Google Scholar
  64. McLeod A, Nyquist OL, Snipen L, Naterstad K, Axelsson L (2008) Diversity of Lactobacillus sakei strains investigated by phenotypic and genotypic methods. Syst Appl Microbiol 31:393–403CrossRefGoogle Scholar
  65. Meijerink M, van Hemert S, Taverne N, Wels M, de vos P, Bron PA, Savelkoul HF, Van Bilsen J, Kleerebezem M, Wells JM (2010) Identification of generic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLos One 5:e10632CrossRefGoogle Scholar
  66. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127CrossRefGoogle Scholar
  67. Noonpakdee W, Sitthimonchai S, Panyim S, Lertsiri S (2004) Expression of the catalase gene katA in starter culture Lactobacillus plantarum TISTR850 tolerates oxidative stress and reduces lipid oxidation in fermented meat product. Int J Food Microbiol 95:127–135CrossRefGoogle Scholar
  68. O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551CrossRefGoogle Scholar
  69. O’Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63:4210–4215Google Scholar
  70. Perea Velez M, Verhoeven TL, Draing C, Von Aulock S, Pfitzenmaier M, Geyer A, Lambrichts I, Grangette C, Pot B, Vanderleyden J, De Keersmaecker SC (2007) Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:3595–3604CrossRefGoogle Scholar
  71. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634CrossRefGoogle Scholar
  72. Pieterse B (2006) Transcriptome analysis of the lactic acid and NaCI-stress response of Lactobacillus plantarum. PhD thesis. Wageningen University, The NetherlandsGoogle Scholar
  73. Pieterse B, Leer RJ, Schuren FH, van der Werf MJ (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894CrossRefGoogle Scholar
  74. Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925CrossRefGoogle Scholar
  75. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, de Vos WM, van der Meer R, Smits MA, Kleerebezem M (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136CrossRefGoogle Scholar
  76. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517CrossRefGoogle Scholar
  77. Rainey PB, Preston GM (2000) In vivo expression technology strategies: valuable tools for ­biotechnology. Curr Opin Biotechnol 11:440–444CrossRefGoogle Scholar
  78. Rauch PJ, De Vos WM (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol 174:1280–1287Google Scholar
  79. Rediers H, Rainey PB, Vanderleyden J, De Mot R (2005) Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 69:217–261CrossRefGoogle Scholar
  80. Rochat T, Gratadoux JJ, Corthier G, Coqueran B, Nader-Macias ME, Gruss A, Langella P (2005a) Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains. Appl Environ Microbiol 71:2782–2788CrossRefGoogle Scholar
  81. Rochat T, Miyoshi A, Gratadoux JJ, Duwat P, Sourice S, Azevedo V, Langella P (2005b) High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE. Microbiology 151:3011–3018CrossRefGoogle Scholar
  82. Salotra P, Singh DK, Seal KP, Krishna N, Jaffe H, Bhatnagar R (1995) Expression of DnaK and GroEL homologs in Leuconostoc esenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol Lett 131:57–62CrossRefGoogle Scholar
  83. Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, Smid EJ (2007) Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact 6:29CrossRefGoogle Scholar
  84. Sheehan VM, Sleator RD, Fitzgerald GF, Hill C (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:2170–2177CrossRefGoogle Scholar
  85. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145CrossRefGoogle Scholar
  86. Siezen RJ, Wilson G (2010) Probiotic genomics. Microbial Biotechnology 3:1–9CrossRefGoogle Scholar
  87. Siezen RJ, Renckens B, van Swam I, Peters S, van Kranenburg R, Kleerebezem M, de Vos WM (2005) Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl Environ Microbiol 71:8371–8382CrossRefGoogle Scholar
  88. Siezen R, Boekhorst J, Muscariello L, Molenaar D, Renckens B, Kleerebezem M (2006) Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific Gram-positive bacteria. BMC Genom 7:126CrossRefGoogle Scholar
  89. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, Starrenburg MJ, Kleerebezem M, Molenaar D, van Hylckama Vlieg JE (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12:758–773CrossRefGoogle Scholar
  90. Sleator RD, Hill C (2006) Patho-biotechnology: using bad bugs to do good things. Curr Opin Biotechnol 17:211–216CrossRefGoogle Scholar
  91. Smiddy M, Sleator RD, Patterson MF, Hill C, Kelly AL (2004) Role for compatible solutes glycine betaine and L-carnitine in listerial barotolerance. Appl Environ Microbiol 70:7555–7557CrossRefGoogle Scholar
  92. Smit G, Smit BA, Engels WJ (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29:591–610CrossRefGoogle Scholar
  93. Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86CrossRefGoogle Scholar
  94. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21:785–789CrossRefGoogle Scholar
  95. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216CrossRefGoogle Scholar
  96. van Hemert S, Meijerink M, Molenaar D, Bron PA, de Vos P, Kleerebezem M, Wells JM, Marco ML (2010) Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiol 10:293CrossRefGoogle Scholar
  97. van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223–1230CrossRefGoogle Scholar
  98. Veening JW, Smits WK, Kuipers OP (2008a) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210CrossRefGoogle Scholar
  99. Veening JW, Stewart EJ, Berngruber TW, Taddei F, Kuipers OP, Hamoen LW (2008b) Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad Sci USA 105:4393–4398CrossRefGoogle Scholar
  100. Vogel RF, Pavlovic M, Hormann S, Ehrmann MA (2005) High pressure-sensitive gene expression in Lactobacillus sanfranciscensis. Braz J Med Biol Res 38:1247–1252CrossRefGoogle Scholar
  101. Wall T, Bath K, Britton RA, Jonsson H, Versalovic J, Roos S (2007) The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl Environ Microbiol 73:3924–3935CrossRefGoogle Scholar
  102. Walter J, Heng NC, Hammes WP, Loach DM, Tannock GW, Hertel C (2003) Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol 69:2044–2051CrossRefGoogle Scholar
  103. Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW (2007) D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100–23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol 9:1750–1760CrossRefGoogle Scholar
  104. Wels M (2008) Unraveling the regulatory network of Lactobacillus plantarum WCFS1 (Thesis), pp. 1–192, Wageningen University, The NetherlandsGoogle Scholar
  105. Wels M, Francke C, Kerkhoven R, Kleerebezem M, Siezen RJ (2006) Predicting cis-acting ­elements of Lactobacillus plantarum by comparative genomics with different taxonomic ­subgroups. Nucleic Acids Res 34:1947–1958CrossRefGoogle Scholar
  106. Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819CrossRefGoogle Scholar
  107. Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70:6738–6747CrossRefGoogle Scholar
  108. Zoetendal EG, Booijink CCGM, Klaassens ES, Heilig HGHJ, Kleerebezem M, Smidt H, de Vos WM (2006) Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1:954–959CrossRefGoogle Scholar
  109. Zomer A, Fernandez M, Kearney B, Fitzgerald GF, Ventura M, van Sinderen D (2009) An interactive regulatory network controls stress response in Bifidobacterium breve UCC2003. J Bacteriol 191:7039–7049CrossRefGoogle Scholar
  110. Zotta T, Asterinou K, Rossano R, Ricciardi A, Varcamonti M, Parente E (2009) Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39. Int J Food Microbiol 129:211–220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peter A. Bron
    • 1
    • 2
    • 3
  • Hermien van Bokhorst-van de Veen
    • 1
    • 2
    • 4
  • Michiel Wels
    • 1
    • 2
    • 5
  • Michiel Kleerebezem
    • 1
    • 2
    • 4
  1. 1.TI Food and NutritionWageningenThe Netherlands
  2. 2.NIZO Food ResearchEdeThe Netherlands
  3. 3.Kluyver Centre for Genomics of Industrial FermentationDelftThe Netherlands
  4. 4.Laboratory for MicrobiologyWageningen UniversityWageningenThe Netherlands
  5. 5.Center for Molecular and Biomolecular InformaticsRadboud University Nijmegen Medical CenterNijmegenThe Netherlands

Personalised recommendations