Advertisement

Stress Responses of Bifidobacteria

  • Marco Ventura
  • Abelardo Margolles
  • Francesca Turroni
  • Aldert Zomer
  • Clara G. de los Reyes-Gavilán
  • Douwe van Sinderen
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Many different bifidobacterial species constitute a key component of the human gut microbiota due to their perceived health-promoting role, which they elicit at the site of their natural habitat, the large intestine. Hence, such bifidobacteria represent a growing area of interest with respect to their genetics, genomics, and molecular ecology. This chapter will present the current knowledge of the molecular players that allow bifidobacteria to cope with heat, osmotic, acid, and bile salt stress.

Keywords

Bile Acid Bile Salt Bile Salt Hydrolase Bifidobacterial Strain Temperature Upshift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alander M, Mättö J, Kneifel W, Johansson M, Kögler B, Crittenden R, Mattila-Sandholm T, Saarela M (2001) Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int Dairy J 11:817–825Google Scholar
  2. Barrangou R, Briczinski EP, Traeger LL, Loquasto JR, Richards M, Horvath P, Coute-Monvoisin AC, Leyer G, Rendulic S, Steele JL, Broadbent JR, Oberg T, Dudley EG, Schuster S, Romero DA, Roberts RF (2009) Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J Bacteriol 191:4144–4151Google Scholar
  3. Begley M, Gahan CG, Hill C (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68:6005–6012Google Scholar
  4. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651Google Scholar
  5. Bellier A, Mazodier P (2004) ClgR, a novel regulator of clp and lon expression in Streptomyces. J Bacteriol 186:3238–3248Google Scholar
  6. Bernstein C, Bernstein H, Payne CM, Beard SE, Schneider J (1999) Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol 39:68–72Google Scholar
  7. Bore E, Langsrud S, Langsrud O, Rode TM, Holck A (2007) Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology 153:2289–2303Google Scholar
  8. Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738Google Scholar
  9. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366Google Scholar
  10. Candela M, Bergmann S, Vici M, Vitali B, Turroni S, Eikmanns BJ, Hammerschmidt S, Brigidi P (2007) Binding of human plasminogen to Bifidobacterium. J Bacteriol 189:5929–5936Google Scholar
  11. Chung HS, Kim YB, Chun SL, Ji GE (1999) Screening and selection of acid and bile resistant bifidobacteria. Int J Food Microbiol 47:25–32Google Scholar
  12. Collado MC, Sanz Y (2006) Method for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid-adaptation ability. J Microbiol Methods 66:560–563Google Scholar
  13. Collado MC, Sanz Y (2007) Induction of acid resistance in Bifidobacterium: a mechanism for improving desirable traits of potentially probiotic strains. J Appl Microbiol 103:1147–1157Google Scholar
  14. Collado MC, Gueimonde M, Sanz Y, Salminen S (2006) Adhesion properties and competitive pathogen exclusion ability of bifidobacteria with acquired acid resistance. J Food Prot 69:1675–1679Google Scholar
  15. Comtois SL, Gidley MD, Kelly DJ (2003) Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology 149:121–129Google Scholar
  16. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453Google Scholar
  17. Davis MJ, Coote PJ, O’Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142(Pt 10):2975–2982Google Scholar
  18. De Dea Lindner J, Canchaya C, Zhang Z, Neviani E, Fitzgerald GF, van Sinderen D, Ventura M (2007) Exploiting Bifidobacterium genomes: the molecular basis of stress response. Int J Food Microbiol 120:13–24Google Scholar
  19. Derré I, Rapoport G, Devine K, Rose M, Msadek T (1999a) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32:581–593Google Scholar
  20. Derré I, Rapoport G, Msadek T (1999b) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131Google Scholar
  21. Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52:285–302Google Scholar
  22. Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S (2005) The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57:576–591Google Scholar
  23. Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491–500Google Scholar
  24. Fanaro S, Vigi V, Chierici R, Boehm G (2003) Fecal flora measurements of breastfed infants using an integrated transport and culturing system. Acta Paediatr 92:634–635Google Scholar
  25. Fedhila S, Msadek T, Nel P, Lereclus D (2002) Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. J Bacteriol 184:5554–5562Google Scholar
  26. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA 3rd, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403Google Scholar
  27. Fuchs M (2003) Bile acid regulation of hepatic physiology: III. Regulation of bile acid synthesis: past progress and future challenges. Am J Physiol Gastrointest Liver Physiol 284:G551–557Google Scholar
  28. Garrigues C, Stuer-Lauridsen B, Johansen E (2005) Characterisation of Bifidobacterium animalis subsp. lactis BB-12 and other probiotic bacteria using genomics, transcriptomics and proteomics. Aust J Dairy Technol 60:84–92Google Scholar
  29. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359Google Scholar
  30. Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506Google Scholar
  31. Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823Google Scholar
  32. Grimaud R, Kessel M, Beuron F, Steven AC, Maurizi MR (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem 273:12476–12481Google Scholar
  33. Gueimonde M, Garrigues C, van Sinderen D, de los Reyes-Gavilan CG, Margolles A (2009) Bile-inducible efflux transporter from Bifidobacterium longum NCC2705, conferring bile resistance. Appl Environ Microbiol 75:3153–3160Google Scholar
  34. Hardison WG (1978) Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology 75:71–75Google Scholar
  35. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67Google Scholar
  36. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579Google Scholar
  37. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858Google Scholar
  38. Hlavacek O, Vachova L (2002) ATP-dependent proteinases in bacteria. Folia Microbiol (Praha) 47:203–212Google Scholar
  39. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483Google Scholar
  40. Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179:1153–1164Google Scholar
  41. Hondorp ER, Matthews RG (2004) Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2:e336Google Scholar
  42. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154Google Scholar
  43. Jayamanne VS, Adams MR (2006) Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Lett Appl Microbiol 42:189–194Google Scholar
  44. Keiler KC, Waller PR, Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993Google Scholar
  45. Kheadr E, Dabour N, Le Lay C, Lacroix C, Fliss I (2007) Antibiotic susceptibility profile of bifidobacteria as affected by oxgall, acid, and hydrogen peroxide stress. Antimicrob Agents Chemother 51:169–174Google Scholar
  46. Knaust A, Weber MV, Hammerschmidt S, Bergmann S, Frosch M, Kurzai O (2007) Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189:3246–3255Google Scholar
  47. Kociubinski G, Zavaglia AG, Perez PF, Disalvo EA, De Antoni GL (2002) Effect of bile components on the surface properties of bifidobacteria. J Dairy Res 69:293–302Google Scholar
  48. Kristiansen TZ, Bunkenborg J, Gronborg M, Molina H, Thuluvath PJ, Argani P, Goggins MG, Maitra A, Pandey A (2004) A proteomic analysis of human bile. Mol Cell Proteomics 3:715–728Google Scholar
  49. Kurdi P, Tanaka H, Van Veen HW, Asano K, Tomita F, Yokota A (2003) Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria. Microbiology 149:2031–2037Google Scholar
  50. Kurdi P, Kawanishi K, Mizutani K, Yokota A (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188:1979–1986Google Scholar
  51. Lamendella R, Santo Domingo JW, Kelty C, Oerther DB (2008) Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 74:575–584Google Scholar
  52. Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU (1992) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 11:4757–4765Google Scholar
  53. Lee BH, Hibino T, Jo J, Viale AM, Takabe T (1997) Isolation and characterization of a dnaK genomic locus in a halotolerant cyanobacterium Aphanothece halophytica. Plant Mol Biol 35:763–775Google Scholar
  54. Lee JH, Karamychev VN, Kozyavkin SA, Mills D, Pavlov AR, Pavlova NV, Polouchine NN, Richardson PM, Shakhova VV, Slesarev AI, Weimer B, O’Sullivan DJ (2008) Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genom 9:247Google Scholar
  55. Len AC, Harty DW, Jacques NA (2004) Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366Google Scholar
  56. Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69:3809–3818Google Scholar
  57. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651Google Scholar
  58. Margolles A, García L, Sánchez B, Gueimonde M, de los Reyes-Gavilán CG (2003) Characterisation of a Bifidobacterium strain with acquired resistance to cholate – a preliminary study. Int J Food Microbiol 82:191–198Google Scholar
  59. Masco L, Crockaert C, Van Hoorde K, Swings J, Huys G (2007) In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolates of Bifidobacterium. J Dairy Sci 90:3572–3578Google Scholar
  60. Matsumoto M, Ohishi H, Benno Y (2004) H  +  -ATPase activity in Bifidobacterium with special reference to acid tolerance. Int J Food Microbiol 93:109–113Google Scholar
  61. Maurizi MR, Clark WP, Kim SH, Gottesman S (1990) ClpP represents a unique family of serine proteases. J Biol Chem 265:12546–12552Google Scholar
  62. Maus JE, Ingham SC (2003) Employment of stressful conditions during culture production to enhance subsequent cold- and acid-tolerance of bifidobacteria. J Appl Microbiol 95:146–154Google Scholar
  63. Miwa T, Esaki H, Umemori J, Hino T (1997) Activity of H(+)-ATPase in ruminal bacteria with special reference to acid tolerance. Appl Environ Microbiol 63:2155–2158Google Scholar
  64. Miyake T, Watanabe K, Watanabe T, Oyaizu H (1998) Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol Immunol 42:661–667Google Scholar
  65. Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949Google Scholar
  66. Muchowski PJ, Hays LG, Yates JR 3rd, Clark JI (1999) ATP and the core “alpha-crystallin” domain of the small heat-shock protein alphaB-crystallin. J Biol Chem 274:30190–30195Google Scholar
  67. Nair S, Finkel SE (2004) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186:4192–4198Google Scholar
  68. Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8Google Scholar
  69. Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93; table of contentsGoogle Scholar
  70. Noriega L, de los Reyes-Gavilan CG, Margolles A (2005) Acquisition of bile salt resistance promotes antibiotic susceptibility changes in Bifidobacterium. J Food Prot 68:1916–1919Google Scholar
  71. O’Connell-Motherway M, Fitzgerald GF, Neirynck S, Ryan S, Steidler L, van Sinderen D (2008) Characterization of ApuB, an extracellular type II amylopullulanase from Bifidobacterium breve UCC2003. Appl Environ Microbiol 74:6271–6279Google Scholar
  72. O’Connell-Motherway M, O’Driscoll J, Fitzgerald GF, van Sinderen D (2009) Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microbiol Biotechnol 2:321–332Google Scholar
  73. Price CE, Reid SJ, Driessen AJ, Abratt VR (2006) The Bifidobacterium longum NCIMB 702259T ctr gene codes for a novel cholate transporter. Appl Environ Microbiol 72:923–926Google Scholar
  74. Puglia AM, Vohradsky J, Thompson CJ (1995) Developmental control of the heat-shock stress regulon in Streptomyces coelicolor. Mol Microbiol 17:737–746Google Scholar
  75. Rezzonico E, Lariani S, Barretto C, Cuanoud G, Giliberti G, Delley M, Arigoni F, Pessi G (2007) Global transcriptome analysis of the heat shock response of Bifidobacterium longum. FEMS Microbiol Lett 271:136–145Google Scholar
  76. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259Google Scholar
  77. Ritter P, Kohler C, von Ah U (2009) Evaluation of the passage of Lactobacillus gasseri K7 and bifidobacteria from the stomach to intestines using a single reactor model. BMC Microbiol 9:87Google Scholar
  78. Ruas-Madiedo P, Gueimonde M, Arigoni F, de los Reyes-Gavilan CG, Margolles A (2009) Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl Environ Microbiol 75:1204–1207Google Scholar
  79. Ruiz L, Coute Y, Sanchez B, de los Reyes-Gavilan CG, Sanchez JC, Margolles A (2009a) The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 155:957–967Google Scholar
  80. Ruiz L, Sanchez B, de Los Reyes-Gavilan CG, Gueimonde M, Margolles A (2009b) Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities. Int J Food Microbiol 133:148–153Google Scholar
  81. Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajarvi I, Matto J (2004) Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96:1205–1214Google Scholar
  82. Samelis J, Ikeda JS, Sofos JN (2003) Evaluation of the pH-dependent, stationary-phase acid tolerance in Listeria monocytogenes and Salmonella Typhimurium DT104 induced by culturing in media with 1% glucose: a comparative study with Escherichia coli O157:H7. J Appl Microbiol 95:563–575Google Scholar
  83. Sanchez B, de los Reyes-Gavilan CG, Margolles A (2006) The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environ Microbiol 8:1825–1833Google Scholar
  84. Sanchez B, Champomier-Verges MC, Anglade P, Baraige F, de Los Reyes-Gavilan CG, Margolles A, Zagorec M (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808Google Scholar
  85. Sanchez B, Champomier-Verges MC, Collado Mdel C, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilan CG, Margolles A, Zagorec M (2007a) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl Environ Microbiol 73:6450–6459Google Scholar
  86. Sanchez B, Champomier-Verges MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, de los Reyes-Gavilan CG, Johansen E, Zagorec M, Margolles A (2007b) Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol 73:6757–6767Google Scholar
  87. Savijoki K, Suokko A, Palva A, Valmu L, Kalkkinen N, Varmanen P (2005) Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by [35S]methionine labelling and two-dimensional gel electrophoresis. FEMS Microbiol Lett 248:207–215Google Scholar
  88. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427Google Scholar
  89. Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296Google Scholar
  90. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105:18964–18969Google Scholar
  91. Servant P, Mazodier P (1995) Characterization of Streptomyces albus 18-kilodalton heat shock-responsive protein. J Bacteriol 177:2998–3003Google Scholar
  92. Sjovall J (1959) Dietary glycine and taurine on bile acid conjugation in man; bile acids and steroids 75. Proc Soc Exp Biol Med 100:676–678Google Scholar
  93. Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Pauker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139Google Scholar
  94. Takahashi N, Xiao JZ, Miyaji K, Iwatsuki K (2007) H  +  -ATPase in the acid tolerance of Bifidobacterium longum. Milk Sci Int 62:151–153Google Scholar
  95. Teter SA, Klionsky DJ (1999) How to get a folded protein across a membrane. Trends Cell Biol 9:428–431Google Scholar
  96. Tharmaraj N, Shah NP (2003) Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. J Dairy Sci 86:2288–2296Google Scholar
  97. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de’Angelis GL, Shanahan F, van Sinderen D, Ventura M (2009a) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75:1534–1545Google Scholar
  98. Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, Margolles A, van Sinderen D, Ventura M (2009b) Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME J 3:745–751Google Scholar
  99. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216Google Scholar
  100. Ventura M, Canchaya C, van Sinderen D, Fitzgerald GF, Zink R (2004a) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl Environ Microbiol 70:3110–3121Google Scholar
  101. Ventura M, Canchaya C, Zink R, Fitzgerald GF, van Sinderen D (2004b) Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses. Appl Environ Microbiol 70:6197–6209Google Scholar
  102. Ventura M, Fitzgerald GF, van Sinderen D (2005a) Genetic and transcriptional organization of the clpC locus in Bifidobacterium breve UCC 2003. Appl Environ Microbiol 71:6282–6291Google Scholar
  103. Ventura M, Kenny JG, Zhang Z, Fitzgerald GF, van Sinderen D (2005b) The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction. Microbiology 151:2861–2872Google Scholar
  104. Ventura M, Zhang Z, Cronin M, Canchaya C, Kenny JG, Fitzgerald GF, van Sinderen D (2005c) The ClgR protein regulates transcription of the clpP operon in Bifidobacterium breve UCC 2003. J Bacteriol 187:8411–8426Google Scholar
  105. Ventura M, Canchaya C, Del Casale A, Dellaglio F, Neviani E, Fitzgerald GF, van Sinderen D (2006a) Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 56:2783–2792Google Scholar
  106. Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D (2006b) How high G  +  C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiol Rev 30:734–759Google Scholar
  107. Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D (2007a) Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie van Leeuwenhoek 91:351–372Google Scholar
  108. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007b) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548Google Scholar
  109. Ventura M, Canchaya C, Zhang Z, Fitzgerald GF, van Sinderen D (2007c) Molecular characterization of hsp20, encoding a small heat shock protein of Bifidobacterium breve UCC2003. Appl Environ Microbiol 73:4695–4703Google Scholar
  110. Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O’Toole PW (2008) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7:61–71Google Scholar
  111. Vernazza CL, Gibson GR, Rastall RA (2006) Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. J Appl Microbiol 100:846–853Google Scholar
  112. Viala J, Mazodier P (2002) ClpP-dependent degradation of PopR allows tightly regulated expression of the clpP3 clpP4 operon in Streptomyces lividans. Mol Microbiol 44:633–643Google Scholar
  113. Viala J, Rapoport G, Mazodier P (2000) The clpP multigenic family in Streptomyces lividans: conditional expression of the clpP3 clpP4 operon is controlled by PopR, a novel transcriptional activator. Mol Microbiol 38:602–612Google Scholar
  114. Vinderola G, Prosello W, Molinari F, Ghiberto D, Reinheimer J (2009) Growth of Lactobacillus paracasei A13 in Argentinian probiotic cheese and its impact on the characteristics of the product. Int J Food Microbiol 135:171–174Google Scholar
  115. Weissman JS, Kashi Y, Fenton WA, Horwich AL (1994) GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78:693–702Google Scholar
  116. Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893Google Scholar
  117. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750Google Scholar
  118. Yasui K, Kano Y, Tanaka K, Watanabe K, Shimizu-Kadota M, Yoshikawa H, Suzuki T (2009) Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucl Acids Res 37:e3Google Scholar
  119. Zomer A, Fernandez M, Kearney B, Fitzgerald GF, Ventura M, van Sinderen D (2009) An interactive regulatory network controls stress response in Bifidobacterium breve UCC2003. J Bacteriol 191:7039–7049Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marco Ventura
    • 1
  • Abelardo Margolles
    • 2
  • Francesca Turroni
    • 1
  • Aldert Zomer
    • 3
  • Clara G. de los Reyes-Gavilán
    • 2
  • Douwe van Sinderen
    • 3
  1. 1.Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology, EvolutionUniversity of ParmaParmaItaly
  2. 2.Department of Microbiology and Biochemistry of Dairy Products, IPLA – CSICVillaviciosaSpain
  3. 3.Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland

Personalised recommendations