Stress Responses of Lactobacilli

Part of the Food Microbiology and Food Safety book series (FMFS)


Environmental stress responses in Lactobacillus are reviewed in this chapter. Comparative genome analysis of the Lactobacillus species indicated that the combination of gene gain and gene loss occurred during environmental adaptation. However, the ability of the Lactobacillus species to adapt to different environments is variable. The physiological and molecular mechanisms of responses to heat, cold, acid, osmotic, oxidative, high pressure, starvation, and quorum-sensing (QS) stresses are described. The mechanisms of stress resistance in lactobacilli are based upon the induction of a specific set of proteins found after exposure to sublethal specific stress (specific response) or after exposure to other types of environmental stress (generic response). Other mechanisms of stress responses are involved, such as (1) the proportion of shorter and/or unsaturated fatty acids in membrane lipids, (2) the intracellular level of compatible solutes, (3) the F0F1-ATPase proton pumps, (4) the amino acid decarboxylation/catabolism, and (5) the small signaling hormone-like molecules. Molecular mechanisms of stress responses in lactobacilli and other bacteria are compared. Specific examples of the repercussions of these effects in food processing are given.


Quorum Sense Glycine Betaine Acid Stress Quaternary Ammonium Compound Lactobacillus Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe K, Hayashi H, Maloney PC (1996) Exchange of aspartate and alanine. J Biol Chem 271:3079–3084CrossRefGoogle Scholar
  2. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912CrossRefGoogle Scholar
  3. Amanatidou A, Bennik MHJ, Gorris LGM, Smid EJ (2001) Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen. Arch Microbiol 176:79–88CrossRefGoogle Scholar
  4. Archibald FS, Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936Google Scholar
  5. Arena ME, Saguir FM, Manca de Nadra MC (1999) Arginine dihydrolase pathway in Lactobacillus plantarum from orange. Int J Food Microbiol 47:203–209CrossRefGoogle Scholar
  6. Azcarate-Peril MA, Altermann E, Hoover-Fitzula RL, Cano RJ, Klaenhammer TR (2004) Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl Environ Microbiol 70:5315–5322CrossRefGoogle Scholar
  7. Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR (2005) Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol 71:5794–5804CrossRefGoogle Scholar
  8. Bâati L, Fabre-Gea C, Auriol D, Blanc PJ (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol 59:241–247CrossRefGoogle Scholar
  9. Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97:7784–7789CrossRefGoogle Scholar
  10. Bass S, Gu Q, Christen A (1996) Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 178:1154–1161Google Scholar
  11. Bender GR, Marquis, RE (1987) Membrane ATPases and acid tolerance of Actinomyces viscosus and Lactobacillus casei. Appl Environ Microbiol 53:2124–2128Google Scholar
  12. Broadbent JR, Oberg JC, Wang H, Wie L (1997) Attributes of the heat shock response in three species of dairy Lactobacillus. Syst Appl Microbiol 20:12–19Google Scholar
  13. Broadbent JR, Oberg CJ, Wie L (1998) Characterization of the Lactobacillus helveticus groESL operon. Res Microbiol 149:247–253CrossRefGoogle Scholar
  14. Cai H, R Thompson, Budinich MF, Broadbent JR, Steele JL (2009) Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Gen Biol Evol 9:239–257Google Scholar
  15. Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald, Beresford T, Ross RP (2008) Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190:727–735CrossRefGoogle Scholar
  16. Cappa F, Cattivelli D, Cocconcelli PS (2005) The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Res Microbiol 156:1039–1047CrossRefGoogle Scholar
  17. Castaldo C, Siciliano RA, Muscariello L, Marasco R, Sacco M (2006) CcpA affects expression of the groESL and dnaK operons in Lactobacillus plantarum. Microb Cell Fact 5:35CrossRefGoogle Scholar
  18. Castro HP, Teixeira PM, Kirby R (1997) Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. J Appl Microbiol 82:87–94CrossRefGoogle Scholar
  19. Chaillou S, Champomier-Vergès MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongere E, Bossy R, Loux V, Zagorec M (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23 K. Nat Biotechnol 23:1527–1533CrossRefGoogle Scholar
  20. Champomier Vergès MC, Zúňiga M, Morel-Deville F, Pèrez-Martinez G, Zagorec M, Ehrlich SD (1999) Relationships between arginine degradation, pH and survival in Lactobacillus sakei.  FEMS Microbiol Lett 180:297–304CrossRefGoogle Scholar
  21. Chatterji D, Ojha A K (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opinion Microbiol 4(2):160–165CrossRefGoogle Scholar
  22. Chou LS, Weimer B (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31CrossRefGoogle Scholar
  23. Cohen DPA, Renes J, Bouwman FG, Zoetendal1 EG, Mariman E, de Vos WM, Vaughan EE (2006) Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database. Proteomics 6:6485–6493Google Scholar
  24. Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46:269–280CrossRefGoogle Scholar
  25. Corcoran BM, Ross RP, Fitzgerald GF, Dockery P, Stanton C (2006) Enhanced survival of GroESL-overproducing Lactobacillus paracasei NFBC 338 under stressful conditions induced by drying. Appl Environ Microbiol 72:5104–5107CrossRefGoogle Scholar
  26. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453CrossRefGoogle Scholar
  27. De Angelis M, Gobbetti M (1999) Lactobacillus sanfranciscensis CB1: manganese, oxygen, superoxide dismutase and metabolism. Appl Microbiol Biotechnol 51:358–363CrossRefGoogle Scholar
  28. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122CrossRefGoogle Scholar
  29. De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147:1863–1873Google Scholar
  30. De Angelis M, Mariotti L, Rossi J, Servili M, Fox P, Rollan G, Gobbetti M (2002) Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 68:6193–6201CrossRefGoogle Scholar
  31. De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70:1336–1346CrossRefGoogle Scholar
  32. Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131CrossRefGoogle Scholar
  33. Derzelle S, Hallet B, Francis KP, Ferain T, Delcour J, Hols P (2000) Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J Bacteriol 182:5105–5113CrossRefGoogle Scholar
  34. Desmond C, Stanton C, Fitzgerald GF, Collins K, Ross RP (2001) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 11:801–808CrossRefGoogle Scholar
  35. Di Cagno R, De Angelis M, Limitone A, Fox PF, Gobbetti M (2006) Response of Lactobacillus helveticus PR4 to heat stress during propagation in cheese whey with a gradient of decreasing temperatures. Appl Environ Microbiol 72:4503–4514CrossRefGoogle Scholar
  36. Di Cagno R, De Angelis M, Limitone A, Minervini F, Simonetti C, Buchin S, Gobbetti M (2007) Cell-cell communication in sourdough lactic acid bacteria: a proteomic study in Lactobacillus sanfranciscensis CB1. Proteomics 7:2430–2446CrossRefGoogle Scholar
  37. Di Cagno R, De Angelis M, Coda R, Minervini F, Gobbetti M (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Microbiol Res 160:358 –366CrossRefGoogle Scholar
  38. Di Cagno R, De Angelis M, Calasso M, Vicentini O, Vernocchi P, Ndagijimana M, De Vincenzi M, Dessì M, Guerzoni ME, Gobbetti M (2010) Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics, in pressGoogle Scholar
  39. Drews O, Weiss W, Reil G, Parlar H, Wait R, Görg A (2002) High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis. Proteomics 2:765–774CrossRefGoogle Scholar
  40. Elli M, Morelli L, Zink R (2002) In: Book of Abstracts, “Seventh Symposium on Lactic Acid Bacteria—genetics, metabolism and applications,” FEMS Netherlands, p. G9Google Scholar
  41. Fiocco D, Capozzi V, Goffin P, Hols P, Spano G (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77:909–915CrossRefGoogle Scholar
  42. Fiocco D, Collins M, Muscariello L, Hols P, Kleerebezem M, Msadek T, Spano G (2009) The Lactobacillus plantarum ftsH gene is a novel member of the CtsR stress response regulon. J Bacteriol 191:1688–1694CrossRefGoogle Scholar
  43. Foster JW, Hall HK (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 173:5129–5135Google Scholar
  44. Francis KP, Stewart GSAB (1997) Detection and speciation of bacteria through PCR using universal major cold-shock protein primer oligomers. J Ind Microbiol Biotechnol 19:286–293CrossRefGoogle Scholar
  45. Gaenzle MG, Schwab C (2009) Ecology of exopolysaccharide formation by lactic acid bacteria: sucrose utilisation, stress tolerance, and biofilm formation. In: Ulrich M (Ed.), Bacterial polysaccharides—current innovation and trends. Horizon PressGoogle Scholar
  46. Glaasker E, Konings WN, Poolman B (1996) Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol 178:575–582Google Scholar
  47. Glaasker E, Tjan FSB, Tergesteeg PF, Konings WN, Poolman B (1998) Physiological response of Lactobacillus plantarum to salt and nonelectrolyte stress. J Bacteriol 180:4718–4723Google Scholar
  48. Gobbetti M (1998) The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 9:267–274CrossRefGoogle Scholar
  49. Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A (2007) Cell cell communication in food related bacteria. Int J Food Microbiol 120:34–45CrossRefGoogle Scholar
  50. Goh Y, Klaenhammer TR (2009) Genomic features of Lactobacillus species. Front Biosci 14:1362–1386CrossRefGoogle Scholar
  51. Götz F, Sedewitz B, Elstner EF (1980) Oxygen utilization by Lactobacillus plantarum. Arch Microbiol 125:209–214CrossRefGoogle Scholar
  52. Gouesbert G, Jan G, Boyaval P (2001) Lactobacillus delbrueckii ssp. bulgaricus thermotolerance. Lait 81:301–309CrossRefGoogle Scholar
  53. Groot MN, Klaassens E, de Vos WM, Delcour J, Hols P, Kleerebezem M (2005) Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis. Microbiology 151:1229–1238CrossRefGoogle Scholar
  54. Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264Google Scholar
  55. Guerzoni ME, Vernocchi P, Ndagijimana M, Giannotti A, Lanciotti R (2007) Generation of aroma compounds in sourdough: effects of stress exposure and lactobacilli–yeasts interactions. Food Microbiol 24:139–148CrossRefGoogle Scholar
  56. Hecker M, Schumann W, Völker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428CrossRefGoogle Scholar
  57. Hertel C, Schmidt G, Fisher M, Oellers K, Hammes WP (1998) Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Appl Environ Microbiol 64:1359–1365Google Scholar
  58. Hong SI, Kim YJ, Pyun YR (1999) Acid tolerance of Lactobacillus plantarum from Kimchi. Food Sci Technol Lebensm Wiss Technol 32:142–148CrossRefGoogle Scholar
  59. Hörmann S, Scheyhing C, Behr J, Pavlovic M, Ehrmann M, Vogel RF (2006) Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451 T. Proteomics 6:1878–1885CrossRefGoogle Scholar
  60. Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470CrossRefGoogle Scholar
  61. Hussain MA, Knight MI, Britz ML (2009) Proteomic analysis of lactose-starved Lactobacillus casei. J Appl Microbiol 106(3):764–773CrossRefGoogle Scholar
  62. Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365CrossRefGoogle Scholar
  63. Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231CrossRefGoogle Scholar
  64. Jänsch A, Korakli M, Vogel RF, Gänzle MG (2007) Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: contribution to oxygen tolerance and thiol exchange reactions in wheat sourdoughs. Appl Environ Microbiol 73:4469–4476CrossRefGoogle Scholar
  65. Jofré A, Champomier-Vergès SM, Anglade P, Baraige F, Martìn B, Garriga M, Zagorec M, Aymerich T (2007) Protein synthesis in lactic acid and pathogenic bacteria during recovery from a high pressure treatment. Res Microbiol 158:512–520CrossRefGoogle Scholar
  66. Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146CrossRefGoogle Scholar
  67. Katsaros GI, Giannoglou MN, Taoukis PS (2009) Kinetic study of the combined effect of high hydrostatic pressure and temperature on the activity of Lactobacillus delbrueckii ssp. bulgaricus aminopeptidases. J Food Sci 74:E219–E225CrossRefGoogle Scholar
  68. Kilimann KV, Doster W, Vogel RF, Hartmann C, Gänzle MG (2006a) Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: an FT-IR study. Biochim Biophys Acta 1764:1188–1197Google Scholar
  69. Kilimann KV, Hartmann C, Delgado A, Vogel RF, Gänzle MG (2006b) Combined high pressure and temperature induced lethal and sublethal injury of Lactococcus lactis—application of multivariate statistical analysis. Int J Food Microbiol 109:25–33CrossRefGoogle Scholar
  70. Kim SW, Dunn NW (1997) Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr Microbiol 35:59–63CrossRefGoogle Scholar
  71. Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW (2001) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol 43:346–350CrossRefGoogle Scholar
  72. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995CrossRefGoogle Scholar
  73. Knauf HJ, Vogel RF, Hammes WP (1992) Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58:832–839Google Scholar
  74. Korakli M, Gänzle MG, Knorr R, Frank M, Rossmann A, Vogel RF (2002) Metabolism of Lactobacillus sanfranciscensis under high-pressure: investigations using stable carbon isotopes. In: Hayashi R (Ed.), Trends in high pressure bioscience and biotechnology. Elsevier, Amsterdam, pp. 287–294CrossRefGoogle Scholar
  75. Laplace JM, Sauvageot N, Harke A, Auffray Y (1999) Characterization of Lactobacillus collinoides response to heat, acid and ethanol treatments. Appl Microbiol Biotechnol 51:659–663CrossRefGoogle Scholar
  76. Lee K, Lee HG, Pi KB, Choi YJ (2008) The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics 8:1624–1630CrossRefGoogle Scholar
  77. Lim EM, Ehrlich SD, Maguin E (2000) Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21:2557–2561CrossRefGoogle Scholar
  78. Lim EM, Smokvina T, Chervaux C, Ehrlich SD, Maguin E (2002) In: Book of Abstracts, “Seventh Symposium on Lactic Acid Bacteria—genetics, metabolism and applications,” FEMS Netherlands, p. G85Google Scholar
  79. Lorca GL, Raya RR, Taranto MP, Font de Valdez G (1998) Adaptative acid tolerance response in Lactobacillus acidophilus. Biotechnol Lett 20:239–241CrossRefGoogle Scholar
  80. Lorca GL, Font de Valdez GF (1999) Effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiology 39:144–149CrossRefGoogle Scholar
  81. Lorca GL, Font de Valdez G (2001) Acid tolerance mediated by membrane ATPases in Lactobacillus acidophilus. Curr Microbiol 42:21–25CrossRefGoogle Scholar
  82. Marceau A, Zagorec M, Champonier-Vergès MC (2002) In: Book of Abstracts, “Seventh Symposium on Lactic Acid Bacteria—genetics, metabolism and applications,” FEMS Netherlands, p. G62Google Scholar
  83. Marquis RE, Mèra T, Bender GR, Murray DR, Pesce de Ruiz Holgado A (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl Environ Microbiol 53:198–200Google Scholar
  84. Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263CrossRefGoogle Scholar
  85. Marty-Teysset C, De La Torre F, Garel JR (2000) Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. Appl Environ Microbiol 66:262–267CrossRefGoogle Scholar
  86. Mayo B, Derzelle S, Fernandez L, Leonard C, Ferain T, Hols P, Suarez JE, Delcour J (1997) Cloning and characterization of cspL and cspP, two cold-inducible genes from Lactobacillus plantarum. J Bacteriol 179:3039–3042Google Scholar
  87. Miyakawa H, Anjitsu K, Ishibashi N, Shimamura S (1994) Effects of pressure on enzyme activities of Lactobacillus helveticus LHE-511. Biosci Biotech Biochem 58:606–607CrossRefGoogle Scholar
  88. Molenaar D, Bosscher JS, Ten Brink B, Driessen AJM, Konings WN (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 175:2864–2870Google Scholar
  89. Moslehi-Jenabian S, Gori K, Jespersen L (2009) AI-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp. Int J Food Microbiol 135:295–302CrossRefGoogle Scholar
  90. Nannen NL, Hutkins RW (1991) Proton-translocating adenosine triphosphatase activity in lactic acid bacterial. J Dairy Sci 74:747–751CrossRefGoogle Scholar
  91. Narberhaus F (2002) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93CrossRefGoogle Scholar
  92. Nousiainen LL, Savijoki K, Palva A, Varmanen P (2002) In: Book of Abstracts, “Seventh Symposium on Lactic Acid Bacteria—genetics, metabolism and applications,” FEMS, Netherlands, p. G44Google Scholar
  93. Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221CrossRefGoogle Scholar
  94. Pannoff JM, Thammavongs B, Gueguen M (2000) Cryoprotectants lead to phenotypic adaptation to freeze–thaw stress in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027 T. Cryobiology 40:264–269CrossRefGoogle Scholar
  95. Pavlovic M, Hörmann S, Vogel RF, Ehrmann MA (2005) Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis. Arch Microbiol 184:11–17CrossRefGoogle Scholar
  96. Pavlovic M, Hörmann S, Vogel RF, Ehrmann MA (2008) Characterisation of a piezotolerant mutant of Lactobacillus sanfranciscensis. Z Naturforsch 63b:791–797Google Scholar
  97. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634CrossRefGoogle Scholar
  98. Phadtare S, Yamanata K, Inouye M (2000) In: Stortz G, Hengge-Aronis R (Eds.), Bacterial stress response, ASM Press, Washinngton, DC, pp. 33–45Google Scholar
  99. Pieterse B, Leer RJ, Schuren FHJ, van der Werf M (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894CrossRefGoogle Scholar
  100. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517CrossRefGoogle Scholar
  101. Rizzello CG, Cassone A, Di Cagno R, Gobbetti M (2008) Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and g-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. J Agric Food Chem 56:6936–6943CrossRefGoogle Scholar
  102. Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, van de Guchte M (2006) Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol 72:5143–5149CrossRefGoogle Scholar
  103. Ruas-Madiedo P, Hugenholtz J, Zoon P (2000) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171CrossRefGoogle Scholar
  104. Russel NJ, Fukanage M (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermo-philic bacteria. FEMS Microbiol Rev 75:171–182CrossRefGoogle Scholar
  105. Sanders JW, Vemena G, Kok J (1999) Environmental stress responses in Lactococcus lactis. FEMS Microbiol Rev 23:483–501CrossRefGoogle Scholar
  106. Scheyhing CH, Hörmann S, Ehrmann MA, Vogel RF (2004) Barotolerance is inducible by preincubation under hydrostatic pressure, cold-, osmotic- and acid-stress conditions in Lactobacillus sanfranciscensis DSM20451T. Lett Appl Microbiol 39:284–289CrossRefGoogle Scholar
  107. Schmidt G, Hertel C, Hammes WP (1999) Characterisation of the dnaK operon of Lactobacillus sakei LTH681. System Appl Microbiol 22:321–328Google Scholar
  108. Segal G, Ron EZ (1996) Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol Lett 138:1–10CrossRefGoogle Scholar
  109. Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, Smid EJ (2007) Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact 6:29CrossRefGoogle Scholar
  110. Serrazanetti D, Guerzoni ME, Corsetti A, Vogel R (2009) Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol 26:700–711CrossRefGoogle Scholar
  111. Siegumfeldt H, Rechinger KB, Jakobsen M (2000) Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl Environ Microbiol 66:2330–2335CrossRefGoogle Scholar
  112. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Production of γ-aminobutyric acid (GABA) by lactic acid bacteria isolated from Italian cheese varieties. Appl Environ Microbiol 73(22):7283–7290CrossRefGoogle Scholar
  113. Smeds A, Varmanen P, Palva A (1998) Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. J Bacteriol 180:6148–6153Google Scholar
  114. Spano G, Beneduce L, Perrotta C, Massa S (2005) Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock genes family isolated from wine Lactobacillus plantarum. Res Microbiol 156:219–224Google Scholar
  115. Stentz R, Loizel C, Mallert C, Zagorec M (2000) Development of genetic tools for Lactobacillus sakei: disruption of the β-galactosidase gene and Use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Appl Environ Microbiol 66:4272–4278CrossRefGoogle Scholar
  116. Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Utilization of electron acceptors by lactobacilli isolated from sourdough. II. Lactobacillus pontis, L. reuteri, L. amylovorus, L. fermentum. Z Lebensm Unters Forsch 201:402–410CrossRefGoogle Scholar
  117. Streit F, Corrieu G, Béal C (2007) Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1. J Biotechnol 128:659–667CrossRefGoogle Scholar
  118. Streit F, Delettre J, Corrieu G, Béal C (2008) Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol 105:1071–1080CrossRefGoogle Scholar
  119. Stuart MR, Chou LS, Weimer BC (1999) Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 65:665–673Google Scholar
  120. Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in Gram-positive bacteria. Antonie van Leeuwenhoek 81:233–243CrossRefGoogle Scholar
  121. Sturme MH, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T, Vaughan EE, Kleerebezem M, de Vos WM (2005) An agr-like twocomponent regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235CrossRefGoogle Scholar
  122. Sturme MH, Francke JC, Siezen RJ, de Vos WM, Kleerebezem M (2007) Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology 153:3939–3947CrossRefGoogle Scholar
  123. Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 59:633–657CrossRefGoogle Scholar
  124. Suokko A, Poutanen M, Savijoki K, Kalkkinen N, Varmanen P (2008) ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8:1029–1041CrossRefGoogle Scholar
  125. Tieking M, Gaenzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Technol 16:79–84CrossRefGoogle Scholar
  126. Turner MS, Woodberry T, Hafner LM, Giffard PM (1999) The bspA locus of Lactobacillus fermentum BR11 encodes an L-cystine uptake system. J Bacteriol 181:2192–2198Google Scholar
  127. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216CrossRefGoogle Scholar
  128. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, LouxV, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessieres P, Weissenbach J, Ehrlich SD, Maguin E (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279CrossRefGoogle Scholar
  129. Vermeulen N, Czerny M, Gänzle MG, Schieberle P, Vogel RF (2007) Reduction of (E)-2-nonenal and (E,E)-2,4-decadienal during sourdough fermentation. J Cereal Sci 45:78–87CrossRefGoogle Scholar
  130. Vernocchi P, Ndagijimana M, Serrazanetti D, Gianotti A, Vallicelli M, Guerzoni ME (2008) Influence of starch addition and dough microstructure on fermentation aroma production by yeasts and lactobacilli. Food Chem 108:1217–1225CrossRefGoogle Scholar
  131. Vogel RF, Pavlovic M, Hörmann S, Ehrmann MA (2005) High pressure-sensitive gene expression in Lactobacillus sanfranciscensis. Braz J Med Biol Res 38:1247–1252CrossRefGoogle Scholar
  132. Walker DC, Girgis HS, Klaenhammer TR (1999) The groESL chaperone operon of Lactobacillus johnsonii. Appl Environ Microbiol 65:3033–3041Google Scholar
  133. Warriner KRS, Morris JG (1995) The effects of aeration on the bioreductive abilities of some heterofermentative lactic acid bacteria. Lett Appl Microbiol 20:323–327CrossRefGoogle Scholar
  134. Wouters JA, Rombouts M, Kuipers OP, de Vos WM, Abee T (2000) The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol 23:165–173Google Scholar
  135. Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255CrossRefGoogle Scholar
  136. Zink R, Walker C, Schmidt G, Elli M, Pridmore D, Reniero R (2000) Impact of multiple stress factors on the survival of dairy lactobacilli. Sci Alim 20:119–126CrossRefGoogle Scholar
  137. Zúňiga M, Champomier-Verges M, Zagorec M, Pèrez-Martinez G (1998) Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sakei. J Bacteriol 180:4154–4159Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biologia e Chimica Agro-Forestale ed AmbientaleUniversity of BariBariItaly

Personalised recommendations