Stress Responses of Lactococcus lactis

  • Juan Zhang
  • Chongde Wu
  • Feng Xue
  • Guocheng Du
  • Jian Chen
Part of the Food Microbiology and Food Safety book series (FMFS)


Lactococcus lactis is a Gram-positive bacterium widely used as a starter culture in the food industry due to its health-promoting and nutritional properties. However, L. lactis, similar to other lactic acid bacteria, encounters various stress conditions both during industrial processes and in the gastrointestinal tract. In response to environmental stresses, L. lactis employs numerous mechanisms to survive under stressful conditions. In this chapter, the stress responses of L. lactis, including alterations in the metabolic activities and energy state as well as the intracellular stress signals are summarized and discussed. In general, environmental stresses result in decreased glycolytic activity and in shifts of the metabolic pathways to counteract the harsh environment encountered. In addition, the intracellular stress-response signals such as the maintenance of intracellular pH homeostasis and the accumulation of specific intermediates are elucidated. Finally, we summarize the cross-protection phenomenon in L. lactis, which leads to increased stress resistance by pre-exposure of the cells to a mild stress. We believe that by addressing the overall stress responses of L. lactis, we are contributing to a deeper understanding of the tolerance mechanisms in this microorganism to environmental stresses that may provide new strategies to enhance the industrial utility of this species.


Lactic Acid Bacterium Cholic Acid Glycine Betaine Proton Motive Force Acid Tolerance Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Preparation of this chapter was supported in part by a grant from the Major Program of National Natural Science Foundation of China (No. 20836003) and the National Natural Science Foundation of China (No. 30900013). We also thank Chongde Wu and Feng Xue for their numerous contributions to this work.


  1. Amachi S, Ishikawa K, Toyoda S, Kagawa Y, Yokota A, Tomita F (1998) Characterization of a mutant of Lactococcus lactis with reduced membrane-bound ATPase activity under acidic conditions. Bioscience Biotech Biochem 62:1574–1580CrossRefGoogle Scholar
  2. Arnau J, Sorensen KI, Appel KF, Vogensen FK, Hammer K (1996) Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142:1685–1691CrossRefGoogle Scholar
  3. Auffray Y, Thammavongs B, Boutibonnes P (1991) Identification of a RecA-like protein in Lactococcus lactis. Biochimie 73:231–233CrossRefGoogle Scholar
  4. Belli WA, Marquis RE (1991) Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57:1134–1138CrossRefGoogle Scholar
  5. Boutibonnes P, Gillot B, Auffray Y, Thammavongs B (1991) Heat shock induces thermotolerance and inhibition of lysis in a lysogenic strain of Lactococcus lactis. Int J Food Microbiol 14:1–9CrossRefGoogle Scholar
  6. Broadbent JR, Lin C (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology 39:88–102CrossRefGoogle Scholar
  7. Champomier-Verges MC, Maguin E, Mistou MY, Anglade P, Chich JF (2002) Lactic acid bacteria and proteomics: current knowledge and perspectives. J Chrom B 771:329–342CrossRefGoogle Scholar
  8. Deibel RH, Seeley HW Jr (1974) Streptococcaceae. Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore, pp. 490–509Google Scholar
  9. Desmond C, Stanton C, Fitzgerald GF, Collins K, Ross RP (2001) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 11:801–808CrossRefGoogle Scholar
  10. Duwat P, Ehrlich SD, Gruss A (1995) The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol 17:1121–1131CrossRefGoogle Scholar
  11. Even S, Lindley ND, Loubiere P, Cocaign-Bousquet M (2002) Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic constraints. Mol Microbiol 45:1143–1152CrossRefGoogle Scholar
  12. Fougere F, Le Rudulier D (1990) Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. Microbiology 136:157–163CrossRefGoogle Scholar
  13. Fozo EM, Quivey RG Jr (2004) Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. ApplEnviron Microbiol 70:929–936CrossRefGoogle Scholar
  14. Ganesan B, Dobrowolski P, Weimer BC (2006) Identification of the leucine-to-2-methylbutyric acid catabolic pathway of Lactococcus lactis. Appl Environ Microbiol 72:4264–4273CrossRefGoogle Scholar
  15. Ganesan B, Stuart MR, Weimer BC (2007) Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis. Appl Environ Microbiol 73:2498–2512CrossRefGoogle Scholar
  16. Garcia-Quintans N, Magni C, de Mendoza D, Lopez P (1998) The citrate transport system of Lactococcus lactis subsp. lactis biovar diacetylactis is induced by acid stress. Appl Environ Microbiol 64:850–857CrossRefGoogle Scholar
  17. Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264CrossRefGoogle Scholar
  18. Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51CrossRefGoogle Scholar
  19. Hartke A, Bouché S, Gansel X, Boutibonnes P, Auffray Y (1994) Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl Environ Microbiol 60(9):3474–3478CrossRefGoogle Scholar
  20. Hartke A, Bouché S, Laplace JM, Benachour A, Boutibonnes P, Auffray Y (1995) UV-inducible proteins and UV-induced cross-protection against acid, ethanol, H2O2 or heat treatments in Lactococcus lactis subsp. lactis. Arch Microbiol 163:329–336CrossRefGoogle Scholar
  21. Hartke A, Bouché S, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol 33:194–199CrossRefGoogle Scholar
  22. Hartke A, Frère J, Boutibonnes P, Auffray Y (1997) Differential induction of the chaperonin GroEL and the co-chaperonin GroES by heat, acid, and UV-irradiation in Lactococcus lactis subsp. lactis. Curr Microbiol 34:23–26CrossRefGoogle Scholar
  23. Herman C, Thevenet D, d’Ari R, Bouloc P (1995) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci 92:3516–3520Google Scholar
  24. Higuchi T, Hayashi H, Abe K (1997) Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol 179:3362–3364CrossRefGoogle Scholar
  25. Hutkins RW, Ellefson WL, Kashket ER (1987) Betaine transport imparts osmotolerance on a strain of Lactobacillus acidophilus. Appl Environ Microbiol 53:2275–2281CrossRefGoogle Scholar
  26. Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365CrossRefGoogle Scholar
  27. Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Lett 46:233–244CrossRefGoogle Scholar
  28. Kashket ER, Barker SL (1977) Effects of potassium ions on the electrical and pH gradients across the membrane of Streptococcus lactis cells. J Bacteriol 130:1017–1023CrossRefGoogle Scholar
  29. Kilstrup M, Jacobsen S, Hammer K, Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol 63:1826–1837CrossRefGoogle Scholar
  30. Kobayashi H, Suzuki T, Unemoto T (1986) Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating ATPase. J Biol Chem 261:627–630CrossRefGoogle Scholar
  31. Konings WN, Lolkema JS, Bolhuis H, Van Veen HW, Poolman B, Driessen AJM (1997) The role of transport processes in survival of lactic acid bacteria, Energy transduction and multidrug resistance. Antonie van Leeuwenhoek 71:117–128CrossRefGoogle Scholar
  32. Krueger JH, Walker GC (1984) groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+−dependent fashion. Proc Natl Acad Sci 81:1499–1503CrossRefGoogle Scholar
  33. Kunji ERS, Ubbink T, Matin A, Poolman B, Konings WN (1993) Physiological responses of Lactococcus lactis ML3 to alternating conditions of growth and starvation. Arch Microbiol 159:372–379CrossRefGoogle Scholar
  34. Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59CrossRefGoogle Scholar
  35. Leyer GJ, Johnson EA (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol 59:1842–1847CrossRefGoogle Scholar
  36. Li Y, Hugenholtz J, Abee T, Molenaar D (2003) Glutathione protects Lactococcus lactis against oxidative stress. Appl Environ Microbiol 69:5739–5745CrossRefGoogle Scholar
  37. Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63:1252–1255CrossRefGoogle Scholar
  38. Marquis RE, Bender GR, Murray DR, Wong A (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl Environ Microbiol 53:198–200CrossRefGoogle Scholar
  39. McCann MP, Kidwell JP, Matin A (1991) The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173:4188–4194CrossRefGoogle Scholar
  40. Mercade M, Lindley ND, Loubiere P (2000) Metabolism of Lactococcus lactis subsp cremoris MG 1363 in acid stress conditions. Int J Food Microbiol 55:161–165CrossRefGoogle Scholar
  41. Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Oxidative stress in Lactococcus lactis. Genet Mol Res 2:348–359CrossRefGoogle Scholar
  42. Molenaar D, Hagting A, Alkema H, Driessen AJ, Konings WN (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol 175:5438–5444CrossRefGoogle Scholar
  43. Morbach S, Kramer R (2002) Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. ChemBioChem 3:384–397CrossRefGoogle Scholar
  44. Murphy MG, Condon S (1984) Correlation of oxygen utilization and hydrogen peroxide accumulation with oxygen induced enzymes in Lactobacillus plantarum cultures. Arch Microbiol 138:44–48CrossRefGoogle Scholar
  45. Nannen NL, Hutkins RW (1991) Proton-translocating adenosine triphosphatase activity in lactic acid bacteria. J Dairy Sci 74:747–751CrossRefGoogle Scholar
  46. Neves AR, Pool WA, Kok J, Kuipers OP, Santos H (2005) Overview on sugar metabolism and its control in Lactococcus lactis-the input from in vivo NMR. FEMS Microbiol Rev 29:531–554CrossRefGoogle Scholar
  47. O’Driscoll B, Gahan CG, Hill C (1996) Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 62:1693–1698CrossRefGoogle Scholar
  48. O’Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63:4210–4215CrossRefGoogle Scholar
  49. O’Sullivan E, Condon S (1999) Relationship between acid tolerance, cytoplasmic pH, and ATP and H+−ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol 65:2287–2293CrossRefGoogle Scholar
  50. Panoff JM, Legrand S, Thammavongs B, Boutibonnes P (1994) The cold shock response in Lactococcus lactis subsp. lactis. Curr Microbiol 29:213–216CrossRefGoogle Scholar
  51. Panoff JM, Thammavongs B, Laplace JM, Hartke A, Boutibonnes P, Auffray Y (1995) Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403. Cryobiology 32:516–520CrossRefGoogle Scholar
  52. Piard JC, Desmazeaud M (1991) Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Lait 71:525–541CrossRefGoogle Scholar
  53. Poolman B, Driessen AJ, Konings WN (1987) Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J Bacteriol 169:5597–5604CrossRefGoogle Scholar
  54. Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim Biophys Acta 1183:5–39CrossRefGoogle Scholar
  55. Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037CrossRefGoogle Scholar
  56. Presser KA, Ratkowsky DA, Ross T (1997) Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360CrossRefGoogle Scholar
  57. Sanchez B, Reyes-Gavilan CGD, Margolles A (2006) The F1Fo-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environ Microbiol 8:1825–1833CrossRefGoogle Scholar
  58. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J (1998a) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310CrossRefGoogle Scholar
  59. Sanders JW, Venema G, Kok J, Leenhouts K (1998b) Identification of a sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene. Mol Gen Genet 257:681–685CrossRefGoogle Scholar
  60. Sanders JW, Venema G, Kok J (1999) Environmental stress responses in Lactococcus lactis. FEMS Microbiol Rev 23:483–501CrossRefGoogle Scholar
  61. Schulz A, Schumann W (1996) hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093CrossRefGoogle Scholar
  62. Siegumfeldt H, Rechinger KB, Jakobsen M (2000) Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl Environ Microbiol 66:2330–2335CrossRefGoogle Scholar
  63. Storz G, Imlayt JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRefGoogle Scholar
  64. Stuart MR, Chou LS, Weimer BC (1999) Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 65:665–673CrossRefGoogle Scholar
  65. Thomas TD, Ellwood DC, Longyear VMC (1979) Change from homo-to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138:109–117CrossRefGoogle Scholar
  66. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216CrossRefGoogle Scholar
  67. van der Heide T, Poolman B (2000) Glycine betaine transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity. J Bacterio 182(1):203–206CrossRefGoogle Scholar
  68. Van Veen HW, Bolhuis H, Putman M, Konings WN (1996) Multidrug resistance in prokaryotes: Molecular mechanisms of drug efflux. Handbook Biological Phys 2:165–185CrossRefGoogle Scholar
  69. Whitaker RD, Batt CA (1991) Characterization of the heat shock response in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 57:1408–1412CrossRefGoogle Scholar
  70. Wouters JA, Jeynov B, Rombouts FM, de Vos WM, Kuipers OP, Abee T (1999) Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology 145:3185–3194CrossRefGoogle Scholar
  71. Wouters JA, Kamphuis HH, Hugenholtz J, Kuipers OP, de Vos WM, Abee T (2000) Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl Environ Microbiol 66:3686–3691CrossRefGoogle Scholar
  72. Xie Y, Chou SL, Cutler A, Weimer B (2004) DNA macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Utah Agricultural Experiment Station contribution no. 7539. Appl Environ Microbiol 70:6738–6747CrossRefGoogle Scholar
  73. Yamada T, Carlsson J (1975) Regulation of lactate dehydrogenase and change of fermentation products in Streptococci. J Bacteriol 124:55–61CrossRefGoogle Scholar
  74. Yokota A, Veenstra M, Kurdi P, van Veen HW, Konings WN (2000) Cholate resistance in Lactococcus lactis is mediated by an ATP-dependent multispecific organic anion transporter. J Bacteriol 182:5196–5201CrossRefGoogle Scholar
  75. Yuan G, Wong SL (1995) Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol 177:6462–6468CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.The Key Laboratory of Industrial Biotechnology, Ministry of EducationWuxiChina
  3. 3.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations