Advertisement

Taro and Cocoyam

  • José Quero-Garcia
  • Anton Ivancic
  • Vincent Lebot
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 7)

Abstract

Aroids are an economically important source of food for numerous tropical countries. They are mostly consumed for their corms and cormels but leaves and petioles can also be part of the diet. According to FAO databases (www.fao.org 2007) taro (Colocasia esculenta (L.) Schott) and cocoyam (Xanthosoma sagittifolium (L.) Schott) produce the lowest average yields (6.5 tons/ha) of all root crops. World production in 2006 was approximately 11.9 million fresh tons from 1.8 million hectares but significant taro producers such as India, Bangladesh, Burma, Indonesia, Papua New Guinea, and Cuba do not supply production figures. Since taro production was around 4 million tons in 1961, its cultivation is stable or even growing and follows the global trend of demographic growth. Aroids are considered minor crops but they are a staple food for numerous poor populations from tropical countries.

Keywords

Solomon Island Elite Cultivar Pacific Country Xanthosoma Sagittifolium Araceae Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Belwood P (1979) Man’s conquest of the Pacific: the prehistory of Southeast Asia and Oceania. Oxford University Press, New York, NY.Google Scholar
  2. Bown D (2000) Aroids: plants of the arum family, 2nd edn. Timber Press, Portland, Oregon.Google Scholar
  3. Caillon S, Lanouguère-Bruneau V (2004) Taro diversity in a village of Vanua Lava island (Vanuatu): Where, What, Who, How and Why? In: Guarino L, Taylor M (eds.) Proceedings of the 3rd International Taro Symposium. Secretariat of the Pacific Community, Nouméa, pp. 58–63.Google Scholar
  4. Caillon S, Quero-García J, Guarino L (2004) Taro (Colocasia esculenta) in Vanuatu: from agro-anthropological research to an in situ conservation strategy. LEISA 20: 18–20.Google Scholar
  5. Caillon S, Quero-García J, Lescure JP, Lebot V (2006) Nature of taro (Colocasia esculenta (L.) Schott) genetic diversity prevalent in a Pacific Ocean island, Vanua Lava, Vanuatu. Genet Res Crop Evol 53: 1273–1289.CrossRefGoogle Scholar
  6. Carmichael A, Harding R, Jackson G, Kumar S, Lal S, Masamdu R, Wright J, Clarke A (2008) TaroPest: an illustrated guide to pests and diseases of taro in the South Pacific. Aust Cent Int Agric Res. Canberra, Australia, 76p.Google Scholar
  7. Chan E, Milne M, Fleming E (1998) The causes and consequences of taro leaf blight in Samoa and the implications for trade patterns in taro in the South Pacific region. Trop Agric 75: 93–98.Google Scholar
  8. Coates DJ, Yen DE, Gaffey PM (1988) Chromosome variation in taro, Colocasia esculenta: implications for origin in the Pacific. Cytologia 53: 551–560.CrossRefGoogle Scholar
  9. Coursey DC (1968) The edible aroids. World Crops 20: 25–30.Google Scholar
  10. Dwivedi AK, Sen H (1997) Genetic variability, heritability and genetic advance relating to some yield attributing traits in taro (Colocasia esculenta (L.) Schott). J Root Crops 23: 119–123.Google Scholar
  11. FAO (1995) World information and early warning system on plant genetic resources. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  12. Fonoti P, Tofinga MP, Hunter DG (2008) Screening a cycle 1 breeding population of taro (Colocasia esculenta (L.) Schott) for resistance to taro leaf blight in Samoa. Res J Bio Sci 3: 888–891.Google Scholar
  13. Fullagar R, Field J, Denham T, Lentfer C (2006) Early and mid Holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp.) and other plants at Kuk Swamp in the highlands of Papua New Guinea. J Archaeol Sci 33: 595–614.CrossRefGoogle Scholar
  14. Godwin ID, Mace ES, Mathur PN, Izquierdo L (2004) Applications of DNA markers to management of taro (Colocasia esculenta (L.) Schott) genetic resources in the Pacific Island region. In: Guarino L, Taylor M (eds.) Proceedings of the 3rd International Taro Symposium. Secretariat of the Pacific Community, Nouméa, pp. 64–68.Google Scholar
  15. Harding R (2008) Viruses of taro in the Pacific. Agric Dev 2: 21–25.Google Scholar
  16. Hay A (1990) Aroids of Papua New Guinea. Christensen Research Institute, Madang.Google Scholar
  17. He XL, Miyasaka SC, Fitch MMM, Moore PH, Zhu YJ (2008) Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep 27: 903–909.PubMedCrossRefGoogle Scholar
  18. Hussain Z, Tyagi RK (2006) In vitro corm induction and genetic stability of regenerated plants in taro (Colocasia esculenta (L.) Schott). Indian J Biotechnol 5: 535–542.Google Scholar
  19. Ivancic A, Kokoa P, Simin A, Gunua T (1996a) Mendelian studies of resistance to leaf blight. In Jackson GVH, Wagih ME (eds.) Proceedings of the 2nd International Taro Symposium. Cenderawasih University (UNCEN) and Papua New Guinea University of Technology (UNITECH), Lae, Papua New Guinea, pp. 93–96.Google Scholar
  20. Ivancic A, Lebot V (1999) Botany and genetics of New Caledonian wild taro, Colocasia esculenta. Pac Sci 53: 273–285.Google Scholar
  21. Ivancic A, Lebot V (2000) The genetics and breeding of taro. Séries Repères, CIRAD, Montpellier, 194p.Google Scholar
  22. Ivancic A, Lebot V, Roupsard O, Quero-García J, Okpul T (2004a) Thermogenic flowering of taro (Colocasia esculenta (L.) Schott, Araceae). Can J Bot 82: 1557–1565.CrossRefGoogle Scholar
  23. Ivancic A, Liloqula R, Levela H, Saelea J, Wagatora D (1993) Genetic resistance to Alomae-Bobone virus complex, the lethal disease of taro (Colocasia esculenta (L.) Schott). In: Ferentinos L (ed.) Proceedings of the Sustainable Taro Culture for the Pacific Conference. College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, pp. 48–54.Google Scholar
  24. Ivancic A, Okpul T (1995) Population approach to genetic improvement of taro (Colocasia esculenta). Taro Seminar, Papua New Guinea University of Technology, Lae, 26–30 June, 1995.Google Scholar
  25. Ivancic A, Quero-García J, Lebot V (2003) Development of visual tools for selecting qualitative corm characteristics of taro (Colocasia esculenta (L.) Schott). Aust J Agri Res 54: 581–587.CrossRefGoogle Scholar
  26. Ivancic A, Quero-García J, Lebot V (2004b) Genetically controlled branching corms of taro (Colocasia esculenta). N Z J Crop Hortic Sci 32: 167–177.CrossRefGoogle Scholar
  27. Ivancic A, Roupsard O, Quero-García J, Lebot V, Pochyla V, Okpul T (2005) Thermogenic flowering of the giant taro (Alocasia macrorrhizos, Araceae). Can J Bot 83: 647–665.CrossRefGoogle Scholar
  28. Ivancic A, Roupsard O, Quero-García J, Melteras M, Molisale T, Tara S, Lebot V (2008) Thermogenesis and flowering biology of Colocasia gigantea, Araceae. J Plant Res 121: 73–82.PubMedCrossRefGoogle Scholar
  29. Ivancic A, Simin A (1996) Variation and stability of taro (Colocasia esculenta) seed characteristics and their use in varietal description. In Jackson GVH, Wagih ME (eds.) Proceedings of the 2nd International Taro Symposium. Cenderawasih University (UNCEN) and Papua New Guinea University of Technology (UNITECH), Lae, Papua New Guinea, pp. 50–52.Google Scholar
  30. Ivancic A, Simin A, Tale Y (1996b) Breeding for flowering ability and seed productivity of taro. In: Jackson GVH, Wagih ME (eds.) Proceedings of the 2nd International Taro Symposium. Cenderawasih University (UNCEN) and Papua New Guinea University of Technology (UNITECH), Lae, Papua New Guinea, pp. 53–57.Google Scholar
  31. Kokubugata G, Konishi T (1999) Implication of a basic chromosome number of x = 14 in seven cultivars of two varieties of Colocasia esculenta by fluorescent in situ hybridisation using rDNA probe. Cytologia 64: 77–83.CrossRefGoogle Scholar
  32. Kreike CM, van Eck H, Lebot V (2004) Genetic diversity in taro (Colocasia esculenta (L.) Schott) from South East Asia and Oceania. Theor Appl Genet 109: 761–768.PubMedCrossRefGoogle Scholar
  33. Kuruvilla KM, Singh A (1981) Karyotypic and electrophoretic studies on taro and its origin. Euphytica 30: 405–413.CrossRefGoogle Scholar
  34. Lebot V (1999) Biomolecular evidence for plant domestication in Sahul. Genet Res Crop Evol 46: 619–628.CrossRefGoogle Scholar
  35. Lebot V (2005) Taro (Colocasia esculenta) Genetic Improvement: a Need for International Collaboration. Aroideana 28: 166–173.Google Scholar
  36. Lebot V (2009) The tropical root and tuber crops: cassava, sweet potato, yams and aroids. Crop Production Science in Horticulture Series No 17, CABI, UK, 432p.Google Scholar
  37. Lebot V, Aradhya KM (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 56: 55–66.Google Scholar
  38. Lebot V, Hartati S, Hue NT, Viet NV, Nghia NH, Okpul T, Pardales J, Prana MS, Prana TK, Thongjiem M, Krieke CM, VanEck H, Yap TC, Ivancic A (2002) Genetic variation in taro (Colocasia esculenta) in South East Asia and Oceania. In: Proceedings of the 12th Symposium of the International Society for Tropical Root Crops (ISTRC) Potential of Root Crops for Food and Industrial Resources. Tsukuba, Japan, pp. 524–533, 10–16 September, 2000.Google Scholar
  39. Lebot V, Herail C, Gunua T, Pardales JR, Prana MS, Thongjiem M, Viet NV (2003) Isozyme and RAPD variation in Phytophthora colocasiae Raciborski isolates from South East Asia and Oceania. Plant Pathol 52: 303–313.CrossRefGoogle Scholar
  40. Lebot V, Ivancic A, Abraham K (2005) The geographical distribution of allelic diversity, a practical means of preserving and using minor root crop genetic resources. Exp Agric 41: 475–489.CrossRefGoogle Scholar
  41. Lebot V, Ivancic A, Quero-García J (2006) Comparative performance of local and introduced cultivars of taro (Colocasia esculenta (L.) Schott) in Vanuatu. In: Proceedings of the 14th Symposium of the International Society for Tropical Root Trops. Thiruvananthapuram, Kerala, India, 20–26 November, 2006 (ISTRC in press).Google Scholar
  42. Lebot V, Prana MS, Kreike N, van Heck H, Pardales J, Okpul T, Gendua T, Thongjiem M, Hue N, Viet NV, Yap TC (2004a) Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Gen Res Crop Evol 51: 381–392.CrossRefGoogle Scholar
  43. Lebot V, Quero-García J, Ivancic A (2004b) Networking with taro: a review of TANSAO achievements. In: Guarino L, Taylor M (eds.) Proceedings of the 3rd International Taro Symposium. Secretariat of the Pacific Community, Nouméa, pp. 52–57.Google Scholar
  44. Matsuda M (2002) Taro, Colocasia esculenta (L.) Schott, in Eastern Asia: its geographical distribution and dispersal into Japan. PhD Thesis, Kyoto University, Kyoto, Japan, 92p.Google Scholar
  45. Matthews PJ (1990) The origins, dispersal and domestication of taro. PhD Thesis, Australian National University, Canberra, Australia, 407p.Google Scholar
  46. Matthews PJ (2002) Potential of root crops for food and industrial resources. In: Proceedings of the 12th Symposium of the International Society for Tropical Root Crops. Tsukuba, Japan, pp. 484–497, 10–16 September, 2000.Google Scholar
  47. Milián M, Sánchez I, García M, Guerra D, Corrales A (2001) Variabilidad genética en el género Xanthosoma en Cuba. Plant Gen Res Newsl 127: 11–14.Google Scholar
  48. Noyer JL, Weber A, Billot C, Brottier P, Quero-García J, Lebot V (2004) Genetic diversity of taro (Colocasia esculenta (L.) Schott) assessed by SSR markers. In: Guarino L, Taylor M (eds.) Proceedings of the 3rd International Taro Symposium. Secretariat of the Pacific Community, Nouméa, pp. 174–180.Google Scholar
  49. Nyochembeng LM, Beyl CA, Pacumbapa RP (2007) Peroxidase activity, isozyme patterns and electrolyte leakage in roots of cocoyam infected with Pythium myriotylum. J Phytopathol 155: 454–461.CrossRefGoogle Scholar
  50. Nzietchueng S (1988) Quelques caractéristiques physiologiques de Pythium myriotylum, agent pathogène de la pourriture racinaire du macabo (Xanthosoma sagittifolium) au Cameroun. In: Degras L (ed.) Proceedings of the 7th Symposium of the International Society for Tropical Root Crops. INRA, Paris, pp. 117–131.Google Scholar
  51. Ochiai T, Nguyen VX, Tahara M, Yoshino H (2001) Geographical differentiation of Asian taro, Colocasia esculenta (L.) Schott, detected by RAPD and isozyme analysis. Euphytica 22: 219–234.CrossRefGoogle Scholar
  52. Offei SK, Asante IK, Danquah EY (2004) Genetic structure of seventy cocoyam (Xanthosoma sagittifolium (L.), Schott) accessions in Ghana based on RAPD. Hereditas 140: 123–128.PubMedCrossRefGoogle Scholar
  53. Okpul T (1997) Report on taro breeding for 1996. Internal Report, Bubia Agricultural Research Centre, Papua New Guinea.Google Scholar
  54. Okpul T (2005) Effect of variety × site on corm yield, leaf blight resistance and culinary quality of seven taro, Colocasia esculenta (L.) Schott, varieties in Papua New Guinea. Master of Sciences Thesis, University of Technology, Lae, Papua New Guinea.Google Scholar
  55. Onokpise OU, Meboka MM, Eyango AS (1993) Germplasm collection of macabo cocoyams in Cameroon. Afr Technol Forum 6: 28–31.Google Scholar
  56. Onokpise OU, Wutoh JG, Ndzana X, Tambong JT, Meboka MM, Sama AE, Nyochembeng L, Aguegia A, Nzietchueng S, Wilson JG, Burns M (1999) Evaluation of Macabo Cocoyam Germplasm in Cameroon. In: Janick J (ed.) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp. 394–396.Google Scholar
  57. Pardales JR (1993) Rapid vegetative multiplication systems for taro. In: Quynh NG, Uyen NV (eds.) Proceedings of the Southeast Asian Regional Workshop on Propagation Techniques for Commercial Crops of the Tropics. International Foundation for Science, Ho Chi Minh City, Vietnam, pp. 208–211.Google Scholar
  58. Patel MZ, Saelea J, Jackson GVH (1984) Breeding strategies for controlling diseases of taro in Solomon Islands. In: Proceedings of the 6th Symposium of the International Society for Tropical Root Crops. CIP, Lima, pp. 143–149.Google Scholar
  59. Plucknett DL, de la Peña RS, Obrero F (1970) Taro (Colocasia esculenta). Field Crop Abstr 23: 413–426.Google Scholar
  60. Price TV, Poka K, Bogarei G, Chan A, Okpul T (2007) Effect of seed storage under ambient and cold temperatures on germination of taro seed (Colocasia esculenta). Seed Sci Technol 35: 674–687.Google Scholar
  61. Purseglove JW (1979) Tropical crops – monocotyledons. Longman, London.Google Scholar
  62. Quero-García J (2000) Etude de la structuration de la variabilité génétique du taro (Colocasia esculenta) par marqueurs morpho-agronomiques et AFLP. MSc. Thesis, INAPG, Paris, France, 30p.Google Scholar
  63. Quero-García J (2004) Diversité génétique et amélioration des taros du Vanuatu. PhD Thesis, ENSAM, Montpellier, France, 197p.Google Scholar
  64. Quero-García J, Courtois B, Ivancic A, Letourmy P, Risterucci AM, Noyer JL, Lebot V (2006c) First genetic maps and QTL studies of yield traits of taro (Colocasia esculenta (L.) Schott). Euphytica 151: 187–199.CrossRefGoogle Scholar
  65. Quero-García J, Ivancic A, Letourmy P, Feldmann P, Molisale T, Lebot V (2006b) Heritability of the main agronomic traits of taro. Crop Sci 46: 2368–2375.CrossRefGoogle Scholar
  66. Quero-García J, Letourmy P, Ivancic A, Feldmann P, Courtois B, Noyer JL, Lebot V (2009) Hybrid performance in taro (Colocasia esculenta) in relation to genetic dissimilarity of parents. Theor Appl Genet. doi 10.1007/s00122-009-1030-5.Google Scholar
  67. Quero-García J, Noyer JL, Perrier X, Marchand JL, Lebot V (2004) A germplasm stratification of taro (Colocasia esculenta) based on agro-morphological descriptors, validation by AFLP markers. Euphytica 137: 387–395.CrossRefGoogle Scholar
  68. Quero-García J, Noyer JL, Weber A, Perrier X, McKey D, Lebot V (2006a) Recombination and clonality in taro (Colocasia esculenta (L.) Schott): implications for the evolution of cultivar diversity. Proceedings of the 14th Symposium of the International Society for Tropical Root Trops. Thiruvananthapuram, Kerala, India, 20–26 November, 2006 (ISTRC in press).Google Scholar
  69. Rao RV, Guarino L, Jackson G (1998) Collecting taro genetic diversity: elements of a strategy. Collecting Workshop. Lae, Papua New Guinea.Google Scholar
  70. Sant R, Panis B, Taylor M, Tyagi A (2008) Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tissue Organ Cult 92: 107–111.CrossRefGoogle Scholar
  71. Sant R, Taylor M, Tyagi A (2006) Cryopreservation of in vitro-grown shoot-tips of tropical taro (Colocasia esculenta var. esculenta) by vitrification. Cryoletters 27: 133–142.PubMedGoogle Scholar
  72. Santha Pillai V, Thankappan M, Misra RS (1993) Leaf blight resistant hybrids of taro. J Root Crops 19: 66–68.Google Scholar
  73. Sardos J (2009) Conditions du maintien de l’agrobiodiversité des plantes à racines et tubercules du Vanouatou : diversités spécifiques et variétales et gestion de ces diversités. PhD Thesis, SupAgro, Montpellier, France.Google Scholar
  74. Schnell RJ, Goenaga R, Olano CT (1999) Genetic similarities among cocoyam cultivars based on random amplified polymorphic DNA (RAPD) analysis. Sci Hortic 80: 267–276.CrossRefGoogle Scholar
  75. Simin A, Ivancic A, Okpul T, Ososo EK, Maima J (1995) Relationship between yield components and other important plant characteristics of taro (Colocasia esculenta). Taro Seminar, Papua New Guinea University of Technology, Lae, 26–30 June, 1995.Google Scholar
  76. Singh D, Guaf J, Okpul T, Wiles G, Hunter D (2006) Taro (Colocasia esculenta) variety release recommendations for Papua New Guinea based on multi-location trials. N Z J Crop Hortic Sci 34: 163–171.CrossRefGoogle Scholar
  77. Singh D, Mace ES, Godwin ID, Mathur PN, Okpul T, Taylor M, Hunter D, Kambuou R, Rao VR, Jackson G (2008) Assessment and rationalization of genetic diversity of Papua New Guinea taro (Colocasia esculenta) using SSR DNA fingerprinting. Genet Res Crop Evol 55: 811–822.CrossRefGoogle Scholar
  78. Sivan P, Tavalqia MB (1984) First two taro varieties developed from breeding program released for commercial production. Fiji Agric J 46: 1–4.Google Scholar
  79. Sreekumari MT (1997) Cytological studies in taro – a review. J Root Crops 23: 1–7.Google Scholar
  80. Sreekumari MT, Abraham K (2006) Yield and tuber quality improvement in taro raised from true seeds. Proceedings of the 14th Symposium of the International Society for Tropical Root Trops, Thiruvananthapuram, Kerala, India, 20–26 November, 2006 (ISTRC in press).Google Scholar
  81. Sreekumari MT, Abraham K, Edison S, Unnikrishnan M (2004) Taro breeding in India. In: Guarino L, Taylor M (eds.) Proceedings of the 3rd International Taro Symposium. Secretariat of the Pacific Community, Nouméa, pp. 202–206.Google Scholar
  82. Sreekumari MT, Matthews PJ (1992) Distribution of diploid and triploid taro in India. J. Root Crops 18: 132–133.Google Scholar
  83. Tambong JT, Ndzana JG, Wutoh JG, Dadson R (1997) Variability and germplasm loss in the Cameroon national collection of cocoyam (Xanthosoma sagittifolium Schott (L.)). Plant Gen Res Newsl 112: 49–54.Google Scholar
  84. Tambong JT, Sapra VT, Garton S (1998) In vitro induction of tetraploids in colchicine treated cocoyam plantlets. Euphytica 104: 191–197.CrossRefGoogle Scholar
  85. Taylor M, Tuia V, Sant R, Lesione E, Prasad R, Prasad RL, Vosaki A (2004) Using in vitro techniques for the conservation and utilization of Colocasia esculenta var. esculenta (taro) in a regional genebank. In: Guarino L, Taylor M (eds.) Proceedings of the 3rd International Taro Symposium. Secretariat of the Pacific Community, Nouméa, pp. 69–73.Google Scholar
  86. Wilson JE (1984) Cocoyam. In: The physiology of tropical field crops. Wiley, New York, NY, pp. 589–605.Google Scholar
  87. Wilson JE (1989) Taro breeding. IRETA Publication No. 3/89, Agro-Facts. Western Samoa, IRETA, 51p.Google Scholar
  88. Wilson JE, Sivan P, Munroe C (1991) Alafua sunrise and Samoa hybrid improved the production of taro (Colocasia esculenta L. Schott) in the Pacific. In: Ofori F, Hahn SK (eds.) Proceedings of the 9th Symposium of the International Society for Tropical Root Crops, Accra, Ghana, pp. 453–461.Google Scholar
  89. Yen DE (1982) The history of cultivated plants. In May RJ, Hank N (eds.) Melanesia: beyond diversity. The Australian National University, Canberra, pp. 281–295.Google Scholar
  90. Yen DE, Wheeler JM (1968) Introduction of taro into the Pacific: the indications of the chromosome numbers. Ethnology 7: 259–267.CrossRefGoogle Scholar
  91. Zhang G, Zhang D (1990) The relationship between geographic distribution and ploidy level of taro, Colocasia esculenta. Euphytica 47: 25–27.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • José Quero-Garcia
    • 1
  • Anton Ivancic
    • 2
  • Vincent Lebot
    • 3
  1. 1.Unité de Recherches sur les Espèces Fruitières, INRA, Centre de Bordeaux, UR419Villenave d’OrnonFrance
  2. 2.Faculty of Agriculture and Life SciencesUniversity of MariborHoceSlovenia
  3. 3.CIRAD-BIOSPort-VilaVanuatu

Personalised recommendations