Advertisement

Sweet Potato

  • Vincent Lebot
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 7)

Abstract

Ipomoea batatas (L.) Lam. (Convolvulaceae, Dicotyledons) produces storage roots rich in carbohydrates and β-carotene, a precursor of vitamin A, and its leaves are rich in proteins. The roots also contain vitamins C, B complex, and E as well as potassium, calcium, and iron. Purple-fleshed ones contain antioxidants such as anthocyanins. In world crop statistics, the sweet potato is ranked seventh, just after cassava, with an annual production around 9 Mt and a cultivated area of 110 Mha (FAO, 2009). In most developing countries, it is a smallholder crop tolerant of a wide range of edaphic and climatic conditions and grown with limited inputs.

Keywords

Sweet Potato Storage Root Flesh Color Root Yield Participatory Plant Breeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abidin P, Van E, Stam P, Struik P, Malosetti M, Mwanga R, Odongo B, Hermann M, Carey E (2005) Adaptation and stability analysis of sweet potato varieties for low-input systems in Uganda. Plant Breed 124(5): 491–497.CrossRefGoogle Scholar
  2. Agata W (1982) The characteristics of dry matter and yield production in sweet potato under field conditions. In: Villareal RL, Griggs TD (eds.) Sweet potato. Proceedings of the First International Symposium. AVRDC Publication No. 82–172, Taiwan. pp. 119–127.Google Scholar
  3. Andrade M, Ricardo J, Grüneberg W (2009) Need of breeding orange fleshed sweetpotato for drought prone regions using Mozambique as drought prone test environments. Proceedings of the 15th International ISTRC Symposium: Tropical Roots and Tubers in a Changing Climate: A Critical Opportunity for the World, CIP, Lima, Peru, November 2–6, 2009.Google Scholar
  4. Anwar N, Kikuchi A, Kumagai T, Watanabe KN (2009) Nucleotide sequence variation associated with beta -amylase deficiency in the sweet potato Ipomoea batatas (L.) Lam. Breed Sci 59(3): 209–216.CrossRefGoogle Scholar
  5. Austin DF (1977) Hybrid polyploids in Ipomoea section batatas. J Heridity 68: 259–260.Google Scholar
  6. Austin DF (1987) The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In: Exploration, Maintenance, Utilization of Sweet Potato Genetic Resources. Proceedings of the 1st Planning Conference, Lima, Peru, International Potato Center (CIP), pp. 27–59.Google Scholar
  7. Barrau J (1957) L’énigme de la patate douce en Océanie. Etudes d’Outre-Mer 40(3/4): 83–87.Google Scholar
  8. Ballard C, Brown P, Bourke RM, Harwood T (eds.) (2005) The sweet potato in oceania: a reappraisal. ethnology monographs 19, Oceania Monograph 56, The University of Sydney, Australia, 277p.Google Scholar
  9. Buteler MI, Jarret RL, La Bonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99: 123–132.CrossRefGoogle Scholar
  10. Buteler MI, Labonte DR, Jarret RL, Macchiavelli RE (2002) Microsatellite-based paternity analysis in polyploidy sweetpotato. J Am Soc Hort Sci 127(3): 392–396.Google Scholar
  11. Cervantes Flores JC (2000) Root-knot nematode resistance in sweetpotato and development of sweetpotato differential host genotypes for Meloidogyne spp, MSc thesis, North Carolina State University, Raleigh, NC, 73p.Google Scholar
  12. Choi H, Chandrasekhar T, Lee H, Kim K (2007) Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method. Plant Cell Tissue Organ Cult 91(3): 235–242.CrossRefGoogle Scholar
  13. Champagne A, Legendre L, Lebot V (2009) Chemotype profiling to guide breeders and explore traditional selection of tropical root crops in Vanuatu, South Pacific. J Agric Food Chem 57: 10363–10370.PubMedCrossRefGoogle Scholar
  14. Clark CA, Moyer JW (1988) Compendium of sweet potato diseases. ASP Press, The American Phytopathological Society, St Paul, MN, 74p.Google Scholar
  15. Collins WW, Wilson GL, Arrendel S, Dickey LF (1987) Genotype × environment interactions in sweetpotato yield and quality factors. J Am Soc Hort Sci 112(3): 579–583.Google Scholar
  16. Diáz JP, Schmiediche P, Austin DF (1996) Polygon of crossability between eleven species of Ipomoea: section Batatas (Convolvulaceae). Euphytica 88(3): 189–200.CrossRefGoogle Scholar
  17. Edmond JB, Ammerman GR (eds.) (1971) Sweet potatoes; production, processing, marketing. Avi Publishing, Westport, CT, 334p.Google Scholar
  18. FAO (2009) World information and early warning system on plant genetic resources. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  19. Fuglie KO (2007) Priorities for sweetpotato research in developing countries: results of a survey. HortScience 42: 1200–1206.Google Scholar
  20. Fuglie KO, Hermann M (eds.) (2004) Sweetpotato post-harvest research and development in China. Proceedings of an International Workshop, Chengdu, Sichuan, Republic of China, 160p, 7–8 November, 2001.Google Scholar
  21. Gibson RW, Byamukama E, Mpembe I, Kayongo J, Mwanga ROM (2008) Working with farmer groups in Uganda to develop new sweet potato cultivars: decentralisation and building on traditional approaches. Euphytica 159(1/2): 217–228.Google Scholar
  22. Gichuki S, Berenyi M, Zhang DP, Hermann M, Schmidt J, Glössl J, Burg K (2003) Genetic diversity in sweet potato (Ipomoea batatas (L.) Lam.) in relationship to geographic sources as assessed with RAPD markers. Genet Res Crop Evol 50: 429–437.CrossRefGoogle Scholar
  23. Grüneberg WJ, Manrique K, Zhang D, Hermann M (2005) Genotype × environment interactions for a diverse set of sweetpotato clones evaluated across varying ecogeographic conditions in Peru. Crop Sci 45(6): 2160–2171.CrossRefGoogle Scholar
  24. Grüneberg WJ, Ghislain M, Benavides J, Mwanga R (2007) Application of molecular markers for gene pool division and heterosis estimation under drought stress conditions in sweet potato. Generation Challenge Programme Project number SP1-3C, Final Report, CIP, Peru, 25p.Google Scholar
  25. Grüneberg WJ, Diáz F, Eyzaguirre R, Burgos G, Zum Felde T, Andrade M, Mwanga R (2009) Heritability estimates for an accelerated breeding scheme for clonally propagated crops – using sweetpotato as a model. Proceedings of the 15th International ISTRC Symposium: Tropical Roots and Tubers in a Changing Climate: A critical Opportunity for the World, CIP, Lima, Peru, November 2–6, 2009.Google Scholar
  26. Heywood VH (ed.) (1985) Flowering plants of the world. Croom Helm Publishers, London, 335p.Google Scholar
  27. Hu J, Nakatani M, Mizuno K, Fujimura T (2004) Development and characterization of microsatellite markers in sweetpotato. Breed Sci 54(2): 177–188.CrossRefGoogle Scholar
  28. Huang JC, Sun M (2000) Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet 100: 1050–1060.CrossRefGoogle Scholar
  29. Hwang JS, Tseng Y, Lo HF (2002) Application of simple sequence repeats in determining the genetic relationships of cultivars used in sweet potato polycross breeding in Taiwan. Sci Hortic 93(3–4): 215–224.CrossRefGoogle Scholar
  30. Janssens MJJ (1984) Genotype by environment interactions of the yield components in sweet potato. In: Shideler SF, Rincon H (eds.) Proceedings of the 6th Symposium of the International Society of Tropical Root Crops. CIP, Lima, pp. 543–551.Google Scholar
  31. Janssens MJJ (1988) Achieving yield stability in sweet potato by selecting for translocation potential in adverse environments. In Degras L (ed.) Proceedings of the VIIth Symposium of the International Society for Tropical Root Crops. Guadeloupe, French West Indies. INRA editions, Paris. pp. 729–737.Google Scholar
  32. Jarret RL, Gawel N, Whittemore A (1992) Phylogenetic relationship of the sweet potato (Ipomoea batatas (L.) Lam.). J Am Soc Hort Sci 117: 633–637.Google Scholar
  33. Jarret RL, Austin DF (1994) Genetic diversity and systematic relationships in sweet potato (Ipomoea batatas (L.) Lam.) and related species as revealed by RAPD analysis. Genet Res Crop Evol 41: 165–173.CrossRefGoogle Scholar
  34. Jones A (1986) Sweetpotato heritability estimates and their use in breeding. Hort Sci 21(1): 14–17.Google Scholar
  35. Jones A, Dukes PD, Cuthbert FP Jr (1976) Mass selection in sweet potato: breeding for resistance to insects and diseases and for horticultural characteristics. J Am Soc Hort Sci 101: 701–704.Google Scholar
  36. Kasukabe Y, He L, Watake Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23(1): 75–83.CrossRefGoogle Scholar
  37. Kays SJ, Mclaurin WJ, Wang Y, Dukes PD, Thies J, Bohac JR, Jackson DM (2001) GA90-16: a non-sweet, staple-type, sweet potato breeding line. HortScience 36(1): 175–177.Google Scholar
  38. Kimura T, Otani M, Noda T, Ideta O, Shimada T, Saito A (2001) Absence of amylose in sweet potato (Ipomoea batatas (L.) Lam.) following introduction of granule-bound starch synthase I cDNA. Plant Cell Rep 20(7): 663–666.Google Scholar
  39. Komaki K, Katayama K, Tamiya S (1998) Advancement of sweet potato breeding for high starch content in Japan. Tropic Agric 75(1/2): 220–223.Google Scholar
  40. Lebot V (1986) Evaluation of local and introduced cultivars of Sweet Potato (Ipomoea batatas (L.) Lam.) in Vanuatu. J South Pac Agric 11(3): 25–31.Google Scholar
  41. Lebot V, Champagne A, Malapa R, Shiley D (2009) NIR determination of major constituents in tropical root and tuber crop flours. J Agric Food Chem 57: 10539–10547.PubMedCrossRefGoogle Scholar
  42. Luo HR, Santa Maria M, Benavides J, Zhang DP, Zhang YZ, Ghislain M (2006) Rapid genetic transformation of sweetpotato (Ipomoea batatas (L.) Lam.) via organogenesis. Afr J Biotechnol 5(20): 1851–1857.Google Scholar
  43. Manrique K, Hermann M (2001) Effect of G × E interaction on root yield and beta-carotene content of selected sweetpotato (Ipomoea batatas (L.) Lam.) varieties and breeding clones. In: Scientist and farmer: partners in research for the 21st Century. Program Report 1999–2000. CIP, Lima, Peru, pp. 281–287.Google Scholar
  44. Martin FW (1988) Genetic and physiological basis for breeding and improving the sweet potato. In: Degras L (ed.) Proceedings of the VIIth Symposium of the International Society for Tropical Root Crops. Guadeloupe, French West Indies. INRA editions, Paris, pp. 749–762.Google Scholar
  45. McDonald JA, Austin DF (1990) Changes and additions in Ipomoea section Batatas (Convolvulaceae). Brittonia 42: 116–120.CrossRefGoogle Scholar
  46. Mcharo M, Labonte DR, Clark C, Hoy M, Oard JM (2005) Molecular marker variability for southern root-knot resistance in sweetpotato. Euphytica 144(1/2): 125–132.CrossRefGoogle Scholar
  47. Miano DW, LaBonte DR, Clark CA (2008) Identification of molecular markers associated with sweet potato resistance to sweet potato virus disease in Kenya. Euphytica 160(1): 15–24.CrossRefGoogle Scholar
  48. Mihovilovich E, Mendoza HA, Salazar LF (2000) Combining ability for resistance to sweet potato feathery mottle virus. HortScience 35(7): 1319–1320.Google Scholar
  49. Mok IG, Zhang D, Carey EE (1998) Sweet potato breeding strategy of CIP. In: La Bonte DR, Yamashita M, Mochida H (eds.) Proceedings of International Workshop. Sweet Potato Production System toward the 21st Century. Kyushu National Agricultural Station, Japan. pp. 9–27.Google Scholar
  50. Murata T, Okada Y, Saito A, Kimura T, Mori M, Nishiguchi M, Hanada K, Skai J, Fukuoka H (1998) Transformation by direct gene transfer in sweet potato (Ipomoea batatas (L.) Lam.). In: La Bonte DR, Yamashita M, Mochida H (eds.) Proceedings of International Workshop. Sweet Potato Production System toward the 21st Century. Kyushu National Agricultural Station, Japan. pp. 159–181.Google Scholar
  51. NARI (2003) Papua New Guinea National Agricultural Research Institute. 2001–2002 Annual Report, Lae, Morobe Province, Papua New Guinea, 136p.Google Scholar
  52. Newell CA, Lowe JM, Merryweather A, Rooke LM, Hamilton WDO (1995) Transformation of sweet potato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci 107: 215–227.CrossRefGoogle Scholar
  53. Okada Y, Saito A, Nishiguchi M, Kimura T, Mori M, Hanada K, Sakai J, Miyazaki C, Matsuda Y, Murata T (2001) Virus resistance in transgenic sweet potato (Ipomoea batatas (L.) Lam.) expressing the coat protein gene of sweet potato. Theor Appl Genet 103(5): 743–751.CrossRefGoogle Scholar
  54. Okada Y, Saito A, Nishiguchi M, Kimura T, Mori M, Matsuda Y, Murata T (2002) Microprojectile bombardment-mediated transformation of sweet potato (Ipomoea batatas (L.) Lam.). SABRAO J Breed Genet 34(1): 1–8.Google Scholar
  55. Okada Y, Saito A (2009) Evaluation of resistance to complex infection of SPFMVs in transgenic sweet potato (Ipomoea batatas). Breed Sci (Jpn) 58(3): 243–250.CrossRefGoogle Scholar
  56. Otani M, Wakita Y, Shimada T (2001) Genetic transformation of sweet potato (Ipomoea batatas (L.) Lam.) by Agrobacterium tumefaciens. Acta Hortic 560: 193–196.Google Scholar
  57. Perry L (2002) Starch granule size and the domestication of manioc (Manihot esculenta) and sweet potato (Ipomoea batatas). Econ Bot 56: 335–349.CrossRefGoogle Scholar
  58. Rajapakse S, Nilmagoda DS, Molnar M, Ballard ER, Austin RJ, Bohac RJ (2004) Phylogenetic relationships of the sweet potato in Ipomoea series Batatas (Convolvulaceae) based on β-amylase gene sequences. Mol Phylogenet Evol 30: 623–632.PubMedCrossRefGoogle Scholar
  59. Rao R, Campilan D (eds.) (2002) Exploring the complementarities of ex situ and in situ conservation strategies for Asian sweet potato genetic resources. Proceedings of the 3rd International Workshop of the Asian Network of Sweet Potato Genetic Resources (ANSWER). IPGRI-APO, Serdang, Malaysia, 191p.Google Scholar
  60. Rossel G, Kriegner A, Zhang DP (2001) From Latin America to Oceania: the historic dispersal of sweet-potato re-examined using AFLP. In: Scientist and farmer: partners in research for the 21st Century. Program Report 1999–2000. CIP, Lima, Peru, pp. 315–321.Google Scholar
  61. Saifu Islam AFM, Kubota C, Takagaki M, Kozai T (2002) Sweetpotato growth and yield from plug transplants of different volumes, planted intact or without roots. Crop Sci 42(3): 822–826.CrossRefGoogle Scholar
  62. Schafleitner R (2009) Development of genetic and genomic resources for breeding improved sweetpotato. Proceedings of the 15th International ISTRC Symposium: Tropical Roots and Tubers in a Changing Climate: A critical Opportunity for the World, CIP, Lima, Peru, November 2–6, 2009.Google Scholar
  63. Shiotani I, Kawase T (1987) Synthetic hexaploids derived from wild species related in Ipomoea trifida. Jpn J Breed 39: 57–66.Google Scholar
  64. Shreen KE, Pace RD (2002) Nutritional assessment of transgenic sweet potato on body weight, lipid and protein status in hamsters. J Environ Sci Health B 37(1): 93–101.CrossRefGoogle Scholar
  65. Smith TP, Stoddard S, Shankle M, Schultheis J (2009) Sweetpotato production in the United States. pp. 287–323. In: Loebenstein G, Thottappilly G (eds.) The sweetpotato. Springer, New York, NY, 522 p.Google Scholar
  66. Srisuwan S, Sihachakr D, Siljak-Yakovlev S (2006) The origin and evolution of sweet potato (Ipomoea batatas Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci 171: 424–433.PubMedCrossRefGoogle Scholar
  67. Suda I, Oki T, Masuda M, Kobayashi M, Nishiba Y, Furuta S (2003) Physiological functionality of purple-fleshed sweet potatoes containing anthocyanins and their utilization in foods. Jpn Agric Res Q 37(3): 167–173.Google Scholar
  68. Tay D (2009) CIP genetic resources program: a model genebank. Proceedings of the 15th International ISTRC Symposium: Tropical Roots and Tubers in a Changing Climate: A critical Opportunity for the World, CIP, Lima, Peru, November 2–6, 2009.Google Scholar
  69. Tekalign T (2007) Genotype × environment interaction for root yield of elite sweet potato (Ipomoea batatas (L) lam.) genotypes. South Afr J Plant Soil 24(3): 144–146.Google Scholar
  70. Templeton-Somers KM, Collins WW (1988) In vitro growth and regeneration characteristics of diverse populations of sweet potato (Ipomoea batatas (L.) Lam.). In: Degras L (ed.) Proceedings of the VIIth Symposium of the International Society for Tropical Root Crops. Guadeloupe, French West Indies. INRA editions, Paris, pp. 781–796.Google Scholar
  71. Ukoskit K, Thompson PG (1997) Autoploidy vs. allopolyploidy and low density randomly amplified polymorphic DNA linkage maps of sweetpotato. J Am Soc Hort Sci 122: 822–828.Google Scholar
  72. Ukoskit K, Thompson PG, Watson CE (1997) Identifying a randomly amplified polymorphic DNA (RAPD) marker linked to a gene for root-knot resistance in sweet potato. J Am Soc Hort Sci 122: 818–821.Google Scholar
  73. Wang H (1982) The breeding of sweet potatoes for human consumption. In: Villareal RL, Griggs TD (eds.) Sweet potato. Proceedings of the First International Symposium, AVRDC Publication No. 82-172, Taiwan, pp. 297–311.Google Scholar
  74. Wilson JE, Pole FS, Smith NEJM, Taufatofua P (1989) Sweet potato breeding. IRETA-USP Agro-Facts Publication, Western Samoa. 39p.Google Scholar
  75. Woolfe JA (1992) Sweet potato, an untapped food resource. Cambridge University Press, Cambridge, UK, 643p.Google Scholar
  76. Yang Y, Guan S, Zhai H, He S, Liu Q (2009) Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L. Plant Cell Tissue Organ Cult 99(1): 83–89.CrossRefGoogle Scholar
  77. Yen DE (1974) The sweet potato in oceania: an essay in ethnobotany. Bishop Museum Press, Bernice P. Bishop Museum 236, Honolulu, Hawaii.Google Scholar
  78. Yen DE (1982) Sweet potato in historical perspective. In: Villareal RL, Griggs TD (eds.) Sweet potato. Proceedings of the First International Symposium. AVRDC Publication No. 82-172, Taiwan, pp. 17–30.Google Scholar
  79. Zhang DP, Li XQ (2004) Sweetpotato as animal feed: the perspective of crop improvement for nutrition quality. In: Fuglie KO, Hermann M (eds.) Sweetpotato post-harvest research and development in China. CIP, ESAP Region, Bogor, 160p.Google Scholar
  80. Zhang DP, Ghislain M, Huamán Z, Golmirzaie A, Hijmans R (1998) RAPD variation in sweet potato (Ipomoea batatas (L.) Lam.) cultivars from South America and Papua New Guinea. Genet Res Crop Evol 45: 271–277.CrossRefGoogle Scholar
  81. Zhang DP, Cervantes J, Huaman Z, Carey E, Ghislain M (2000) Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genet Res Crop Evol 47(6): 659–665.CrossRefGoogle Scholar
  82. Zhang DP, Huaman Z, Rodriguez F, Rossel G, Ghislain M, Dore C, Dosba F, Baril C (2001) Identifying duplicates in sweet potato (Ipomoea batatas (L.) Lam.) cultivars using RAPD. Acta Hortic 546: 535–541.Google Scholar
  83. Zhang L, Wang Q, Liu Q, Wang Q (2009a) Sweetpotato in China. pp. 325–358. In: Loebenstein G, Thottappilly G (eds.) The sweetpotato. Springer, New York, NY, 522p.Google Scholar
  84. Zhang N, Zhai H, Gao S, Chen W, He S, Liu Q (2009b) Efficient production of transgenic plants using the bar gene for herbicide resistance in sweetpotato. Sci Hortic 122(4): 649–653.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CIRAD-BIOSPort-VilaVanuatu

Personalised recommendations