Cellulase Engineering for Biomass Saccharification

  • Richard J. Ward


The production of biofuel ethanol from sugarcane biomass could be significantly improved by depolymerization of cell wall cellulose to glucose for subsequent fermentation. Enzymatic hydrolysis of cellulose using a mixture of glucanases has been proposed as a possible technology to achieve this goal. It is likely that different biomass feedstocks will require specific enzymes, and this chapter examines the range of strategies which may be used for engineering cellulases to modulate their specificities and catalytic activities.


Cellulose Substrate Paenibacillus Polymyxa Cell Wall Cellulose Biomass Saccharification Biofuel Ethanol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahsan, M. M., Kimura, T., Karita, S., Sakka, K., and Ohmiya, K. (1996) Cloning, DNA sequencing, and expression of the gene encoding Clostridium thermocellum cellulase CelJ, the largest catalytic component of the cellulosome. J Bacteriol 178, 5732–5740.PubMedGoogle Scholar
  2. Andre, G., Kanchanawong, P., Palma, R., Cho, H., Deng, X., Irwin, D., Himmel, M. E., Wilson, D. B., and Brady, J. W. (2003) Computational and experimental studies of the catalytic mechanism of Thermobifida fusca cellulase Cel6A (E2). Protein Eng 16, 125–134.CrossRefPubMedGoogle Scholar
  3. Arnold, F. H., and Moore, J. C. (1997) Optimizing industrial enzymes by directed evolution. Adv Biochem Eng Biotechnol 58, 1–14.PubMedGoogle Scholar
  4. Arnold, F. H., and Volkov, A. A. (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3, 54–59.CrossRefPubMedGoogle Scholar
  5. Baker, J. O., McCarley, J. R., Lovett, R., Yu, C. H., Adney, W. S., Rignall, T. R., Vinzant, T. B., Decker, S. R., Sakon, J., and Himmel, M. E. (2005) Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol 121–124, 129–148.CrossRefPubMedGoogle Scholar
  6. Barr, B. K., Wolfgang, D. E., Piens, K., Claeyssens, M., and Wilson, D. B. (1998) Active-site binding of glycosides by Thermomonospora fusca endocellulase E2. Biochemistry 37, 9220–9229.CrossRefPubMedGoogle Scholar
  7. Berglund, G. I., Gualfetti, P. J., Requadt, C., Gross, L. S., Bergfors, T., Shaw, A., Saldajeno, M., Mitchinson, C., and Sandgren, M. (2007) The crystal structure of the catalytic domain of Thermobifida fusca endoglucanase Cel5A in complex with cellotetraose. doi:  10.2210/pdb2ckr/pdb.
  8. Bloom, J. D., Meyer, M. M., Meinhold, P., Otey, C. R., MacMillan, D., and Arnold, F. H. (2005) Evolving strategies for enzyme engineering. Curr Opin Struct Biol 15, 447–452.CrossRefPubMedGoogle Scholar
  9. Boraston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382, 769–781.CrossRefPubMedGoogle Scholar
  10. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37, D233–D238.CrossRefPubMedGoogle Scholar
  11. Carvalho, A. L., Goyal, A., Prates, J. A., Bolam, D. N., Gilbert, H. J., Pires, V. M., Ferreira, L. M., Planas, A., Romao, M. J., and Fontes, C. M. (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J Biol Chem 279, 34785–34793.CrossRefPubMedGoogle Scholar
  12. Cho, K. M., Hong, S. Y., Lee, S. M., Kim, Y. H., Kahng, G. G., Kim, H., and Yun, H. D. (2006) A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol 73, 618–630.CrossRefPubMedGoogle Scholar
  13. Conrado, R. J., Varner, J. D., and DeLisa, M. P. (2008) Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr Opin Biotechnol 19, 492–499.CrossRefPubMedGoogle Scholar
  14. Davies, G., and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859.CrossRefPubMedGoogle Scholar
  15. Davies, G. J., Tolley, S. P., Henrissat, B., Hjort, C., and Schulein, M. (1995) Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution. Biochemistry 34, 16210–16220.CrossRefPubMedGoogle Scholar
  16. Din, N., Forsythe, I. J., Burtnick, L. D., Gilkes, N. R., Miller, R. C., Jr., Warren, R. A., and Kilburn, D. G. (1994) The cellulose-binding domain of endoglucanase A (CenA) from Cellulomonas fimi: evidence for the involvement of tryptophan residues in binding. Mol Microbiol 11, 747–755.CrossRefPubMedGoogle Scholar
  17. Divne, C., Stahlberg, J., Teeri, T. T., and Jones, T. A. (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275, 309–325.CrossRefPubMedGoogle Scholar
  18. Doi, R. H. (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 1125, 267–279.CrossRefPubMedGoogle Scholar
  19. Doi, N., and Yanagawa, H. (1999) Insertional gene fusion technology. FEBS Lett 457, 1–4.CrossRefPubMedGoogle Scholar
  20. Ekborg, N. A., Morrill, W., Burgoyne, A. M., Li, L., and Distel, D. L. (2007) CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902T, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus. Appl Environ Microbiol 73, 7785–7788.CrossRefPubMedGoogle Scholar
  21. Escovar-Kousen, J. M., Wilson, D., and Irwin, D. (2004) Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca. Appl Biochem Biotechnol 113–116, 287–297.CrossRefPubMedGoogle Scholar
  22. Felix, C. R., and Ljungdahl, L. G. (1993) The cellulosome: the exocellular organelle of Clostridium. Annu Rev Microbiol 47, 791–819.PubMedGoogle Scholar
  23. Flint, J., Nurizzo, D., Harding, S. E., Longman, E., Davies, G. J., Gilbert, H. J., and Bolam, D. N. (2004) Ligand-mediated dimerization of a carbohydrate-binding molecule reveals a novel mechanism for protein-carbohydrate recognition. J Mol Biol 337, 417–426.CrossRefPubMedGoogle Scholar
  24. Gilbert, H. J., Hall, J., Hazlewood, G. P., and Ferreira, L. M. (1990) The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre. Mol Microbiol 4, 759–767.CrossRefPubMedGoogle Scholar
  25. Gilkes, N. R., Warren, R. A., Miller, R. C., Jr., and Kilburn, D. G. (1988) Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem 263, 10401–10407.PubMedGoogle Scholar
  26. Guerin, D. M., Lascombe, M. B., Costabel, M., Souchon, H., Lamzin, V., Beguin, P., and Alzari, P. M. (2002) Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol 316, 1061–1069.CrossRefPubMedGoogle Scholar
  27. Guimaraes, B. G., Souchon, H., Lytle, B. L., David Wu, J. H., and Alzari, P. M. (2002) The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum cellulosome. J Mol Biol 320, 587–596.CrossRefPubMedGoogle Scholar
  28. Hakamada, Y., Hatada, Y., Ozawa, T., Ozaki, K., Kobayashi, T., and Ito, S. (2001) Identification of thermostabilizing residues in a Bacillus alkaline cellulase by construction of chimeras from mesophilic and thermostable enzymes and site-directed mutagenesis. FEMS Microbiol Lett 195, 67–72.CrossRefPubMedGoogle Scholar
  29. Hefford, M. A., Laderoute, K., Willick, G. E., Yaguchi, M., and Seligy, V. L. (1992) Bipartite organization of the Bacillus subtilis endo-beta-1,4-glucanase revealed by C-terminal mutations. Protein Eng 5, 433–439.CrossRefPubMedGoogle Scholar
  30. Heinzelman, P., Snow, C. D., Wu, I., Nguyen, C., Villalobos, A., Govindarajan, S., Minshull, J., and Arnold, F. H. (2009) A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci U S A 106, 5610–5615.CrossRefPubMedGoogle Scholar
  31. Henrissat, B., and Bairoch, A. (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316 (Pt 2), 695–696.PubMedGoogle Scholar
  32. Hughes, S. R., Riedmuller, S. B., Mertens, J. A., Li, X. L., Bischoff, K. M., Qureshi, N., Cotta, M. A., and Farrelly, P. J. (2006) High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Proteome Sci 4, 10.CrossRefPubMedGoogle Scholar
  33. Jamal-Talabani, S., Boraston, A. B., Turkenburg, J. P., Tarbouriech, N., Ducros, V. M., and Davies, G. J. (2004) Ab initio structure determination and functional characterization of CBM36; a new family of calcium-dependent carbohydrate binding modules. Structure 12, 1177–1187.CrossRefPubMedGoogle Scholar
  34. Kataeva, I. A., Seidel, R. D., III, Li, X. L., and Ljungdahl, L. G. (2001) Properties and mutation analysis of the CelK cellulose-binding domain from the Clostridium thermocellum cellulosome. J Bacteriol 183, 1552–1559.CrossRefPubMedGoogle Scholar
  35. Kim, H., Goto, M., Jeong, H. J., Jung, K. H., Kwon, I., and Furukawa, K. (1998) Functional analysis of a hybrid endoglucanase of bacterial origin having a cellulose binding domain from a fungal exoglucanase. Appl Biochem Biotechnol 75, 193–204.CrossRefPubMedGoogle Scholar
  36. Kim, Y. S., Jung, H. C., and Pan, J. G. (2000) Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 66, 788–793.CrossRefPubMedGoogle Scholar
  37. Kitago, Y., Karita, S., Watanabe, N., Kamiya, M., Aizawa, T., Sakka, K., and Tanaka, I. (2007) Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J Biol Chem 282, 35703–35711.CrossRefPubMedGoogle Scholar
  38. Kormos, J., Johnson, P. E., Brun, E., Tomme, P., McIntosh, L. P., Haynes, C. A., and Kilburn, D. G. (2000) Binding site analysis of cellulose binding domain CBD(N1) from endoglucanse C of Cellulomonas fimi by site-directed mutagenesis. Biochemistry 39, 8844–8852.CrossRefPubMedGoogle Scholar
  39. Larsson, A. M., Bergfors, T., Dultz, E., Irwin, D. C., Roos, A., Driguez, H., Wilson, D. B., and Jones, T. A. (2005) Crystal structure of Thermobifida fusca endoglucanase Cel6A in complex with substrate and inhibitor: the role of tyrosine Y73 in substrate ring distortion. Biochemistry 44, 12915–12922.CrossRefPubMedGoogle Scholar
  40. Li, Y., and Wilson, D. B. (2008) Chitin binding by Thermobifida fusca cellulase catalytic domains. Biotechnol Bioeng 100, 644–652.CrossRefPubMedGoogle Scholar
  41. Lu, Q. (2005) Seamless cloning and gene fusion. Trends Biotechnol 23, 199–207.CrossRefPubMedGoogle Scholar
  42. Machovic, M., and Janecek, S. (2006) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63, 2710–2724.CrossRefPubMedGoogle Scholar
  43. Mahadevan, S. A., Wi, S. G., Lee, D. S., and Bae, H. J. (2008) Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287, 205–211.CrossRefPubMedGoogle Scholar
  44. Mandelman, D., Belaich, A., Belaich, J. P., Aghajari, N., Driguez, H., and Haser, R. (2003) X-Ray crystal structure of the multidomain endoglucanase Cel9G from Clostridium cellulolyticum complexed with natural and synthetic cello-oligosaccharides. J Bacteriol 185, 4127–4135.CrossRefPubMedGoogle Scholar
  45. McCarter, S. L., Adney, W. S., Vinzant, T. B., Jennings, E., Eddy, F. P., Decker, S. R., Baker, J. O., Sakon, J., and Himmel, M. E. (2002) Exploration of cellulose surface-binding properties of acidothermus cellulolyticus Cel5A by site-specific mutagenesis. Appl Biochem Biotechnol 98–100, 273–287.CrossRefPubMedGoogle Scholar
  46. McLean, B. W., Bray, M. R., Boraston, A. B., Gilkes, N. R., Haynes, C. A., and Kilburn, D. G. (2000) Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 13, 801–809.CrossRefPubMedGoogle Scholar
  47. Meier, J. L., and Burkart, M. D. (2009) The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 38, 2012–2045.CrossRefPubMedGoogle Scholar
  48. Murashima, K., Kosugi, A., and Doi, R. H. (2002) Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol Microbiol 45, 617–626.CrossRefPubMedGoogle Scholar
  49. Navas, J., and Beguin, P. (1992) Site-directed mutagenesis of conserved residues of Clostridium thermocellum endoglucanase CelC. Biochem Biophys Res Commun 189, 807–812.CrossRefPubMedGoogle Scholar
  50. Nixon, A. E., Ostermeier, M., and Benkovic, S. J. (1998) Hybrid enzymes: manipulating enzyme design. Trends Biotechnol 16, 258–264.CrossRefPubMedGoogle Scholar
  51. Ozawa, T., Hakamada, Y., Hatada, Y., Kobayashi, T., Shirai, T., and Ito, S. (2001) Thermostabilization by replacement of specific residues with lysine in a Bacillus alkaline cellulase: building a structural model and implications of newly formed double intrahelical salt bridges. Protein Eng 14, 501–504.CrossRefPubMedGoogle Scholar
  52. Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107, 65–72.CrossRefPubMedGoogle Scholar
  53. Parsiegla, G., Reverbel-Leroy, C., Tardif, C., Belaich, J. P., Driguez, H., and Haser, R. (2000) Crystal structures of the cellulase Cel48F in complex with inhibitors and substrates give insights into its processive action. Biochemistry 39, 11238–11246.CrossRefPubMedGoogle Scholar
  54. Parsiegla, G., Reverbel, C., Tardif, C., Driguez, H., and Haser, R. (2008) Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J Mol Biol 375, 499–510.CrossRefPubMedGoogle Scholar
  55. Patten, P. A., Howard, R. J., and Stemmer, W. P. (1997) Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotechnol 8, 724–733.CrossRefPubMedGoogle Scholar
  56. Peralta-Yahya, P., Carter, B. T., Lin, H., Tao, H., and Cornish, V. W. (2008) High-throughput selection for cellulase catalysts using chemical complementation. J Am Chem Soc 130, 17446–17452.CrossRefPubMedGoogle Scholar
  57. Percival Zhang, Y. H., Himmel, M. E., and Mielenz, J. R. (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24, 452–481.CrossRefPubMedGoogle Scholar
  58. Perez-Avalos, O., Sanchez-Herrera, L. M., Salgado, L. M., and Ponce-Noyola, T. (2008) A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr Microbiol 57, 39–44.CrossRefPubMedGoogle Scholar
  59. Py, B., Bortoli-German, I., Haiech, J., Chippaux, M., and Barras, F. (1991) Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis. Protein Eng 4, 325–333.CrossRefPubMedGoogle Scholar
  60. Qin, Y., Wei, X., Song, X., and Qu, Y. (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135, 190–195.CrossRefPubMedGoogle Scholar
  61. Reese, E. T., Sui, R. G. H., and Levinson, H. S. (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59, 485–497.PubMedGoogle Scholar
  62. Reinikainen, T., Teleman, O., and Teeri, T. T. (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22, 392–403.CrossRefPubMedGoogle Scholar
  63. Rignall, T. R., Baker, J. O., McCarter, S. L., Adney, W. S., Vinzant, T. B., Decker, S. R., and Himmel, M. E. (2002) Effect of single active-site cleft mutation on product specificity in a thermostable bacterial cellulase. Appl Biochem Biotechnol 98–100, 383–394.CrossRefPubMedGoogle Scholar
  64. Rohlin, L., Oh, M. K., and Liao, J. C. (2001) Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Curr Opin Microbiol 4, 330–335.CrossRefPubMedGoogle Scholar
  65. Ruller, R., Deliberto, L., Ferreira, T. L., and Ward, R. J. (2008) Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins 70, 1280–1293.CrossRefPubMedGoogle Scholar
  66. Sakon, J., Adney, W. S., Himmel, M. E., Thomas, S. R., and Karplus, P. A. (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35, 10648–10660.CrossRefPubMedGoogle Scholar
  67. Sandgren, M., Gualfetti, P. J., Paech, C., Paech, S., Shaw, A., Gross, L. S., Saldajeno, M., Berglund, G. I., Jones, T. A., and Mitchinson, C. (2003) The Humicola grisea Cel12A enzyme structure at 1.2 A resolution and the impact of its free cysteine residues on thermal stability. Protein Sci 12, 2782–2793.CrossRefPubMedGoogle Scholar
  68. Schubot, F. D., Kataeva, I. A., Chang, J., Shah, A. K., Ljungdahl, L. G., Rose, J. P., and Wang, B. C. (2004) Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry 43, 1163–1170.CrossRefPubMedGoogle Scholar
  69. Schulein, M. (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543, 239–252.CrossRefPubMedGoogle Scholar
  70. Schwarz, W. H. (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56, 634–649.CrossRefPubMedGoogle Scholar
  71. Shoseyov, O., Shani, Z., and Levy, I. (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70, 283–295.CrossRefPubMedGoogle Scholar
  72. Simpson, H. D., and Barras, F. (1999) Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase. J Bacteriol 181, 4611–4616.PubMedGoogle Scholar
  73. Spezio, M., Wilson, D. B., and Karplus, P. A. (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32, 9906–9916.CrossRefPubMedGoogle Scholar
  74. Stemmer, W. P. (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91, 10747–10751.CrossRefPubMedGoogle Scholar
  75. Ting, C. L., Makarov, D. E., and Wang, Z. G. (2009) A kinetic model for the enzymatic action of cellulase. J Phys Chem B 113, 4970–4977.CrossRefPubMedGoogle Scholar
  76. Tomme, P., Van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vandekerckhove, J., Knowles, J., Teeri, T., and Claeyssens, M. (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170, 575–581.CrossRefPubMedGoogle Scholar
  77. Urbanowicz, B. R., Catala, C., Irwin, D., Wilson, D. B., Ripoll, D. R., and Rose, J. K. (2007) A tomato endo-beta-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). J Biol Chem 282, 12066–12074.CrossRefPubMedGoogle Scholar
  78. Van Tilbeurgh, H., Tomme, P., Claeyssens, M., and Bhikhabhai, R. (1986) Limited proteolysis of the cellubiohydrolase I from Trichoderma reesei. Separation of functional domains. FEBS Lett 204, 223–227.CrossRefGoogle Scholar
  79. Varrot, A., Schulein, M., Fruchard, S., Driguez, H., and Davies, G. J. (2001) Atomic resolution structure of endoglucanase Cel5A in complex with methyl 4,4II,4III,4IV-tetrathio-alpha-cellopentoside highlights the alternative binding modes targeted by substrate mimics. Acta Crystallogr D Biol Crystallogr 57, 1739–1742.CrossRefPubMedGoogle Scholar
  80. Wang, H., and Jones, R. W. (1997) Site-directed mutagenesis of a fungal beta-1,4-endoglucanase increases the minimum size required for the substrate. Appl Microbiol Biotechnol 48, 225–231.CrossRefPubMedGoogle Scholar
  81. Wang, T., Liu, X., Yu, Q., Zhang, X., Qu, Y., and Gao, P. (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22, 89–94.CrossRefPubMedGoogle Scholar
  82. Wohlfahrt, G., Pellikka, T., Boer, H., Teeri, T. T., and Koivula, A. (2003) Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Biochemistry 42, 10095–10103.CrossRefPubMedGoogle Scholar
  83. Wolfgang, D. E., and Wilson, D. B. (1999) Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry 38, 9746–9751.CrossRefPubMedGoogle Scholar
  84. Zechel, D. L., Boraston, A. B., Gloster, T., Boraston, C. M., Macdonald, J. M., Tilbrook, D. M., Stick, R. V., and Davies, G. J. (2003) Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to beta-glucosidases. J Am Chem Soc 125, 14313–14323.CrossRefPubMedGoogle Scholar
  85. Zhang, S., and Wilson, D. B. (1997) Surface residue mutations which change the substrate specificity of Thermomonospora fusca endoglucanase E2. J Biotechnol 57, 101–113.CrossRefPubMedGoogle Scholar
  86. Zhang, S., Barr, B. K., and Wilson, D. B. (2000a) Effects of noncatalytic residue mutations on substrate specificity and ligand binding of Thermobifida fusca endocellulase cel6A. Eur J Biochem 267, 244–252.CrossRefPubMedGoogle Scholar
  87. Zhang, S., Irwin, D. C., and Wilson, D. B. (2000b) Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 267, 3101–3115.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de Química, FFCLRPUniversidade de São PauloRibeirão Preto-SPBrazil

Personalised recommendations