Hydrolases from Microorganisms used for Degradation of Plant Cell Wall and Bioenergy

  • Maria L. T. M. Polizeli
  • Emanuelle C. P. Corrêa
  • Aline M. Polizeli
  • João A. Jorge


The first consideration one should be aware of regarding biomass is what it exactly means. The definition of biomass has received different meanings during the course of the years, since it was first used in the 1930s. Currently, it differs according to the purpose of its use. Biologically and etymologically, biomass encompasses everything which is alive on Earth. A broader definition would include the three domains of life – Archaea, Eukarya, and Bacteria – they being alive or dead, along with their wastes. However, some other definitions exclude water, considering biomass as being the dry weight of living beings and their wastes; others claim biomass means the biodegradable fraction of products, waste and residues from agriculture (including vegetal and animal substances), aquaculture, forestry and related industries, the biodegradable fraction of industrial and municipal waste as well as waste water sludge. Lastly, biomass can also be defined as mass provided by living and/or dead plants only. From an energetic approach, biomass is every renewable resource from organic matter which can be used to produce energy. Consequently, all these different ways to define biomass can lead to multi-interpretations of single information. Additionally, we could incur in the mistake of calculating the total biomass of a unit or place without any life in it.


Ferulic Acid Sugarcane Bagasse Lignin Peroxidase Carbon Catabolite Repression Veratryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Athanasopoulos, V. I., Niranjan, K., and Rastall, R. A. 2005. The production, purification and characterization of two novel α-D-mannosidases from Aspergillus phoenicis. Carbohydr. Res. 340(4):609–617.CrossRefPubMedGoogle Scholar
  2. Betini, J. H. A., Michelin, M., Peixoto-Nogueira, S. C., Jorge, J. A., Terenzi, H. F., and Polizeli, M. L. T. M. 2009. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosystems Engineering 32:819-824.CrossRefPubMedGoogle Scholar
  3. Bhat, K. M., and Maheshari, R. 1987. Sporotrichum thermophile growth, cellulose degradation, and cellulase activity. Appl. Environ. Microbiol. 53:2175–2182.PubMedGoogle Scholar
  4. Camassola, M., and Dillon, A. J. 2007. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J. Appl. Microbiol. 103(6):2196–204.CrossRefPubMedGoogle Scholar
  5. Collins, T., Gerday, C., and Feller, G. 2005. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3–23.CrossRefPubMedGoogle Scholar
  6. Cooney, D. G., and Emerson, R. 1964. In Thermophilic fungi. Freeman, WH, San Francisco, pp.189.Google Scholar
  7. Cregg, J. M. 1999. Expression in methylotrophic yeast Pichia pastoris. In Gene Expression Systems, ed. J. M. Fernandez, and J. P. Hoeffler, pp 157–191. Academic Press, New York.Google Scholar
  8. Das, R. C., and Shultz, J. L. 1987. Secretion of heterologous proteins from Saccharomyces cerevisiae. Biotechnol. Prog. 3:43–48.CrossRefGoogle Scholar
  9. Dedavid e Silva, L. A., Lopes, F. C., Silveira, S. T., and Brandelli, A. 2009. Production of cellulolytic enzymes by Aspergillus phoenicis in grape waste using response surface methodology. Appl. Biochem. Biotechnol. 152(2):295–305.Google Scholar
  10. de Graaff, L. H., van den Broeck, H. C., and Ooijen, A. J. J. 1994. Regulation of the xylanase-encoding xlnA gene of Aspergillus tubigensis. Mol. Microbiol. 12:479–490.CrossRefPubMedGoogle Scholar
  11. De Groot, P. W., Basten, D. E., Sonnenberg, A., Van Griensven, L. J., Visser, J., and Schaap, P. J. 1998. An endo-1,4-beta-xylanase-encoding gene from Agaricus bisporus is regulated by compost-specific factors. J. Mol. Biol. 277(2):273–284.CrossRefPubMedGoogle Scholar
  12. de Vries, R. P., Visser, J., and de Graaff, L. H. 1999. CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res. Microbiol. 150:281–285.CrossRefPubMedGoogle Scholar
  13. Deng, W., Deng, W., Jiang, Z. Q., Li, L. T., Wei, Y., Shi, B., and Kusakabe, I. 2005. Variation of xylanosomal subunit composition of Streptomyces olivaceoviridis by nitrogen sources. Biotechnol. Lett. 27(6):429–433.CrossRefPubMedGoogle Scholar
  14. Ding, S., Ge, W., and Buswell, J. A. 2006. Cloning of multiple cellulose cDNAs from Volvariella volcacea and their differential expression during substrate colonization and fruiting. FEMS Microbiol. Lett. 263(2):207–213.CrossRefPubMedGoogle Scholar
  15. Dos Santos, E., Piovan, T., Roberto, I. C., and Milagres, A. M. 2003. Kinetics of the solid state fermentation of sugarcane bagasse by Thermoascus aurantiacus for the production of xylanase. Biotechnol. Lett. 25(1):13–16.CrossRefPubMedGoogle Scholar
  16. Ebanks, R., Dupont, M., Shareck, F., Morosoli, R., Kluepfel, D., and Dupont, C. 2000. Development of an Escherichia coli expression system and thermostability screening assay for libraries of mutant xylanase. J. Ind. Microbiol. Biotechnol. 25:310–314.CrossRefPubMedGoogle Scholar
  17. Gaur, R., Lata, S., and Khare, S. K. 2005. Immobilization of xylan-degrading enzymes from Scytalidium thermophilum on Eudragit L-100. World J. Microbiol. Biotechnol. 21:1123–1128.CrossRefGoogle Scholar
  18. Henrissat, B., and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293:781–788.PubMedGoogle Scholar
  19. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L., and Mornon, J. P. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81(1):83–95.CrossRefPubMedGoogle Scholar
  20. Hermoso, J. A., Sanz-Aparicio, J., Molina, R., Juge, N., Gonzalez, R., and Faulds, C. B. 2004. The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J. Mol. Biol. 338:495–506.CrossRefPubMedGoogle Scholar
  21. Igarashi, K., Ishida, T., Hori, C., and Samejima, M. 2008. Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 74(18):5628–5634.CrossRefPubMedGoogle Scholar
  22. Jiang, Z. Q., Deng, W., Li, L. T., Ding, C. H., Kusakabe, I., and Tan, S. S. 2004. A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnol. Lett. 26(5):431–436.CrossRefPubMedGoogle Scholar
  23. Jiang, Z., Dang, W., Yan, Q., Zhai, Q., Li, L., and Kusakabe, I. 2006. Subunit composition of a large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. J. Biotechnol. 126(3):304–312.CrossRefPubMedGoogle Scholar
  24. Karlsson, E. N., Dahlberg, L., Torto, N., Gorton, L., and Holst, O. 1998. Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase xyn1 from Rhodothermus marinus. J. Biotechnol. 60:23–35.CrossRefPubMedGoogle Scholar
  25. Kimura, T., Suzuki, H., Furuhashi, H., Aburatani, T., Morimoto, K., Sakka, K., and Ohmiya, K. 2002. Molecular cloning, characterization and expression analysis of the xynF3 gene from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 66:285–292CrossRefPubMedGoogle Scholar
  26. Kulkarni, N., Lakshmikumaran, M., and Rao, M. 1999a. Xylanase II from an alkaliphilic ­thermophilic Bacillus with distinctly different structure from other xylanases, evolutionary relationship to alkaliphilic xylanases. Biochem. Biophys. Res. Commun. 263:640–645.CrossRefPubMedGoogle Scholar
  27. Kulkarni, N., Shendye, A., and Rao, M. 1999b. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23:411–456.CrossRefPubMedGoogle Scholar
  28. Kurakabe, M., Shinjii, O., and Komaki, T. 1997. Transxylosilation of β-xylosidase from Aspergillus awamori K4. Biosci. Biotech. Biochem. 6112:2010–2014.CrossRefGoogle Scholar
  29. Lahjouji, K., Storms, R., Xiao, Z., Joung, K.B., Zheng, Y., Powlowski, J., Tsang, A., and Varin, L. 2007. Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl. Microbiol. Biotechnol. 75(2):337–346.CrossRefPubMedGoogle Scholar
  30. Latif, F., Rajoka, M. I., and Malik, K. A. 1995. Production of cellulases by thermophilic fungi grown on Leptochloa fusca straw. World J. Microbiol. Biotechnol. 11:347–348.CrossRefGoogle Scholar
  31. Levasseur, A., Asther, M., and Record, E. 2005. Overproduction and characterization of xylanase B of Aspergillus niger. Can. J. Microbiol. 51:177–183.CrossRefPubMedGoogle Scholar
  32. Li, X. L., Skory, C. D., Cotta, M. A., Puchart, V., and Biely, P. 2008. Novel family of carbohydrate esterases based on identification of the Hypocrea jecorina acetyl esterase gene. Appl. Environ. Microbiol. 74(24):7482–7489.CrossRefPubMedGoogle Scholar
  33. Liu, W., Lu, Y., and Ma, G. 1999. Induction and glucose repression of endo-β-xylanase in the yeast Trichosporon cutaneum SL409. Process Biochem 34:67–72.CrossRefGoogle Scholar
  34. Luo, H., Wang, Y., Wang, H., Yang, J., Yang, Y., Huang, H., Yang, P., Bai, Y., Shi, P., Fan, Y., and Yao, B. 2009. A novel highly acidid beta-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl. Microbiol. Biotechnol. 82(3):453–461.CrossRefPubMedGoogle Scholar
  35. Madigan, M. T., Martinko, J. M., and Parker, J. 2000. Brock Biology Microorganisms. 9th ed., pp. 153–154. Prentice-Hall, New Jersey.Google Scholar
  36. Magalhães, P. O., Ferraz, A., and Milagres, A. F. 2006. Enzymatic Properties of two beta-glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. J. Appl. Microbiol. 101(2):480–486.CrossRefPubMedGoogle Scholar
  37. Mantyla, A., Paloheimo, M., Hakola, S., Lindberg, E., Leskinen, S., Kallio, J., Vehmaanpera, J., Lantoo, R. and Suominen, P. 2007. Production in Trichoderma reesei of three xylanases from Chaetomium thermophile: a recombinant thermoxylanase for bleaching of kraft pulp. Appl. Microbiol. Biotechnol. 76:377–386.CrossRefPubMedGoogle Scholar
  38. Martin, C., Klinke, H. B., Marcet, M., García, L., Hernández, E., and Thomsen, A. B. 2007. Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung 61(5):483–487.CrossRefGoogle Scholar
  39. Marui, J., Tanaka, A., Mimura, S., de Graaff, L. H., Visser, J., Kitamoto, N., Kato, M., Kobayashi, T., and Tsukagoshi, N. 2002. A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet. Biol. 35:157–169.CrossRefPubMedGoogle Scholar
  40. Morosoli, R., Durand, S. and Letendre, E. 1987. Induction of xylanase by β-methylxyloside in Cryptococcus albidus. FEMS Microbiol. Lett. 48:261–266.Google Scholar
  41. Nel, W.P. and Cooper, C.J. 2009. Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 37:166–180.CrossRefGoogle Scholar
  42. Nozaki, K., Seki, T., Matsui, K., Mizuno, M., Kanda, T. and Amano, Y. 2007. Structure and ­characteristics of an endo-beta-1,4-glucanase, isolated from Trametes hirsuta with high degradation to crystalline cellulose. Biosci. Biotechnol. Biochem. 71(10):2375–2382.CrossRefPubMedGoogle Scholar
  43. Perez-Gonzalez, J. A., van Peij, N. N. M. E., Bezoen, A., MacCabe, A. P., Ramon, D., and Graff, L. H. D. 1998. Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a β-xylosidase. Appl. Environ. Microb. 64:1412–1419.Google Scholar
  44. Polizeli, M. L. T. M. 2009. Properties and commercial applications of xylanases from fungi. In Advances in Fungal Biotechnology, ed. M. Rai, pp. 82–108. I.K. International, New Delhi.Google Scholar
  45. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, F. H., Jorge, J. A., and Amorim, D. S. 2005. Xylanases from fungi: properties and industrial applications. Review. Appl. Microbiol. Biotechnol. 67:577–591.CrossRefGoogle Scholar
  46. Prathumpai, W., McIntyre, M., and Nielsen, J. 2004. The effect of CreA in glucose and catabolism in Aspergillus nidulans. Appl. Microbiol. Biotechnol. 63:748–753.CrossRefPubMedGoogle Scholar
  47. Rahi, D. K., Rahi, S., Pandey, A. K. and Rajak, R. C. 2009. Enzymes from mushrooms and their industrial applications. In Advances in Fungal Biotechnlogy, ed. M. Rai, pp. 136–184. I.K. International, New Delhi.Google Scholar
  48. Rahman, A. K. M. S., Sugitani, N., Hatsu, M., and Takamizawa, K. 2003. A role of xylanase, alpha-L-arabinofuranosidase, and xylosidase in xylan degradation. Can. J. Microbiol. 49:58–64.CrossRefPubMedGoogle Scholar
  49. Ramage, J., and Scurlock, J. 1996. Biomass. In Renewable Energy: Power For A Sustainable Future, chapter  4, ed. Boyle, G. pp. 137–182. Oxford University Press, Oxford.Google Scholar
  50. Reese, E. T. and Mandels, M., 1963. Enzymatic hydrolysis of cellulose and its derivatives. Meth. Carb. Chem. 3:139–143.Google Scholar
  51. Rizzatti, A. C. S., Jorge, J. A., Terenzi, H. F., Rechia, C. G. V., and Polizeli, M. L. T. M. 2001. Purification and properties of a termostable extracellular β-xylosidase produced by a thermotolerant Aspergillus phoenicis. J. Ind. Microbiol. Biotechnol. 26:156–160.CrossRefPubMedGoogle Scholar
  52. Rizzatti, A. C. S., Sandrim, V. C., Jorge, J. A., Terenzi, H. F., and Polizeli, M. L. T. M. 2004. Influence of temperature on the properties of the xylanolytic enzymes of the thermotolerant fungus Aspergillus phoenicis. J. Ind. Microbiol. Biotechnol. 31:88–93.CrossRefPubMedGoogle Scholar
  53. Rizzatti, A. C. S., Freitas, F. Z., Bertolini, M. C., Peixoto-Nogueira, S. C., Jorge, J. A., Terenzi, H. F., and Polizeli, M. L. T. M. 2008. Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach. J. Ind. Microbiol. Biotechnol. 35:237–244.CrossRefPubMedGoogle Scholar
  54. Romanos, M. A., Scorer, C. A., and Clare, J. J. 1992. Foreign gene expression in yeast: a review. Yeast 8:423–488.CrossRefPubMedGoogle Scholar
  55. Ruijter, G. J. G., and Visser, J. 1997. Carbon repression in Aspergilli. FEMS Microbiol. Lett. 151:103–114.CrossRefPubMedGoogle Scholar
  56. Sakamoto, T., Ihara, H., Kozaki, S. and Kawasaki, H. 2003. A cold-adapted endo-arabinase from Penicilium chrysogenum. Biochim. Biophys. Acta. 1624(1–3):70–75.PubMedGoogle Scholar
  57. Sandrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., and Polizeli, M. L. T. M. 2005. Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for the bleaching of kraft pulp. Process Biochem. 40 (5):1823–1828.CrossRefGoogle Scholar
  58. Sapag, A., Wouters, J., Lambert, C., de Ioannes, P., Eyzaguirre, J., and Depiereux, E. 2002. The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95:109–131.CrossRefPubMedGoogle Scholar
  59. Sa-Pereira, P., Paveia, H., Costa-Ferreira, M., and Aires-Barros, M. R. 2003. A new look at xylanases: An overview of purification strategies. Mol. Biotechnol. 24:257–281.CrossRefPubMedGoogle Scholar
  60. Schlacher, A., Holzmann, K., Hayn, M., Steiner, W., and Schwab, H. 1996. Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J. Biotechnol. 49:211–218.CrossRefPubMedGoogle Scholar
  61. Schmoll, M., and Kubicek, C. P. 2003. Regulation of Trichoderma cellulose formation: lessons in molecular biology from an industrial fungus. A Review. Acta Microbiol. Immunol. Hung. 50(2–3):125–145.CrossRefGoogle Scholar
  62. Setati, M. E., Ademark, P., van Zyl. W. H., Hahn-Hägerdal, B., and Stålbrand, H. 2001. Expression of the Aspergillus aculeatus endo-β-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Protein. Expr. Purif. 21(1):105–114.CrossRefPubMedGoogle Scholar
  63. Shafiee, S., and Topal, E. 2009. When will fossil fuel reserves be diminished? Energy Policy 37:181–189.CrossRefGoogle Scholar
  64. Silva, A. M. 2005. Doctor Thesis: Characterization of cell wall of Saccharum officinarum L. (sugarcane) and Brachiaria decumbens Stapf (braquiaria). UNICAMP, SP, Brazil.Google Scholar
  65. Simerska, P., Monti, D., Cechova, I., Pelantova, H., Mackova, M., Bezouska, K., Riva, S., and Kren, V. 2007. Induction and characterization of an unusual alpha-D-galactosidase from Talaromyces flavus. J. Biotechnol. 128:61–71.CrossRefPubMedGoogle Scholar
  66. Strauss, J., Mach, R. L., Zeilinger, S., Stoffler, G., Wolschek, M., Hartler, G., and Kubicek, C. P. 1995. Cre I the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 376:103–107.CrossRefPubMedGoogle Scholar
  67. Sunna, A., and Antranikian, G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17(1):39–67.CrossRefPubMedGoogle Scholar
  68. Takao, M., Akiyama, K., and Sakai, T. 2002. Purification and characterization of thermostable endo-1,5-alpha-L-arabinase from a strain of Bacillus thermodenitrificans. Appl. Environ. Microbiol. 68:1639–1646.CrossRefGoogle Scholar
  69. Tanaka, M., Umemoto, Y., Okamura, H., Nakano, D., Tamaru, Y., and Araki, T. 2009. Clonning and characterization of a beta-1,4-mannanase 5C prossessing a family 27 carbohydrate-binding module from a marine bacterium Vibrio sp. strain MA-138. Biosci. Biotechnol. Biochem. 73(1):109–116.CrossRefPubMedGoogle Scholar
  70. Tenkanen, M., and Siika-aho, M. 2000. An alpha-glucuronidase of Schizophyllum commune acting on polymeric xylan. J. Biotechnol. 78:149–161.CrossRefPubMedGoogle Scholar
  71. Törrönen, A., and Rouvinen, J. 1997. Structural and functional properties of low molecular weight endo-1,4-β-xylanases. J. Biotechnol. 57:137–149.CrossRefPubMedGoogle Scholar
  72. Tsai, C. T. and Huanga, C. T. 2008. Overexpression of the Neocallimastix frontalis xylanase gene in the methylotrophic yeasts Pichia pastoris and Pichia methanolica. Enzyme Microb. Technol. 42:459–465.CrossRefGoogle Scholar
  73. van Peij, N. N. M. E., Visser, J. and de Graaff, L. H. 1998. Isolation and analysis of xlnR, encoding transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol. Microbiol. 27:131–142.CrossRefPubMedGoogle Scholar
  74. Wood, J. D., and Wood, P. M. 1992. Evidence that cellobiose:quinine oxidoreductase from Phaenerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochem. Biophys. Acta. 1119(1):90–96.CrossRefPubMedGoogle Scholar
  75. Zanoelo, F. F., Polizeli, M. L. T. M., Terenzi, H. F., and Jorge, J. A. 2004a. ß-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143.CrossRefPubMedGoogle Scholar
  76. Zanoelo, F. F., Polizeli, M. L. T. M., Terenzi, H. F., and Jorge, J. A. 2004b. Purification and ­biochemical characterization of a thermostable xylose-tolerant ß-xylosidase from Scytalidium thermophilum. J. Ind. Microbiol. Biotechnol. 31:170–176CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria L. T. M. Polizeli
    • 1
  • Emanuelle C. P. Corrêa
  • Aline M. Polizeli
  • João A. Jorge
  1. 1.Departament of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP)São Paulo UniversityRibeirão PretoBrazil

Personalised recommendations