Advertisement

Enzymes in Bioenergy

  • Viviane I. Serpa
  • Igor Polikarpov
Chapter

Abstract

Cellulose (∼40%), hemicelluloses (∼30%), and lignin (∼20%) are the major components of lignocellulosic biomass. Cellulose, specifically, can be degraded by a synergistic action of several enzymes, including the endoglucanases (EC 3.2.1.4), which cleave randomly internal b-1-4 linkages; the exoglucanases/ cellobiohydrolases (EC 3.2.1.91), that act at the cellulose chains termini to release cellobiose, and the β-glucosidases (EC 3.2.1.21), which catalyze hydrolysis of cellobiose into glucose.

Most cellulases have a two-domain organization with a large catalytic core domain (CCD) connected to a small cellulose-binding module (CBM) via long, heavily O-glycosylated linker peptide More recently, the use of cellulases for the industrial conversion of cellulose-containing biomass to fermentable sugars as an alternative to fossil fuels has attracted increasing attention. Hemicellulose can be decomposed by a diverse group of enzymes in which xylanases play an important role. Xylan is the second most abundant polysaccharide in Nature. The main enzymes involved in xylan hydrolysis are endo-xylanase (EC 3.2.1.8), which show a preference for internal xylan bonds and exo-xylanase (EC 3.2.1.37), which act mostly at the termini of xylan chains. The modular structures of xylanases are similar to cellulases, however, in addition to enzymes that contain domains that bind specifically to xylan (xylan-binding modules or XBMs), there are several xylanases which contain domains that bind specifically to cellulose rather than xylan. Lignin is a heterogeneous hydrophobic phenolic polymer and one of its main physiological functions is to “cement” the cellulose fibers in plants. Lignin is degraded by different classes of enzymes, which are produced by several microorganisms and in different combinations. The main extracellular enzymes involved in lignin degradation are lignin peroxidases (LiPs – EC 1.11.1.14), manganese peroxidases (MnPs –EC 1.11.1.13) and laccase (EC 1.10.3.2). Although a number of microorganisms, including fungi and bacteria, have the capacity to degrade plant biomass, most commercially available enzymes are currently produced by genetically engineered strains of filamentous fungi Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger. Cost of the cellulolytic enzymes represents significant fraction of the second generation ethanol, therefore the hydrolytic activities of individual enzymes should be enhanced and the industrial cellulase cocktails must be balanced to guarantee improved efficiency of pretreated biomass conversion. Knowledge of the molecular mechanisms of the enzymatic hydrolysis of lignocellulosic feedstocks is one of the important parts of developing cost-effective processes for biomass to bioenergy conversion.

Keywords

Crystalline Cellulose Cellulose Chain Lignin Peroxidase Glycoside Hydrolase Family Manganese Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abuja, P. M., I. Pilz, M. Claeyssens & P. Tomme (1988a) Domain-structure of cellobiohydrolase-II as studied by small-angle x-ray-scattering – close resemblance to cellobiohydrolase-I. Biochemical and Biophysical Research Communications, 156, 180–185.CrossRefPubMedGoogle Scholar
  2. Abuja, P. M., M. Schmuck, I. Pilz, P. Tomme, M. Claeyssens & H. Esterbauer (1988b) Structural and functional domains of cellobiohydrolase-I from Trichoderma reesei – a small-angle x-ray-scattering study of the intact enzyme and its core. European Biophysics Journal with Biophysics Letters, 15, 339–342.Google Scholar
  3. Beg, Q. K., M. Kapoor, L. Mahajan & G. S. Hoondal (2001) Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.CrossRefPubMedGoogle Scholar
  4. Berner, R. A. (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426, 323–326.CrossRefPubMedGoogle Scholar
  5. Bertrand, T., C. Jolivalt, P. Briozzo, E. Caminade, N. Joly, C. Madzak & C. Mougin (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry, 41, 7325–7333.CrossRefPubMedGoogle Scholar
  6. Boraston, A. B. (2005) The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochemical Journal, 385, 479–484.CrossRefPubMedGoogle Scholar
  7. Brumbauer, A., M. Bollok, K. Reczey & S. Kemeny (1998) Effect of medium components on beta-glucosidase production from Aspergillus niger. In 10th European conference and technology exhibition on biomass for energy and industry, eds. H. Kopetz, T. Weber, W. Palz, P. Chartier & G. L. Ferrero, pp. 472–474. Wurzburg: Centrales Agrar Rohstoff Mkt and Entwicklung Netzwerk.Google Scholar
  8. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard & B. Henrissat (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, D233–D238.CrossRefPubMedGoogle Scholar
  9. Carrott, S., & M. Carrott (2007) Lignin – from natural adsorbent to activated carbon: a review. Bioresource Technology, 98, 2301–2312.CrossRefPubMedGoogle Scholar
  10. Cherry, J. R. & A. L. Fidantsef (2003) Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 14, 438–443.CrossRefPubMedGoogle Scholar
  11. Choinowski, T., W. Blodig, K. H. Winterhalter & K. Piontek (1999) The crystal structure of lignin peroxidase at 1.70 angstrom resolution reveals a hydroxy group on the C-beta of tryptophan 171: a novel radical site formed during the redox cycle. Journal of Molecular Biology, 286, 809–827.CrossRefPubMedGoogle Scholar
  12. Claeyssens, M., P. Tomme, C. F. Brewer & E. J. Hehre (1990) Stereochemical course of hydrolysis and hydration reactions catalyzed by cellobiohydrolase-I and cellobiohydrolase-II from Trichoderma reesei. FEBS Letters, 263, 89–92.CrossRefPubMedGoogle Scholar
  13. Creagh, A. L., E. Ong, E. Jervis, D. G. Kilburn & C. A. Haynes (1996) Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proceedings of the National Academy of Sciences of the United States of America, 93, 12229–12234.CrossRefPubMedGoogle Scholar
  14. Davies, G. & B. Henrissat (1995) Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.CrossRefPubMedGoogle Scholar
  15. Davies, G. J., A. M. Brzozowski, M. Dauter, A. Varrot & M. Schulein (2000) Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 angstrom resolution. Biochemical Journal, 348, 201–207.CrossRefPubMedGoogle Scholar
  16. Din, N., I. J. Forsythe, L. D. Burtnick, N. R. Gilkes, R. C. Miller, R. A. J. Warren & D. G. Kilburn (1994) The cellulose-binding domain of endoglucanase-a (CENA) from Cellulomonas fimi – evidence for the involvement of tryptophan residues in binding. Molecular Microbiology, 11, 747–755.CrossRefPubMedGoogle Scholar
  17. Divne, C., J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Pettersson, J. K. C. Knowles, T. T. Teeri & T. A. Jones (1994) The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase-I from Trichoderma reesei. Science, 265, 524–528.CrossRefPubMedGoogle Scholar
  18. Ducros, V., A. M. Brzozowski, K. S. Wilson, S. H. Brown, P. Ostergaard, P. Schneider, D. S. Yaver, A. H. Pedersen & G. J. Davies (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 angstrom resolution. Nature Structural Biology, 5, 310–316.CrossRefPubMedGoogle Scholar
  19. Eijsink, V. G. H., G. Vaaje-Kolstad, K. M. Varum & S. J. Horn (2008) Towards new enzymes for biofuels: lessons from chitinase research. Trends in Biotechnology, 26, 228–235.CrossRefPubMedGoogle Scholar
  20. Fierens, E., K. Gebruers, A. R. D. Voet, M. De Maeyer, C. M. Courtin & J. A. Delcour (2009) Biochemical and structural characterization of TLXI, the Triticum aestivum L. thaumatin-like xylanase inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 646–654.CrossRefPubMedGoogle Scholar
  21. Fujimoto, Z., A. Kuno, S. Kaneko, S. Yoshida, H. Kobayashi, I. Kusakabe & H. Mizuno (2000) Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. Journal of Molecular Biology, 300, 575–585.CrossRefPubMedGoogle Scholar
  22. Gordillo, F., V. Caputo, A. Peirano, R. Chavez, J. Van Beeumen, I. Vandenberghe, M. Claeyssens, P. Bull, M. C. Ravanal & J. Eyzaguirre (2006) Penicillium purpurogenum produces a family 1 acetyl xylan esterase containing a carbohydrate-binding module: characterization of the protein and its gene. Mycological Research, 110, 1129–1139.CrossRefPubMedGoogle Scholar
  23. Gottschalk, L. M. F., E. P. S. Bon & R. Nobrega (2008) Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Applied Biochemistry and Biotechnology, 147, 23–32.CrossRefPubMedGoogle Scholar
  24. Gruber, K., G. Klintschar, M. Hayn, A. Schlacher, W. Steiner & C. Kratky (1998) Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry, 37, 13475–13485.CrossRefPubMedGoogle Scholar
  25. Harhangi, H.R., P. J. M. Steenbakkers, A. Akhmanova, M. S. M. Jetten, C. van der Drift, H. J. M. Op den Camp. (2002) A higly expressed family 1 B-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochimica at Biophysica Acta, 1574, 293–303.Google Scholar
  26. Hatakka, A. (1994) Lignin-modifying enzymes from selected white-rot fungi – production and role in lignin degradation. FEMS Microbiology Reviews, 13, 125–135.CrossRefGoogle Scholar
  27. Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochemical Journal, 280, 309–316.PubMedGoogle Scholar
  28. Henrissat, B. & A. Bairoch (1993) New families in the classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochemical Journal, 293, 781–788.PubMedGoogle Scholar
  29. Henrissat, B. (1994) Cellulases and their interaction with cellulose. Cellulose, 1, 169–196.Google Scholar
  30. Henrissat, B. & A. Bairoch (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 316, 695–696.PubMedGoogle Scholar
  31. Himmel, M. E., M. F. Ruth, C. E. Wyman (1999) Cellulase for commodity products from cellulosic biomass. Current Opinion in Biotechnology, 10, 358–364.Google Scholar
  32. Jerkovic, I. & J. Mastelic (2004) GC-MS characterization of acetylated beta-D-glucopyranosides: transglucosylation of volatile alcohols using almond beta-glucosidase. Croatica Chemica Acta, 77, 529–535.Google Scholar
  33. Kaur, J., B. S. Chadha, B. A. Kumar, G. S. Kaur & H. S. Saini (2007) Purification and characterization of beta-glucosidase from Melanocarpus sp MTCC 3922. Electronic Journal of Biotechnology, 10, 260–270.CrossRefGoogle Scholar
  34. Kirk, O., T. V. Borchert & C. C. Fuglsang (2002) Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.CrossRefPubMedGoogle Scholar
  35. Kleywegt, G. J., J. Y. Zou, C. Divne, G. J. Davies, I. Sinning, J. Stahlberg, T. Reinikainen, M. Srisodsuk, T. T. Teeri & T. A. Jones (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes. Journal of Molecular Biology, 272, 383–397.CrossRefPubMedGoogle Scholar
  36. Knowles, J. K. C., P. Lentovaara, M. Murray & M. L. Sinnott (1988) Stereochemical course of the action of the cellobioside hydrolase-I and hydrolase-II of Trichoderma reesei. Journal of the Chemical Society-Chemical Communications, 21, 1401–1402.CrossRefGoogle Scholar
  37. Koivula, A., T. Reinikainen, L. Ruohonen, A. Valkeajarvi, M. Claeyssens, O. Teleman, G. J. Kleywegt, M. Szardenings, J. Rouvinen, T. A. Jones & T. T. Teeri (1996) The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Engineering, 9, 691–699.CrossRefPubMedGoogle Scholar
  38. Koivula, A., L. Ruohonen, G. Wohlfahrt, T. Reinikainen, T. T. Teeri, K. Piens, M. Claeyssens, M. Weber, A. Vasella, D. Becker, M. L. Sinnott, J. Y. Zou, G. J. Kleywegt, M. Szardenings, J. Stahlberg & T. A. Jones (2002) The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. Journal of the American Chemical Society, 124, 10015–10024.CrossRefPubMedGoogle Scholar
  39. Kraulis, P. J., G. M. Clore, M. Nilges, T. A. Jones, G. Pettersson, J. Knowles & A. M. Gronenborn (1989) Determination of the 3-dimensional solution structure of the c-terminal domain of cellobiohydrolase-I from Trichoderma reesei – a study using nuclear magnetic-resonance and hybrid distance geometry dynamical simulated annealing. Biochemistry, 28, 7241–7257.CrossRefPubMedGoogle Scholar
  40. Kulkarni, N., A. Shendye & M. Rao (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456.CrossRefPubMedGoogle Scholar
  41. Li, Y. C., D. C. Irwin & D. B. Wilson (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Ce19A. Applied and Environmental Microbiology, 73, 3165–3172.CrossRefPubMedGoogle Scholar
  42. Manikandan, K., A. Bhardwaj, N. Gupta, N. K. Lokanath, A. Ghosh, V. S. Reddy & S. Ramakumar (2006) Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Science, 15, 1951–1960.CrossRefPubMedGoogle Scholar
  43. Mattinen, M. L., M. Kontteli, J. Kerovuo, M. Linder, A. Annila, G. Lindeberg, T. Reinikainen & T. Drakenberg (1997) Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei. Protein Science, 6, 294–303.CrossRefPubMedGoogle Scholar
  44. Mattinen, M. L., M. Linder, T. Drakenberg & A. Annila (1998) Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello-oligosaccharides. European Journal of Biochemistry, 256, 279–286.CrossRefPubMedGoogle Scholar
  45. Meinke, A., H. G. Damude, P. Tomme, E. Kwan, D. G. Kilburn, R. C. Miller, R. A. J. Warren & N. R. Gilkes (1995) Enhancement of the endo-beta-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop. Journal of Biological Chemistry, 270, 4383–4386.CrossRefPubMedGoogle Scholar
  46. Oakley, A. J., T. Heinrich, C. A. Thompson & M. C. J. Wilce (2003) Characterization of a family 11 xylanase from Bacillus subtillis B230 used for paper bleaching. Acta Crystallographica Section D-Biological Crystallography, 59, 627–636.CrossRefGoogle Scholar
  47. Osullivan, A. C. (1997) Cellulose: the structure slowly unravels. Cellulose, 4, 173–207.CrossRefGoogle Scholar
  48. Pell, G., L. Szabo, S. J. Charnock, H. F. Xie, T. M. Gloster, G. J. Davies & H. J. Gilbert (2004) Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C – How variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. Journal of Biological Chemistry, 279, 11777–11788.CrossRefPubMedGoogle Scholar
  49. Piontek, K., M. Antorini & T. Choinowski (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-angstrom resolution containing a full complement of coppers. Journal of Biological Chemistry, 277, 37663–37669.CrossRefPubMedGoogle Scholar
  50. Polizeli, M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge & D. S. Amorim (2005) Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67, 577–591.CrossRefPubMedGoogle Scholar
  51. Qin, Y. Q., X. M. Wei, X. M. Liu, T. H. Wang & Y. B. Qu (2008) Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expression and Purification, 58, 162–167.CrossRefPubMedGoogle Scholar
  52. Raghothama, S., P. J. Simpson, L. Szabo, T. Nagy, H. J. Gilbert & M. P. Williamson (2000) Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry, 39, 978–984.CrossRefPubMedGoogle Scholar
  53. Rao, M. & C. Mishra (1989) Glucohydrolase from Penicillium funiculosum. Applied Microbiology and Biotechnology, 30, 130–134.Google Scholar
  54. Receveur, V., M. Czjzek, M. Schulein, P. Panine & B. Henrissat (2002) Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. Journal of Biological Chemistry, 277, 40887–40892.CrossRefPubMedGoogle Scholar
  55. Rouvinen, J., T. Bergfors, T. Teeri, J. K. C. Knowles & T. A. Jones (1990) 3-Dimensional structure of cellobiohydrolase-II from Trichoderma reesei. Science, 249, 380–386.CrossRefPubMedGoogle Scholar
  56. Sabini, E., G. Sulzenbacher, M. Dauter, Z. Dauter, P. L. Jorgensen, M. Schulein, C. Dupont, G. J. Davies & K. S. Wilson (1999) Catalysis and specificity in enzymatic glycoside hydrolysis: a B-2,B-5 conformation for the glycosyl-enzyme intermediate revealed by the structure of the Bacillus agaradhaerens family 11 xylanase. Chemistry & Biology, 6, 483–492.CrossRefGoogle Scholar
  57. Sakka, K., M. Nakanishi, M. Sogabe, T. Arai, H. Ohara, A. Tanaka, T. Kimura & K. Ohmiya (2003) Isothermal titration calorimetric studies on the binding of a family 6 carbohydrate-binding module of Clostridium thermocellum XynA with xlylooligosaccharides. Bioscience Biotechnology and Biochemistry, 67, 406–409.CrossRefGoogle Scholar
  58. Sandgren, M., A. Shaw, T. H. Ropp, S. W. R. Bott, A. D. Cameron, J. Stahlberg, C. Mitchinson & T. A. Jones (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 angstrom resolution. Journal of Molecular Biology, 308, 295–310.CrossRefPubMedGoogle Scholar
  59. Sandgren, M., P. J. Gualfetti, C. Paech, S. Paech, A. Shaw, L. S. Gross, M. Saldajeno, G. I. Berglund, T. A. Jones & C. Mitchinson (2003a) The Humicola grisea Cell2A enzyme structure at 1.2 angstrom resolution and the impact of its free cysteine residues on thermal stability. Protein Science, 12, 2782–2793.CrossRefPubMedGoogle Scholar
  60. Sandgren, M., P. J. Gualfetti, A. Shaw, L. S. Gross, M. Saldajeno, A. G. Day, T. A. Jones & C. Mitchinson (2003b) Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability. Protein Science, 12, 848–860.CrossRefPubMedGoogle Scholar
  61. Sandgren, M., G. I. Berglund, A. Shaw, J. Stahlberg, L. Kenne, T. Desmet & C. Mitchinson (2004) Crystal complex structures reveal how substrate is bound in the −4 to the +2 binding sites of Humicola grisea cel12A. Journal of Molecular Biology, 342, 1505–1517.CrossRefPubMedGoogle Scholar
  62. Sansen, S., C. J. De Ranter, K. Gebruers, K. Brijs, C. M. Courtin, J. A. Delcour & A. Rabijns (2004) Structural basis for inhibition of Aspergillus niger xylanase by Triticum aestivum xylanase inhibitor-I. Journal of Biological Chemistry, 279, 36022–36028.CrossRefPubMedGoogle Scholar
  63. Sasaki, S., D. Nonaka, H. Wariishi, Y. Tsutsumi & R. Kondo (2008) Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin. Phytochemistry, 69, 348–355.CrossRefPubMedGoogle Scholar
  64. Singh, D. & S. L. Chen (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Applied Microbiology and Biotechnology, 81, 399–417.CrossRefPubMedGoogle Scholar
  65. Singh, S., A. M. Madlala & B. A. Prior (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiology Reviews, 27, 3–16.CrossRefPubMedGoogle Scholar
  66. Stahlberg, J., G. Johansson & G. Pettersson (1991) A new model for enzymatic-hydrolysis of ­cellulose based on the 2-domain structure of cellobiohydrolase-I. Bio-Technology, 9, 286–290.Google Scholar
  67. Stahlberg, J., C. Divne, A. Koivula, K. Piens, M. Claeyssens, T. T. Teeri & T. A. Jones (1996) Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. Journal of Molecular Biology, 264, 337–349.CrossRefPubMedGoogle Scholar
  68. Sundaramoorthy, M., H. L. Youngs, M. H. Gold & T. L. Poulos (2005) High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry, 44, 6463–6470.CrossRefPubMedGoogle Scholar
  69. Sunna, A. & G. Antranikian (1997) Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17, 39–67.CrossRefPubMedGoogle Scholar
  70. Suominen, P. L., A. L. Mantyla, T. Karhunen, S. Hakola & H. Nevalainen (1993) High-frequency one-step gene replacement in trichoderma-reesei. 2. Effects of deletions of individual cellulase genes. Molecular and General Genetics, 241, 523–530.CrossRefPubMedGoogle Scholar
  71. Teeri, T. T., P. Lehtovaara, S. Kauppinen, I. Salovuori & J. Knowles (1987) Homologous domains in trichoderma-reesei cellulolytic enzymes – gene sequence and expression of cellobiohydrolase-ii. Gene, 51, 43–52.CrossRefPubMedGoogle Scholar
  72. Teeri, T. T. (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trend in Biotechnology, 15, 160–167.Google Scholar
  73. Torronen, A., A. Harkki & J. Rouvinen (1994) 3-Dimensional structure of endo-1,4-beta-xylanase-II from Trichoderma reesei – 2 conformational states in the active-site. EMBO Journal, 13, 2493–2501.PubMedGoogle Scholar
  74. Tuka, K., V. V. Zverlov & G. A. Velikodvorskaya (1992) Synergism between clostridium-thermocellum cellulases cloned in Escherichia-coli. Applied Biochemistry and Biotechnology, 37, 201–207.CrossRefPubMedGoogle Scholar
  75. Tuomela, M., M. Vikman, A. Hatakka & M. Itavaara (2000) Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72, 169–183.CrossRefGoogle Scholar
  76. Van Petegem, F., T. Collins, M. A. Meuwis, C. Gerday, G. Feller & J. Van Beeumen (2003) The structure of a cold-adapted family 8 xylanase at 1.3 angstrom resolution – Structural adaptations to cold and investigation of the active site. Journal of Biological Chemistry, 278, 7531–7539.CrossRefPubMedGoogle Scholar
  77. Vardakou, M., C. Dumon, J. W. Murray, P. Christakopoulos, D. P. Weiner, N. Juge, R. J. Lewis, H. J. Gilbert & J. E. Flint (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. Journal of Molecular Biology, 375, 1293–1305.CrossRefPubMedGoogle Scholar
  78. Varrot, A., S. Hastrup, M. Schulein & G. J. Davies (1999) Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 angstrom resolution. Biochemical Journal, 337, 297–304.CrossRefPubMedGoogle Scholar
  79. Varrot, A., T. P. Frandsen, I. von Ossowski, V. Boyer, S. Cottaz, H. Driguez, M. Schulein & G. J. Davies (2003) Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure, 11, 855–864.CrossRefPubMedGoogle Scholar
  80. von Ossowski, I., J. Stahlberg, A. Koivula, K. Piens, D. Becker, H. Boer, R. Harle, M. Harris, C. Divne, S. Mahdi, Y. X. Zhao, H. Driguez, M. Claeyssens, M. L. Sinnott & T. T. Teeri (2003) Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A. A comparison with Phanerochaete chrysosporium Cel7D. Journal of Molecular Biology, 333, 817–829.CrossRefGoogle Scholar
  81. von Ossowski, I., J. T. Eaton, M. Czjzek, S. J. Perkins, T. P. Frandsen, M. Schulein, P. Panine, B. Henrissat & V. Receveur-Brechot (2005) Protein disorder: conformational distribution of the flexible linker in a chimeric double cellulase. Biophysical Journal, 88, 2823–2832.CrossRefGoogle Scholar
  82. Walker, L. P., D. B. Wilson, D. C. Irwin, C. McQuire & M. Price (1992) Fragmentation of cellulose by the major thermomonospora-fusca cellulases, trichoderma-reesei cbhi, and their mixtures. Biotechnology and Bioengineering, 40, 1019–1026.CrossRefPubMedGoogle Scholar
  83. Wang, P., X. Hu, S. Cook, M. Begonia, K. S. Lee & H. M. Hwang (2008) Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World Journal of Microbiology & Biotechnology, 24, 2205–2212.CrossRefGoogle Scholar
  84. Wolfenden, R. & M. J. Snider (2001) The depth of chemical time and the power of enzymes as catalysts. Accounts of Chemical Research, 34, 938–945.CrossRefPubMedGoogle Scholar
  85. Youngs, H. L., M. Sundaramoorthy & M. H. Gold (2000) Effects of cadmium on manganese peroxidase – Competitive inhibition of Mn-II oxidation and thermal stabilization of the enzyme. European Journal of Biochemistry, 267, 1761–1769.CrossRefPubMedGoogle Scholar
  86. Youngs, H. L., M. D. S. Gelpke, D. M. Li, M. Sundaramoorthy & M. H. Gold (2001) The role of Glu39 in Mn-II binding and oxidation by manganese peroxidase from Phanerochaete chrysoporium. Biochemistry, 40, 2243–2250.CrossRefPubMedGoogle Scholar
  87. Zhang, Y. H. P. & L. R. Lynd (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.CrossRefPubMedGoogle Scholar
  88. Zhang, Y. H. P., M. E. Himmel & J. R. Mielenz (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24, 452–481.CrossRefGoogle Scholar
  89. Zhbankov, R. G. (1992) Hydrogen-bonds and structure of carbohydrates. Journal of Molecular Structure, 270, 523–539.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations