Enzymology of Plant Cell Wall Breakdown: An Update

  • Leonora R. S. Moreira
  • Natália vG. Milanezi
  • Edivaldo X. F. Filho


Vast quantities of lignocellulosic material are available for exploitation as potential source of food and biofuel. Lignocellulose structure is degraded by an arsenal of enzyme systems that works synergically. Basically, two enzyme types are responsible for the efficient degradation of lignocelluloses: hydrolytic enzyme system, which degrades the holocellulose structure and oxidative enzyme system, which acts on lignin and open phenyl rings. For a variety of reasons, enzymatic conversion of lignocellulose is preferred over chemical conversion procedures. This chapter shows a comprehensive picture of the main enzymes involved in lignocellulose breaking down.


Ferulic Acid Plant Cell Wall Glycoside Hydrolase Glycosyl Hydrolase Fungal Laccases 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, E. L., Kroon, P. A., Williamson, G., Gilbert, H. J., and Morrisa, V. J. 2004. Inactivated enzymes as probes of the structure of arabinoxylans as observed by atomic force microscopy. Carbohydr. Res. 339: 579–590.PubMedCrossRefGoogle Scholar
  2. Akin, D. E., Gordon, G. L. R., and Hogan, J. P. 1983. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Appl. Environ. Microbiol. 46: 738–748.PubMedGoogle Scholar
  3. Arai, T., Araki, R., Tanaka, A., Karita, S., Kimura, T., Sakka, K. and Ohmya, K. 2003. Characterization of a cellulase containing a family 30 carbohydrate-binding module (CBM) derived from Clostridium thermocellum CelJ: importance of the CBM to cellulose hydrolysis. J. Bacteriol. 185: 504–512.PubMedCrossRefGoogle Scholar
  4. Bacic, Q., Harris, P. J., and Stone, B. A. 1988. Structure and function of plant cell walls. In The Biochemistry of plants, vol.14, ed. J. Preiss, pp. 297–371. San Diego: Academic Press.Google Scholar
  5. Baminger, U., Subramaniam, S. S., Renganathan, V., and Haltrich, D. 2001. Characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. App. Environ. Microbiol. 67 (4): 1766–1774.CrossRefGoogle Scholar
  6. Bao, W., O’Malley, D. M., Whetten, R., and Sederoff, R. R. 1993. A laccase associated with lignifications in loblolly pine xylem. Science 260: 672–674.PubMedCrossRefGoogle Scholar
  7. Baumann, M. J., Eklo, J. M., Michel, G., Kallas, A. M., Teeri, T. T., Czjzek, M., and Brumer III, H. 2007. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell 19: 1947–1963.PubMedCrossRefGoogle Scholar
  8. Beldman, G., Schols, H. A, Pitson, S. M., Searl-van Leeuwen, M. J. F., and Voragen, A. G. J. 1997. Arabinans and arabinan degrading enzymes. Adv. Macromol. Carbohydr. Res. 1: 1–64.Google Scholar
  9. Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Meessen, L., Sigoillot, J.C., Asther, M., and Asther, M., 2006. Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr. Res. 341: 1820–1827.PubMedCrossRefGoogle Scholar
  10. Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 35–383.CrossRefGoogle Scholar
  11. Biely, P., Vrsanská, M., Tenkanen, M., and Kluepfel, D. 1997. Endo-β-1, 4-xylanase families: differences in catalytic proprieties. J. Biotechnol. 57: 151–166.PubMedCrossRefGoogle Scholar
  12. Blum, D. L., Kataeva, I. A., Li, X. L., and Ljugdahl, L. G. 2000. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol. 182: 1346–1351.PubMedCrossRefGoogle Scholar
  13. Bonomo, R. P., Cennamo, G., Purrello, R., Santoro, A. M., and Zappala, R. 2001. Comparison of three fungal laccases from Rigodoporus lignosus and Pleurotus astreatus: correlation between conformational changes and catalytic activity. J. Inorg. Chem. 83: 67–73.Google Scholar
  14. Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E., and Ljungdahl, L.G. 1990. Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotechnol. 33: 345–351.CrossRefGoogle Scholar
  15. Borneman, W. S., Ljungdahl, L. G., Hartley, R. D., and Akin, D. E. 1991. Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl. Environ. Microbiol. 57: 2337–2344.PubMedGoogle Scholar
  16. Borneman, W. S., Ljungdahl, L. G., Hartley, R. D., and Akin, D. E. 1992. Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl. Environ. Microbiol. 58: 3762–3766.PubMedGoogle Scholar
  17. Brotman, Y., Briff, E., Viterbo, A., Chet, I. 2008. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiology 147: 779–784.PubMedCrossRefGoogle Scholar
  18. Cosgrove, D. J. 2000. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38: 109–124.PubMedCrossRefGoogle Scholar
  19. Coughlan, M. P. 1985. Cellulases: production, properties and applications. Biochem. Soc. Trans. 13: 405–406.PubMedGoogle Scholar
  20. Coughlan, M. P. 1992. Towards an understanding of the mechanism of action of main chain cleaving xylnases. In Xylans and xylanases, eds J. Visser, J. G. Beldman, M. A. K. Someren, A. G. J. van Voragen, pp. 111–139. Amsterdam: Elsevier Science.Google Scholar
  21. Couglan, M. P., Tuohy, M. G., Filho, E. X. F., Puls, J., Claeyssens, M., Vrsanská, M., and Hughes, M. M. 1993. Ezymological aspects of microbial hemicellulases with emphasis on fungal systems. In: Hemicellulose and hemicellulases, eds M. P. Coughlan, G. P. Hazlewood, pp. 53–83. London: PortlandGoogle Scholar
  22. Crépin, V. F., Faulds, C. B., and Connerton, I. F. 2004. Functional recognition of new classes of feruloyl esterase. Appl. Microbiol. Biotechnol. 63: 647–652.PubMedCrossRefGoogle Scholar
  23. de Marco, A. and Roubelakis-Angelakis, K. A. 1997. Laccase activity could contribute to cell-wall reconstitution of regenerating protoplasts. Phytochem. 46: 421–425.CrossRefGoogle Scholar
  24. de Vries, R. P. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes, relevance for industrial production. Appl. Micorbiol. Biotechnol. 61: 10–20.Google Scholar
  25. de Vries, R. P., and Visser, J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497–522.PubMedCrossRefGoogle Scholar
  26. de Vries, R. P., van Kuyk, P. A., Kester, H. C. M., and Visser, J. 2002. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J. 363: 377–386.PubMedCrossRefGoogle Scholar
  27. de Wet, B. J. M., Matthew, M. K. A., Storbeck, K-H., van Zyl, W. H., and Prior, B. A. 2008. Characterization of a family 54 α-L-arabinofuranosidase from Aureobasidium pullulans. Appl. Microbiol. Biotechnol. 77: 975–983.PubMedCrossRefGoogle Scholar
  28. Eggert, C., Temp, U., Dean, J. F. D., Eriksson, K. E. L. 1996. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391: 144–148.PubMedCrossRefGoogle Scholar
  29. Faulds, C. B., Ralet, M. C., Williamson, G., Hazlewood, G. P., and Gilbert, H. J. 1995. Specificity of an esterase (XYLD) from Pseudomonas fluorescens subsp. Cellulose. Biochim. Biophys. Acta 1243: 265–269.Google Scholar
  30. Faulds, C. B., Molina, R., Gonzalez, R., Husband, F., Juge, N., Sanz-Aparicio, J., and Hermoso. J. A. 2005. Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS J. 272: 4362–4371.PubMedCrossRefGoogle Scholar
  31. Filho, E. X. F. Hemicellulases and biotechnology. 1998. In Recent research developments in microbiology, ed. S. G. Pandalai, pp. 165–176. Trivandrum: Research Signpost.Google Scholar
  32. Fry, S. C. 2003. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New phytologist. 161: 641–675.CrossRefGoogle Scholar
  33. Gerber, P. J., Heitmann, J. A., Joyce, T. W. Buchert, J., and Siika-aho, M. 1999. Adsorption of hemicellulases onto bleached kraft fibers. J. Biotechnol. 67: 67–75.CrossRefGoogle Scholar
  34. Gielkens, M. M. C., Dekkers, E., Visser, J., and de Graaff, L. H. 1999. Two cellobiohydrolases-encoding genes from Aspergillus niger require D-xylose and the xylanolitic transcriptional activator XlnR for their expression. Appl. Environ. Microbiol. 65: 4340–4345.PubMedGoogle Scholar
  35. Gübitz, G. M., Hayn, M., Sommerauer, M., and Steiner, W. 1996. Mannan-degrading enzymes from Sclerotium rolfsii: Characterization and synergism of two endo β-mannanase and a β-mannosidase. Biores. Technol. 58: 127–135.CrossRefGoogle Scholar
  36. Hartley, R. D., and Ford, C. W. 1989. Phenolic constituents of plant cell walls and wall biodegradability. In Plant cell wall polymers: biogenesis and biodegradation, eds. N. G. Lewis, M. G. Paice, pp. 137–145. Washington: American Chemical Society.CrossRefGoogle Scholar
  37. Hartley, R. D., Morrison, W. H., Himmelsbach, D. S., and Borneman, W. S. 1990. Cross-linking of cell wall arabinoxylans in graminaceous plants. Phytochem. 12: 3705–3709.CrossRefGoogle Scholar
  38. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.PubMedGoogle Scholar
  39. Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781–788.PubMedGoogle Scholar
  40. Hespell, R. B., and O’Bryan, P. J. 1992. Purification and characterization of an α-L-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl. Environ. Microbiol. 58: 1082–1108.PubMedGoogle Scholar
  41. Himmel, M. E., Ruth, M. F., and Wyman, C. E. 1999. Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotechnol. 10: 358–364.PubMedCrossRefGoogle Scholar
  42. Ishii, T. 1991. Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr. Res. 219: 15–22.PubMedCrossRefGoogle Scholar
  43. Jayani, R. S., Saxena, S., and Gupta, R. 2005. Microbial pectinolytic enzymes: A review. Process Biochem. 40: 2931–2944.CrossRefGoogle Scholar
  44. Jorgensen, H., Morkeberg, A., Krogh, K. B. R., and Olsson, L. 2005. Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microbiol. Technol. 36: 42–48.CrossRefGoogle Scholar
  45. Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., and Viikari, L. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40: 3519–3525.CrossRefGoogle Scholar
  46. Karkehabadi, S., Hansson, H., Piens, K., Mitchinson, C., and Sandgren, M. 2008. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J. Mol. Biol. 383: 144–154.PubMedCrossRefGoogle Scholar
  47. Karlsson, J., Saloheimo, M., Siika-aho, M., Tenkanen, M., Penttilä, M., Tjerneld, F. (2001). Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur. J. Biochem. 268: 6498–6507.PubMedCrossRefGoogle Scholar
  48. Kashyap, D. R., Vohra, P. K., Chopra, S., Tewari, R. 2001. Applications of pectinase in the commercial sector: a review. Biores. Technol. 77: 215–227.CrossRefGoogle Scholar
  49. Kirk, O., Borchet, T. V., Fuglsang, C. C. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345–351.PubMedCrossRefGoogle Scholar
  50. Koseki, T., Mese, Y., Fushinobu, S., Masaki, K., Fujii, T., Ito, K., Shiono, Y., Murayama, T., and Iefuji, H. 2008. Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl. Microbiol. Biotechnol. 77: 1279–1285.PubMedCrossRefGoogle Scholar
  51. Kroon, P. A., Faulds, C. B., Brézillon, C., and Williamson, G. 1997. Methyl phenylalkanoates as substrates to probe the active sites of esterases. Eur. J. Biochem. 248: 245–251.PubMedCrossRefGoogle Scholar
  52. Kumar, R., Singh, S., Singh, O. V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377–391.PubMedCrossRefGoogle Scholar
  53. Lawford, H. G., and Rousseau, J. D. 2003. Cellulosic fuel ethanol – alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis. Appl. Biochem. Biotechnol. 106: 457–469.CrossRefGoogle Scholar
  54. Lee, C. C., Wagschal, K., Kibblewhite-Accinelli, R. E., Orts, W. J., Robertson, G. H., Wong, D. W. S. 2008. An α-glucuronidase enzyme activity assay adaptable for solid phase screening. Appl. Biochem. Biotechnol. 155: 314–320.PubMedGoogle Scholar
  55. Levasseur, A., Saloheimo, M., Navarro, D., Andberg, M., Monot, F., Nakari-Setälä, T., Asther, M., and Record, E. 2006. Production of a chimeric enzyme tool associating the Trichoderma reesei swollenin with the Aspergillus niger feruloyl esterase A for release of ferulic acid. Appl. Microbiol. Biotechnol. 73: 872–880.PubMedCrossRefGoogle Scholar
  56. Liu, K., Yan, L., Yao, G., and Guo, X. 2006. Estimation of p-coumaric acid as a metabolite of E-6-O-p-coumaroyl scandoside methyl ester in rat plasma by HPLC and its application to a pharmacokinetic study. J. Chrom. B 831: 303–306.CrossRefGoogle Scholar
  57. Lynd, L. R., Weimer, P. J., van Zyl, W. H., Pretorius, I. S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577.PubMedCrossRefGoogle Scholar
  58. Mach, R. L., and Zeilinger, S. 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60: 515–522.PubMedGoogle Scholar
  59. Magalhães, P., Milagres, A. M. F. 2009. Biochemical properties of a β-mannanase and a b-xylanase produced by Ceriporiopsis subvermispora during biopulping conditions. Int. Biodeterior. Biodegradation 63: 191–195.Google Scholar
  60. Mandels, M. 1985. Applications of cellulases. Biochem. Soc. Trans. 13: 414–415.PubMedGoogle Scholar
  61. Manfield, S. D., de Jong, E., and Saddler, J. N. 1997. Cellobiose Dehydrogenase, an Active Agent in Cellulose Depolymerization. App. Environ. Microbiol. 63(10): 3804–3809.Google Scholar
  62. Mayer, A. M., and Staples, R. C. 2002. Laccase: new functions for an old enzyme. Phytochem. 60: 551–565.CrossRefGoogle Scholar
  63. Medeiros, R. G., Silva Jr, F. G., Salles, B. C., Estelles, R. S., and Filho, E. X. F. 2002. The performance of fungal xylan-degrading enzyme preparations in elemental chlorine-free bleaching for Eucalyptus pulp. J. Ind. Microbiol. Biotechnol. 28: 204–206.PubMedCrossRefGoogle Scholar
  64. Messerschmidt, A., and Huber, R. 1990. The blue copper oxidases, ascorbate oxidase, laccase and ceruloplasmin: modeling and structural relationships. Eur. J. Biochem. 187: 341–352.PubMedCrossRefGoogle Scholar
  65. Minic, Z., and Jouanin, L. 2006. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 44: 435–449.PubMedCrossRefGoogle Scholar
  66. Miyanaga, A., Koseki, T., Matsuzawa, H., Wakagi, T., Shoun, H., and Fushinobu, S. 2004. Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J. Biol. Chem. 279: 44907–44914.PubMedCrossRefGoogle Scholar
  67. Moreira, L. R. S., and Filho, E. X. F. 2008. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 79(2): 165–178.PubMedCrossRefGoogle Scholar
  68. Mosier N., Hall, P., Ladisch, C. M., and Ladisch, M. R. 1999. Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. Adv. Biochem. Eng. Biotechnol. 65: 23–39.PubMedGoogle Scholar
  69. Numan, M. T., and Bhosle, N. B. 2006. α-L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247–260.PubMedCrossRefGoogle Scholar
  70. O’Malley, D. M., Whetten, R., Bao, W., Chen, C, and Sederoff, R. R. 1993. The role of laccase in lignifications. The Plant J. 4(5): 751–757.CrossRefGoogle Scholar
  71. Pérez, J., Muñoz-Dorado, J., de La Rubia, T., and Martínez, J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5: 53–63.PubMedCrossRefGoogle Scholar
  72. Pezet, R., Pont, V., and Hoang-Van, K. 1992. Enzymatic detoxication of stilbenes by Botrytis cinerea and inhibition by grape berries proanthrocyanidins. In Recent Advances in Botrytis Research, eds K. Verhoeff, N. E. Malathrakis, B. Williamson, pp. 87–92. Wageningen: Pudoc Scientific.Google Scholar
  73. Picart, P., Diaz, P., and Pastor, F. I. J. 2007. Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Lett. Appl. Micobiol. 45: 108–113.CrossRefGoogle Scholar
  74. Polizeli, M. L. T., Rizzatti, A. C. S., Monti R., Terenzi, H. F., Jorge, J. A., and Amorim, D. S. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.PubMedCrossRefGoogle Scholar
  75. Radford, A. 2006. Glycosyl hydrolase genes and enzymes of Neurospora crassa. Fungal Gen. Newsletter 53: 12–14.Google Scholar
  76. Raguz, S., Yague, E., Wood, D. A., Thurston, C. F. 1992. Isolation and characterisation of a cellulose-growth-specific gene from Agaricus bisporus. Gene (Amst.) 119: 183–190.Google Scholar
  77. Rahman, S. A. K. M., Kato, K., Kawai, S., and Takamizawa, K. 2003. Substrate specificity of the α-L-arabinofuranosidase from Rhizomucor pusillus HHT-1. Carbohydr. Res. 338: 1469–1476.PubMedCrossRefGoogle Scholar
  78. Ralph J., Grabber, J. H., Hatfield, R. D. 1995. Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharides esters into ryegrass lignins. Carbohydr. Res. 275: 167–178.CrossRefGoogle Scholar
  79. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., and Boerjan, W. 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3: 29–60.CrossRefGoogle Scholar
  80. Reese, E. T. 1976. History of cellulose program at the US Army Natick development centre. Biotechnol. Bioeng. Symp. 6: 9–20.PubMedGoogle Scholar
  81. Rose, J. K., Braan, J., Fry, S. C., and Nishitani, K. 2002. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43: 1421–1435.PubMedCrossRefGoogle Scholar
  82. Rye, C. S., and Withers, S. G. 2000. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4: 573–580.PubMedCrossRefGoogle Scholar
  83. Saha, B. C. 2000. α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotech. Adv. 18: 403–423.CrossRefGoogle Scholar
  84. Saha, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279–291.PubMedCrossRefGoogle Scholar
  85. Saha, B. C., and Bothast, R. J. 1998. Purification and characterization of a novel thermostable α-L-arabinofuranosidase from a color-variant strain of a Aureobasidium pullulans. Appl. Environ. Microbiol. 64: 216–220.PubMedGoogle Scholar
  86. Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M., and Penttilä, M. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269: 4202–4211.PubMedCrossRefGoogle Scholar
  87. Saloheiomo, M., Nakari-Setala, T., Tenaken, M., and Penttila, M. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249: 584–591.CrossRefGoogle Scholar
  88. Saulnier, L., and Thibault, J. F. 1999. Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans J. Sci. Food Agric. 79: 396–402.CrossRefGoogle Scholar
  89. Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E., and Rolando, C. 1985. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochem. 24: 1359–1362.CrossRefGoogle Scholar
  90. Shallom, D., Belakhov, V., Solomon, D., Gilead-Gropper, S., Baasov, T., Shoham, G., and Shohama, Y. 2002. The identification of the acid-base catalyst of α-arabinofuranosidase from Geobacillus stearothermopuhilus T-6, a family 51 glycoside hydrolase. FEBS Lett. 514: 163–167.PubMedCrossRefGoogle Scholar
  91. Siqueira, F.G.S. and Filho, E. X. F. 2010. Plant cell wall as substrate for production of enzymes with industrial applications. MROC 7: 54–60.Google Scholar
  92. Sohail, M., Siddiqi, R., Ahmad, A., and Khan, S. A. 2009. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol. 25: 437–441.PubMedCrossRefGoogle Scholar
  93. Solomon, E. I., and Lowery, M. D. 1993. Electronic structure contributions to function in bioinorganic chemistry. Science. 259: 1575–1581.PubMedCrossRefGoogle Scholar
  94. Sorensen, H. R., Pedersen, S., Vikso-Nielsen, A., Meyer, A. S. 2005. Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzyme Microb. Technol. 36: 773–784.CrossRefGoogle Scholar
  95. Sozzi, G. O., Greve, L. C., Prody, G. A., and Labavitch, J. M. 2002. Gibberellic acid, synthetic auxins, and ethylene differentially modulate α-L-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase Tomato Pericarp. Discs. Plant Physiol. 129: 1330–1340.CrossRefGoogle Scholar
  96. Spagna, G., Andreani, F., Salatelli, E., Romagnoli, D., Casarini, D., and Pifferi, P. G. 1998. Immobilization of the glycosidases: α-L-arabinofuranosidase and β-D-glucopyranosidase from Aspergillus niger on a chitosan derivative to increase the aroma of wine. Part II. Enzyme Microb. Technol. 23: 413–421.CrossRefGoogle Scholar
  97. Tolan, J. S., and Foody, B. 1999. Cellulase from submerged fermentation. Adv. Biochem. Eng. Biotechnol. 65: 41–67.Google Scholar
  98. Topakas, E., Christakopoulos, P, and Faulds, C. B. 2005. Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J. Biotechnol. 115: 355–366.PubMedCrossRefGoogle Scholar
  99. Topakas, E.,Vafiadi, C., Christakopoulos, P. 2007. Microbial production, characterization and applications of feruloyl esterases. Proc. Biochem. 42: 497–509.CrossRefGoogle Scholar
  100. Turner, P., Mamo, G., Karlsson, E. N. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6: 1–23.CrossRefGoogle Scholar
  101. Uenojo, M., Pastore, G. M. 2007. Pectinases: aplicações industriais e perspectivas. Quim. Nova, 30: 388–394.Google Scholar
  102. Vafiadi, C., Topakas, E., Wong, K. K. Y., Suckling, I. D., and Christakopoulos, P. 2005. Mapping the hydrolytic and synthetic selectivity of a type c feruloyl esterase (StFaeC) from Sporotrichum thermophile using alkyl ferulates. Tetrahed. Asym. 16: 373–379.CrossRefGoogle Scholar
  103. Vafiadi, C., Topakas, E., Christakopoulos, P., and Faulds, C. B. 2006. The feruloyl esterase system of Talaromyces stipitatus: determining the hydrolytic and synthetic specificity of TsFaeC. J. Biotechnol. 125: 210–221.PubMedCrossRefGoogle Scholar
  104. Wallace, G., and Fry, S. C. 1999. Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds. Phytochem. 52: 769–773.CrossRefGoogle Scholar
  105. Ward, O. P., and Moo-Young, M. 1989. Degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237–274.PubMedCrossRefGoogle Scholar
  106. Xu, B., Hägglund, P., Stålbrand, H., Janson, J. 2002. Endo-β-1,4-Mannanases from blue mussel, Mytilus edulis: purification, characterization, and mode of action. J. of Biotechnol. 92: 267–277.CrossRefGoogle Scholar
  107. Yao, Q., Sun, T., Liu, W., Chen, G. 2008. Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol. Biochem. 72: 2799–2805.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Leonora R. S. Moreira
  • Natália vG. Milanezi
  • Edivaldo X. F. Filho
    • 1
  1. 1.Departamento de Biologia Celular, Laboratório de EnzimologiaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations