Topochemistry, Porosity and Chemical Composition Affecting Enzymatic Hydrolysis of Lignocellulosic Materials

  • Adriane M. F. Milagres
  • Walter Carvalho
  • Andre Ferraz


Lignocellulosic materials such as sugarcane bagasse represent a lowcost source of carbon for biofuel and chemical production, including cellulosic ethanol. Despite its low cost and availability, bagasse presents several technical challenges for its conversion to monomeric sugars suitable for fermentation processes. It is highly recalcitrant, which requires efficient pretreatment for enzymatic hydrolysis. Both pretreatment and enzymatic hydrolysis have frequently been highlighted as the most costly steps in the bioprocessing of this lignocellulosic material.


Enzymatic Hydrolysis Corn Stover Lignocellulosic Material Cellulose Microfibril Cellulose Hydrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., and Cantarella, M. 2000. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J. Ind. Microbiol. Biotechnol. 25:184–192.CrossRefGoogle Scholar
  2. Bayer, E. A., Belaich, J. P., Shoham, Y., and Lamed, R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521–54.CrossRefPubMedGoogle Scholar
  3. Beg, Q. K., Kapoor, M., Mahajan, L., and Hoondal, G. S. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56:326–338.CrossRefPubMedGoogle Scholar
  4. Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M. B., and Kilburn, D. 2005a. Weak lignin-binding enzymes – a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl. Biochem. Biotechnol. 121:163–170.CrossRefPubMedGoogle Scholar
  5. Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., Okunev, O., Gusakov, A., Maximenko, V., Gregg, D., Sinitsyn, A., and Saddler, J. 2005b. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates-evidence for the role of accessory enzymes. Enzyme Microb. Technol. 37:175–184.CrossRefGoogle Scholar
  6. Berlin, A., Maximenko, V., Gilkes, N., and Saddler, J. 2007. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 97:287–296.CrossRefPubMedGoogle Scholar
  7. Bertran, M. S., and Dale, B. E. 1985. Determination of cellulose accessibility by differential scanning calorimetry. J. Appl. Polym. Sci. 32:4241–4253.CrossRefGoogle Scholar
  8. Bhat, M. K., and Hazlewood, G. P. 2001. Enzymology and other characteristics of cellulases and xylanases. In: Enzymes in farm animal nutrition, ed M.R. Bedford and C.C. Partridge, pp. 11–60, Wallingford: CAB International.Google Scholar
  9. Borjesson, J., Petersson, R., and Tjerneld, F. 2007. Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb. Technol. 40:754–762.CrossRefGoogle Scholar
  10. Borston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J. 2004. Carbohydrate binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382:769–781.CrossRefGoogle Scholar
  11. Browning, B. L. 1967. Methods of wood chemistry. New York: Wiley.Google Scholar
  12. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., and Alfani, F. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20:200–206.CrossRefPubMedGoogle Scholar
  13. Carpita, N. C. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:445–476.CrossRefPubMedGoogle Scholar
  14. Carpita, N., Sabularse, D., Montezinos, D., and Delmer, D. P. 1979. Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147.CrossRefPubMedGoogle Scholar
  15. Chen, F., and Dixon, R. A. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25:759–761.CrossRefPubMedGoogle Scholar
  16. Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407:321–326.CrossRefPubMedGoogle Scholar
  17. Decker, C. H., Visser, J., and Schreier, P. 2000. β-Glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J. Agric. Food Chem. 48:4929–4936.CrossRefPubMedGoogle Scholar
  18. Ding, S. Y., and Himmel, M. E. 2006. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54:597–606.CrossRefPubMedGoogle Scholar
  19. Dotson, W. D., Greenier, J., and Ding, H. 2007. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same. US Patent 7271244.Google Scholar
  20. Dumonceaux, T., Bartholomew, K., Valeanu, L., Charles, T., and Archibald, F. 2001. Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb. Technol. 29:478–489.CrossRefGoogle Scholar
  21. Emmert, G. H., and Rivers, D. B. 1987. Lignocellulose pretreatment: a comparison of wet and dry ball attrition. Biotechnol. Lett. 9:365–368.CrossRefGoogle Scholar
  22. Eriksson, K. E., Grunewald, A., Nilsson, T., and Vallander, L. 1980. A scanning electron microscopy study of the growth and attack on wood by three white-rot fungi and their cellulase-less mutants. Holzforschung 34:207–213.CrossRefGoogle Scholar
  23. Eriksson, T., Borjesson, J., and Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31:353–364.CrossRefGoogle Scholar
  24. Fan, Z. L., South, C., Lyford, K., Munsie, J., Walsum, P., and Lynd, L. R. 2003. Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst. Eng. 26:93–101.CrossRefPubMedGoogle Scholar
  25. Fengel, D., and Wegener, G. 1989. Wood chemistry, ultrastructure and reactions. Berlin: Walter de Gruyter.Google Scholar
  26. Flournoy, D. S., Kirk, T. K., and Highley, T. L. 1991. Wood decay by brown-rot fungi – changes in pore structure and cell-wall volume. Holzforschung 45:383–388.CrossRefGoogle Scholar
  27. Gilkes, N. R., Henrissat, B., Kilburn, D. G., and Miller, R. C. Jr., Warren, R. A. J. 1991. Domains in microbial β1-4 glycanase sequence conservation, function and enzyme families. Microbiol. Rev. 55:305–315.Google Scholar
  28. Goodell, B., Jellison, J., Liu, J., Daniel, G., Paszczynski, A., Fekete, F., Kirshnamurthy, S., Lu, J., and Xu, G. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53:133–162.CrossRefGoogle Scholar
  29. Gould, J. M. 1984. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 26:46–52.CrossRefPubMedGoogle Scholar
  30. Grabber, J. H., Panciera, M. T., and Hatfield, R. D. 2002. Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes. J. Agric. Food Chem. 50:2595–2600.CrossRefPubMedGoogle Scholar
  31. Grabber, J. H., Hatfield, R. D., Lu, F. C., and Ralph, J. 2008. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516.CrossRefPubMedGoogle Scholar
  32. Grabber, J. H., Mertens, D. R., Kim, H., Funk, C., Lu, F. C., and Ralph, J. 2009. Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J. Sci. Food Agric. 89:122–129.CrossRefGoogle Scholar
  33. Gray, K. A., Zhao, L., and Emptage, M. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10:141–146.CrossRefGoogle Scholar
  34. Gregg, D. J., Boussaid, A., and Saddler, J. N. 1998. Techno-economic evaluations of a generic wood-to-ethanol process: effect of increased cellulose yields and enzyme recycle. Bioresour. Technol. 63:7–12.CrossRefGoogle Scholar
  35. Grethlein, H. E. 1985. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology 3:155–160.CrossRefGoogle Scholar
  36. Hammel, K. E., and Cullen, D. 2008. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11:349–355.CrossRefPubMedGoogle Scholar
  37. Hammel, K. E., Kapich, A. N., Jensen, K. A., and Ryan, Z. C. 2002. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30:445–453.CrossRefGoogle Scholar
  38. Han, Y., and Chen, H. Z. 2007. Synergism between corn stover protein and cellulase. Enzyme Microb. Technol. 41:638–645.CrossRefGoogle Scholar
  39. Henriksson, G., Salumets, A., Divne, C., and Pettersson, G. 1997. Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem. J. 324:833–838.PubMedGoogle Scholar
  40. Henriksson, G., Johansson, G., and Pettersson, G. 2000. A critical review of cellobiose dehydrogenases. J. Biotechnol. 78:93–113.CrossRefPubMedGoogle Scholar
  41. Henrissat, B., and Coutinho, P. M. 1999. Carbohydrate-active enzymes: an integrated database approach. Spec. Pub. Royal Soc. Chem. 246:3–14.Google Scholar
  42. Himmel, M. E., Ding, S.-H., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., and Foust, T. D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.CrossRefPubMedGoogle Scholar
  43. Holtzapple, M. T., and Humphrey, A. E. 1984. The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnol. Bioeng. 26:670–676.CrossRefPubMedGoogle Scholar
  44. Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. 1990. Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol. Bioeng. 36:275–287.CrossRefPubMedGoogle Scholar
  45. Ishizawa, C. I., Davis, M. F., Schell, D. F., and Johnson, D. K. 2007. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food Chem. 55:2575–2581.CrossRefPubMedGoogle Scholar
  46. Jeoh, T., Wilson, D. B., and Walker, L. P. 2008. Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol. Prog. 22:270–277.CrossRefGoogle Scholar
  47. Jorgensen, H., and Olsson, L. 2006. Production of cellulases by Penicillium brasilianum IBT 20888 – effect of substrate on hydrolytic performance. Enzyme Microb. Technol. 38:381–390.CrossRefGoogle Scholar
  48. Jorgensen, H., Kristensen, J. B., and Felby, C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Bioref. 1:119–134.CrossRefGoogle Scholar
  49. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G., and Schols, H. A. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98:2034–2042.CrossRefPubMedGoogle Scholar
  50. Kirk, T. K., and Cullen D. 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Environmentally friendly technologies for the pulp and paper industry, ed R.A. Young, M. Akhtar, pp. 273–308, New York: Wiley.Google Scholar
  51. Kristensen, J. B., Thygesen, L. G., Felby, C., Jorgensen, H., and Elder, T. 2008. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels 1:1–9.CrossRefGoogle Scholar
  52. Kuhad, R. C., Singh, A., and Eriksson, K. E. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57:45–125.PubMedGoogle Scholar
  53. Lee, J. M., and Wolf, J. H. 1988. Continuous attrition bioreactor with enzyme recycling for the bioconversion of cellulose. Appl. Biochem. Biotechnol. 18:203–215.CrossRefGoogle Scholar
  54. Lee, D., Yu, A. H. C., and Saddler, J. N. 1995. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosics. Biotechnol. Bioeng. 45:328–336.CrossRefPubMedGoogle Scholar
  55. Lee, S. H., Doherty, T. V., Linhardt, R. J., and Dordick, J. S. 2009. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102:1368–1376.CrossRefPubMedGoogle Scholar
  56. Li, J., Henriksson, G., and Gellerstedt, G. 2007. Lignin depolymerization-repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98:3061–3068.CrossRefPubMedGoogle Scholar
  57. Limon, M. C., Margolles-Clarck, E., Benitez, T., and Pentilla, M. 2001. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol. Lett. 198:57–63.CrossRefPubMedGoogle Scholar
  58. Lloyd, T. A., and Wyman, C. E. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96:1967–1977.CrossRefPubMedGoogle Scholar
  59. Lu, Y. P., Yang, B., Gregg, D., Saddler, J. N., and Mansfield, S. D. 2002. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol. 98:641–654.CrossRefPubMedGoogle Scholar
  60. Machuca, A., and Ferraz, A. 2001. Hydrolytic and oxidative enzymes produced by white and brown-rot fungi during Eucalyptus grandis decay in solid state medium. Enzyme Microb. Technol. 29:386–391.CrossRefGoogle Scholar
  61. Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., and Ramos, L. P. 2008. Comparison between Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against cellulosic substrates. Bioresour. Technol. 99:1417–1424.CrossRefPubMedGoogle Scholar
  62. Matthews, J. F., Skopec, C. E., Mason, P. E., Zuccato, P., Torget, R. W., and Sugiyama, J. 2006. Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr. Res. 341:138–152.CrossRefPubMedGoogle Scholar
  63. Mohagheghi, A., Tucker, M., Grohmann, K., and Wyman, C. 1992. High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Appl. Biochem. Biotechnol. 33:67–81.CrossRefGoogle Scholar
  64. Mooney, C. A., Mansfield, S. D., Touhy, M. G., and Saddler, J. N. 1998. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwood. Bioresour. Technol. 64:113–119.CrossRefGoogle Scholar
  65. Mooney, C. A., Mansfield, S. D., Beatson, R. P., and Saddler, J. N. 1999. The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enzyme Microb. Technol. 25:644–650.CrossRefGoogle Scholar
  66. Mosier, N. S., Hall, P., Ladisch, C. M., and Ladisch, M. R. 1999. Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. Adv. Biochem. Eng/Biotechnol. 65:23–40.CrossRefGoogle Scholar
  67. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., and Holtzapple, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:673–686.CrossRefPubMedGoogle Scholar
  68. Nguyen, D., Zhang, X., Jiang, Z.-H., Audet, A., Paice, M. G., Renaud, S., and Tsang, A. 2008. Bleaching of kraft pulp by a commercial lipase: accessory enzymes degrade hexenuronic acids. Enzyme Microb. Technol. 43:130–136.CrossRefGoogle Scholar
  69. Oghren, K., Bura, R., Saddler, J., and Zacchi, G. 2007. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98:2503–2510.CrossRefGoogle Scholar
  70. Oliva, J. M., Negro, M. J., Sáez, F., Ballesteros, I., Manzanares, P., González, A., and Ballesteros, M. 2006. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochem. 41:1223–1228.CrossRefGoogle Scholar
  71. Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. 2004. Adsorption of Trichoderma reesei CBHI e EGII and their catalytic domains on steam pretreated softwood and isolated lignin. J. Biotechnol. 107:65–72.CrossRefPubMedGoogle Scholar
  72. Panagiotou, G., and Olsson, L. 2007. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 96:250–258.CrossRefPubMedGoogle Scholar
  73. Pandey, A., Soccol, C. R., Nigam, P., and Soccol, V. T. 2000. Biotechnological potential of agro-industrial residues: sugarcane bagasse. Bioresour. Technol. 74:69–80.CrossRefGoogle Scholar
  74. Park, J. W., Park, K., Song, H., and Shin, H. 2002. Saccharification and adsorption characteristics of modified cellulases with hydrophilic/hydrophobic copolymers J. Biotechnol. 93:203–208.CrossRefPubMedGoogle Scholar
  75. Ramos, L. P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 26:863–871.Google Scholar
  76. Ramos, L. P., Breuil, C., and Saddler, J. N. 1992. Comparison of steam pretreatment of eucalyptus, aspen and spruce wood chips and their enzymatic hydrolysis. Appl. Biochem. Biotechnol. 34/35:37–47.CrossRefGoogle Scholar
  77. Ramos, L. P., Breuil, C., and Saddler, J. N. 1993. The use of enzyme recycling and the influence of sugar accumulation on the cellulose hydrolysis by Trichoderma cellulases. Enzyme Microb. Technol. 15:19–25.CrossRefGoogle Scholar
  78. Rudolf, A., Alkasrawi, M., Zacchi, G., and Liden, G. 2005. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb. Technol. 37:195–204.CrossRefGoogle Scholar
  79. Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., and Nyyssönen, E. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269:4202–4211.CrossRefPubMedGoogle Scholar
  80. Sánchez, O. J., and Cardona, C. A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99:5270–5295.CrossRefPubMedGoogle Scholar
  81. Sanjuán, R., Anzaldo, J., Vargas, J., Turbado, J., and Patt, R. 2001. Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz. Roh. Werkst. 59:447–450.CrossRefGoogle Scholar
  82. Schell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D. 1991. A technical and economic analysis of acid-catalyzed steam explosion and dilute sulfuric acid pretreatments using wheat straw or aspen wood chips. Appl. Biochem. Biotechnol. 28/29:87–97.CrossRefGoogle Scholar
  83. Schell, D. J., Riley, C. J., Dowe, N., Farmer, J., Ibsen, K. N., and Ruth, M. F. 2004. A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour. Technol. 91:179–188.CrossRefPubMedGoogle Scholar
  84. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., and Osborne, J. 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98:3000–3011.CrossRefPubMedGoogle Scholar
  85. Singh, A., Kumar, P. K. R., and Schugerl, K. 1991. Adsorption and reuse of cellulases during saccharification of cellulosic materials. J. Biotechnol. 19:205–212.CrossRefGoogle Scholar
  86. Sun, Y., and Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83:1–11.CrossRefPubMedGoogle Scholar
  87. Tolan, J. S., and Foody, B. 1999. Cellulases from submerged fermentation. Adv. Biochem. Eng. Biotechnol. 65:41–67.Google Scholar
  88. Varga, E., Klinke, H. B., Reczey, K., and Thomsen, A. B. 2004. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. Bioeng. 88:567–574.CrossRefPubMedGoogle Scholar
  89. Walker, L. P., and Wilson, D. B. 1991. Enzymatic hydrolysis of cellulose: an overview. Bioresour. Technol. 36:3–14.CrossRefGoogle Scholar
  90. Wang, W., and Gao, P. J. 2003. Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose. J. Biotechnol. 101:119–130.CrossRefPubMedGoogle Scholar
  91. Wang, L. S., Liu, J., Zhang, Y. Z., Zhao, Y., and Gao, P. J. 2003. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysis. J. Mol. Catal. B 24/25:27–38.CrossRefGoogle Scholar
  92. Willfor, S., Sundberg, A., Hemming, J., and Holmbom, B. 2005a. Polysaccharides in some industrially important softwood species. Wood Sci. Technol. 39:245–258.CrossRefGoogle Scholar
  93. Willfor, S., Sundberg, A., Pranovich, A., and Holmbom, B. 2005b. Polysaccharides in some industrially important hardwood species. Wood Sci. Technol. 39:601–617.CrossRefGoogle Scholar
  94. Wingren, A., Galbe, M., and Zacchi, G. 2003. Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog. 19:1109–1117.CrossRefPubMedGoogle Scholar
  95. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., and Lee, Y. Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96:1959–1966.CrossRefPubMedGoogle Scholar
  96. Yang, B., and Wyman, C. E. 2004. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86:88–95.CrossRefPubMedGoogle Scholar
  97. Yang, B., and Wyman, C. 2006. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 94:611–617.CrossRefPubMedGoogle Scholar
  98. Yang, B., Boussaid, A., Mansfield, S. D., Gregg, D. J., and Saddler, J. N. 2002. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol. Bioeng. 77:678–684.CrossRefPubMedGoogle Scholar
  99. Yu, X. B., Hyun, S. Y., and Koo, Y. M. 1999. Cellulase production in fed-batch culture by Trichoderma reesei Rut C30. J. Microbiol. Biotechnol. 9:44–49.Google Scholar
  100. Zhang, Y. H. P., and Lynd, L. R. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed systems. Biotechnol. Bioeng. 88:797–824.CrossRefPubMedGoogle Scholar
  101. Zhang, Y. H. P., Himmel, M. E., and Mielenz, J. R. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24:452–481.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Adriane M. F. Milagres
    • 1
  • Walter Carvalho
  • Andre Ferraz
  1. 1.Department of Biotechnology, Escola de Engenharia de LorenaUniversity of São Paulo – USP LorenaLorenaBrazil

Personalised recommendations