Biomass Gasification for Ethanol Production

  • Luiz A. H. Nogueira
  • Joaquim E. A. Seabra
  • Isaías C. Macedo


For a sustainable future, it is essential for mankind to access the largely untapped solar resource by innovative bioenergy routes, an important way to overcome fossil fuel dependence and mitigate related environmental impacts. In this framework, as a good example of the potential to be exploited, among the several biomasses under scrutiny to be used for energy supply, sugarcane appears as one with the most interest and potential, with estimates that about 142 million hectares currently are available for such culture, taking into consideration rain feed areas in tropical countries and without significant impact on food production and the environment (Fischer et al.2008).


Ethanol Production Gasification Technology Biomass Gasification Liquid Fuel Production Fossil Fuel Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bridgewater, A. V. 1995. The technical and economic feasibility of biomass gasification for power generation. Fuel 14(5):631–653.CrossRefGoogle Scholar
  2. Cardona, C. A., and Sanchez, O. J. 2007. Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology 98:2415–2457.CrossRefPubMedGoogle Scholar
  3. Coda, B., Cieplik, M. K., Wild, P. J., and Kiel, J. K. A. 2007. Slagging behavior of wood ash under entrained-flow gasification conditions. Energy Fuels 21(6):3644–3652.CrossRefGoogle Scholar
  4. Cotter, J. L., Chinn, M. S., and Grunden, A. M. 2009. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess and Biosystems Engineering 32:369–380.CrossRefPubMedGoogle Scholar
  5. Datar, R. P., Shenkman, R. M., Cateni, B. G., Huhnke, R. L., and Lewis, R. S. 2004. Fermentation of biomass-generated producer gas to ethanol. Biotechnology and Bioengineering 86(5):587–594.CrossRefPubMedGoogle Scholar
  6. De Kam, M. J., Morey, R. V., and Tiffany, D. G. 2009. Biomass integrated gasification combined cycle for heat and power at ethanol plants. Energy Conversion and Management 50(7):1682–1690.CrossRefGoogle Scholar
  7. Dermibas, A. 2009. Biofuels: Securing the Planet’s Future Energy Needs. London: Springer, 255–256.Google Scholar
  8. Fischer, G., Teixeira, E., Hizsnyik, E. V., and Velthuizen, H. 2008. Land use dynamics and sugarcane production. In Zuurbier, P. and Vooren, J. (editors). Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment. Wagenigen: Wagenigen Academic, 29–62.Google Scholar
  9. Goldemberg, J., Coelho, S. T., Nastari, P. M., and Lucon, O. 2004. Ethanol learning curve: the Brazilian experience. Biomass and Bioenergy 26(3):301–304.CrossRefGoogle Scholar
  10. Grabowski, P., Biomass Termochemical Conversion: OBP efforts, Ofice of Biomass Program, Wshington D.C., 2004CrossRefGoogle Scholar
  11. Hamelinck, C. N. 2004. Outlook for advanced biofuels. Ultrecht: Universiteit Utrecht, 232p. PhD Thesis.Google Scholar
  12. Hamelinck, C. N., and Faaij, A. P. C. 2001. Future prospects for production of methanol and hydrogen from biomass. Utrecht: Copernicus Institute, Utrecht University. Report NWS-E-2001-49.Google Scholar
  13. Hamelinck, C. N., Faaij, A. P. C., and Uil, H. 2003. Production of FT transportation fuels from biomass: process analysis and optimisation, and development potential. Utrecht: Copernicus Institute, Utrecht University. Report NWS-E-2003-08.Google Scholar
  14. Hamelinck, C. N., Hooijdonk, G., and Faaij, A. P. C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short, middle and long-term. Biomass and Bioenergy 28(4):384–410.CrossRefGoogle Scholar
  15. Hassuani, S. J., Leal, M. R. L. V., and Macedo, I. C. 2005. Biomass power generation: sugar cane bagasse and trash. PNUD-CTC. Série Caminhos para Sustentabilidade. Piracicaba.Google Scholar
  16. He, J., and Zhang, W. 2008. Research on ethanol synthesis of ethanol. Journal of Zhejiang University Science A 9(5):714–719CrossRefGoogle Scholar
  17. Higman, C., and Van der Burgt, M. 2003.Gasification. Burlington: Elsevier Science.Google Scholar
  18. IEL/SEBRAE. 2005. O Novo Ciclo da Cana: Estudo sobre a Competitividade do Sistema Agroindustrial da cana-de-açúcar e Prospecção de Novos Empreendimentos. Brasília: Instituto Euvaldo Lodi, Serviço Brasileiro de Apoio às Micro e Pequenas Empresas.Google Scholar
  19. Klasson, K. T., Ackerson, M. D., Clausen, E. C. and Gaddy, J. L. 1992. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microbiology Technology 14:602–608.CrossRefGoogle Scholar
  20. Larson, E., Jin, H., Williams, R., and Celik, F. 2005. Gasification-based liquid fuels and electricity from biomass with carbon capture and storage. Proceedings of the Fourth Annual Conference on Carbon Capture & Sequestration, Alexandria.Google Scholar
  21. Larson, E. D., Jin, H., and Celik, F. E. 2009. Large-scale gasification-based coproduction of fuels and electricity from switchgrass. Biofuels, Bioproducts & Biorefining 3:174–194.CrossRefGoogle Scholar
  22. Macedo, I. C. 2005. Biomass as a source of energy. Report for the InterAcademy Council Study on Transitions to Sustainable Energy Systems, Amsterdam.Google Scholar
  23. Macedo, I. C., Leal, R. L. V., Walter, A. C. S., and Seabra, J. E. A. 2006. Geração de energia elétrica e de gás de síntese a partir de gaseificação de biomassa. FUNCAMP/UNICAMP-NIPE/LH2 e PETROBRÁS/CENPES-FINEP. Campinas.Google Scholar
  24. Morrison, C. E. 2004, Production of Ethanol from the Fermentation of Synthesis Gas. Mississippi State University, Mississippi, Master of Science Thesis in Chemical Engineering.Google Scholar
  25. Nogueira, L. A. H., and Lora, E. E. S. 2004, Dendroenergia: Fundamentos e Aplicações, 2nd Edition. Interciencia. Rio de Janeiro.Google Scholar
  26. Phillips, S., Aden, A., Jechura, J., Dayton, D., and Eggeman, T. 2007. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. NREL Technical Report TP-510-41168. Golden: National Renewable Energy Laboratory.Google Scholar
  27. Piccolo, C., and Bezzo, F. 2009. A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and Bioenergy 33(3):478–491.CrossRefGoogle Scholar
  28. Prins, M. J., Ptasinski, K. J., and Janssen F. J. J. G. 2007. From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy 32:1248–1259.CrossRefGoogle Scholar
  29. Rajagopalaan, S., Datar, R. P., Lewis, R. S. 2002. Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass and Bioenergy 23:487–793.CrossRefGoogle Scholar
  30. Rajvanshi, A. K. 1986. Biomass Gasification. In D. Yogi Goswami, D. Y. (editor) Alternative Energy in Agriculture. Vol. II, Boca Raton: CRC, 83–102.Google Scholar
  31. Rauch, R. 2002. Biomass gasification to produce synthesis gas for fuel cells, liquid fuels and chemicals. Technology Brief. IEA Bioenergy Agreement – Task 33: Thermal Gasification of Biomass, Paris.Google Scholar
  32. Seabra, J. E. A. 2008. Análise de opções tecnológicas para uso integral da biomassa no setor de cana-de-açúcar e suas implicações. Universidade Estadual de Campinas, Campinas, Doctoral Thesis.Google Scholar
  33. Seabra, J. E. A., and Chum, H. 2009. Comparison of options for advanced ethanol production in Brazilian sugarcane biorefineries. NREL Internal Report.Google Scholar
  34. Spath, P. L., Dayton, D. 2003. Preliminary Screening - Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas. NREL Report TP-510-34929. Golden: National Renewable Energy Laboratory.Google Scholar
  35. Subramani, V., and Gangwal, S.K. 2008. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22(2):814–839.CrossRefGoogle Scholar
  36. Turare, C. 1997. Biomass Gasification: Technology and Utilisation. Flensburg: ARTES Institute, University of Flensburg.Google Scholar
  37. US DOE 2007. DOE Selects Six Cellulosic Ethanol Plants for Up to $385 Million in Federal Funding. U.S. Department of Energy. Available at, consulted in June 2009
  38. Van der Laan, G. P. 1999, Kinetics, selectivity and scale up of the Fischer-Tropsch Synthesis. Groningen: University of Groningen, Doctoral Thesis.Google Scholar
  39. Younesi, H., Najafpour, G., and Mohamed, A. R. 2005, Ethanol and acetate production from synthesis gas via fermentation process using anaerobic bacterium, Clostridium ljungdahlii. Biochemical Engineering Journal 27:110–119.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luiz A. H. Nogueira
    • 1
  • Joaquim E. A. Seabra
  • Isaías C. Macedo
  1. 1.Instituto de Recussos NaturaisUniversidade Federal de ItajubáItajubáBrazil

Personalised recommendations