Advertisement

Cell Wall Genomics in the Recombinogenic Moss Physcomitrella patens

  • Michael A. Lawton
  • Hemalatha Saidasan
Chapter

Abstract

The growing interest in cellulosic ethanol as a sustainable biofuel has focused attention on modifying plants and plant cell walls in particular so that they can serve as a more effective feedstock for ethanol production. A substantial effort is now underway to develop methods that can increase the efficiency of cellulose breakdown by chemical or enzymatic pretreatments in order to generate fermentable sugars. This approach is leading to novel technologies for preprocessing and cell wall digestion, and the identification, selection, and production of enzymes with improved properties for industrial application (for example, heat stable hydrolytic enzymes).

Keywords

Cell Wall Plant Cell Wall Cell Wall Component Cellulose Microfibril Cellulose Synthases 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alonso, J. M., A. N. Stepanova, et al. (2003). “Genome-wide insertional mutagenesis of Arabidopsis thaliana.” Science 301(5633): 653–657.CrossRefPubMedGoogle Scholar
  2. Anderson, C.T., Carroll, A. et al. (2009). “Real-Time Imaging of Cellulose Reorientation during Cell Wall Expansion in Arabidopsis Roots.” Plant Physiol. 152: 787–796.Google Scholar
  3. Bacic, A. (2006). “Breaking an impasse in pectin biosynthesis.” Proc Natl Acad Sci USA 103(15): 5639–5640.CrossRefPubMedGoogle Scholar
  4. Bennetzen, J. L. and M. Freeling (1997). “The unified grass genome: synergy in synteny.” Genome Res 7(4): 301–306.PubMedGoogle Scholar
  5. Burch-Smith, T. M., J. C. Anderson, et al. (2004). “Applications and advantages of virus-induced gene silencing for gene function studies in plants.” Plant J 39(5): 734–746.CrossRefPubMedGoogle Scholar
  6. Carafa, A., J. G. Duckett, et al. (2005). “Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants.” New Phytol 168(1): 231–240.CrossRefPubMedGoogle Scholar
  7. Carey, R. E. and D. J. Cosgrove (2007). “Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins.” Ann Bot 99(6): 1131–1141.CrossRefPubMedGoogle Scholar
  8. Cavalier, D. M., O. Lerouxel, et al. (2008). “Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component.” Plant Cell 20(6): 1519–1537.CrossRefPubMedGoogle Scholar
  9. Clarke, L. J. and S. A. Robinson (2008). “Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus.” New Phytol 179(3): 776–783.CrossRefPubMedGoogle Scholar
  10. Cove, D. (2000). “The moss, Physcomitrella patens.” J Plant Growth Regul 19: 275–283.CrossRefGoogle Scholar
  11. Cove, D., M. Bezanilla, et al. (2006). “Mosses as model systems for the study of metabolism and development.” Annu Rev Plant Biol 57(1): 497–520.CrossRefPubMedGoogle Scholar
  12. Durai, S., M. Mani, et al. (2005). “Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.” Nucl Acids Res 33(18): 5978–5990.CrossRefPubMedGoogle Scholar
  13. Gibeaut, D., M. Pauly, et al. (2004). “Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles.” Planta 221: 729–738.CrossRefGoogle Scholar
  14. Harrison, C. J., A. H. K. Roeder, et al. (2009). “Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens.” Curr Biol 19(6): 461–471.CrossRefPubMedGoogle Scholar
  15. Hébant, C. (1977). The Conducting Tissues of Bryophytes. J. Cramer. Verlag, FL9490, Vaduz: 157.Google Scholar
  16. Hoffman, M., Z. Jia, et al. (2005). “Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae.” Carbohydr Res 340(11): 1826–1840.CrossRefPubMedGoogle Scholar
  17. Kenrick, P. (2000). “The relationships of vascular plants.” Philos Trans R Soc Lond B Biol Sci 355(1398): 847–855.CrossRefPubMedGoogle Scholar
  18. Koprivova, A., C. Stemmer, et al. (2004). “Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans.” Plant Biotechnol J 2(6): 517–523.CrossRefPubMedGoogle Scholar
  19. Lee, K. J. D., C. D. Knight, et al. (2005a). “Physcomitrella patens: a moss system for the study of plant cell walls.” Plant Biosyst 139(1): 16–19.Google Scholar
  20. Lee, K. J. D., Y. Sakata, et al. (2005b). “Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens.” Plant Cell 17(11): 3051–3065.CrossRefPubMedGoogle Scholar
  21. Lehtonen, M. T., M. Akita, et al. (2009). “Quickly-released peroxidase of moss in defense against fungal invaders.” New Phytol 183(2): 432–443.CrossRefPubMedGoogle Scholar
  22. Li, Y., C. P. Darley, et al. (2002). “Plant expansins are a complex multigene family with an ancient evolutionary origin.” Plant Physiol 128(3): 854–864.CrossRefPubMedGoogle Scholar
  23. Liepman, A. H., C. J. Nairn, et al. (2007). “Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.” Plant Physiol 143(4): 1881–1893.CrossRefPubMedGoogle Scholar
  24. Matsunaga, T., T. Ishii, et al. (2004). “Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants.” Plant Physiol 134(1): 339–351.CrossRefPubMedGoogle Scholar
  25. Mega, T. (2007). “Plant-type N-glycans containing fucose and xylose in bryophyta (mosses) and tracheophyta (ferns).” Biosci Biotechnol Biochem 71(12): 2893–2904.CrossRefPubMedGoogle Scholar
  26. Moller, I., S. Marcus, et al. (2008). “High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles.” Glycoconj J 25(1): 37–48.CrossRefPubMedGoogle Scholar
  27. Moller, I., I. Sørensen, et al. (2007). “High-throughput mapping of cell-wall polymers within and between plants using novel microarrays.” Plant J 50(6): 1118–1128.CrossRefPubMedGoogle Scholar
  28. Nakata, M., Y. Watanabe, et al. (2004). “Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades.” Plant Mol Biol 56(3): 381–395.CrossRefPubMedGoogle Scholar
  29. Papini-Terzi,F.S., Rocha, F.R. et al. (2009).“ Sugarcane genes associated with sucrose content.” BMC Genomics. 2009 Mar 21;10: 120.Google Scholar
  30. Paredez, A. R., S. Persson, et al. (2008). “Genetic evidence that cellulose synthase activity influences microtubule cortical array organization.” Plant Physiol 147(4): 1723–1734.CrossRefPubMedGoogle Scholar
  31. Parinov, S. and V. Sundaresan (2000). “Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project.” Curr Opin Biotechnol 11(2): 157–161.CrossRefPubMedGoogle Scholar
  32. Pena, M. J., A. G. Darvill, et al. (2008). “Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.” Glycobiology 18(11): 891–904.CrossRefPubMedGoogle Scholar
  33. Perroud, P.-F. and R. S. Quatrano (2008). “BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology.” Plant Cell 20(2): 411–422.CrossRefPubMedGoogle Scholar
  34. Petsch, K.A., Ma, C. et al. (2010). “Targeted forward mutagenesis by transitive RNAi.” Plant J. 61(5): 873–882.Google Scholar
  35. Popper, Z. A. and S. C. Fry (2003). “Primary cell wall composition of bryophytes and charophytes.” Ann Bot 91(1): 1–12.CrossRefPubMedGoogle Scholar
  36. Pressel, S., R. Ligrone, et al. (2008). “Cellular differentiation in moss protonemata: a morphological and experimental study.” Ann Bot 102(2): 227–245.CrossRefPubMedGoogle Scholar
  37. Rensing, S.A., Lang, D. et al., (2008) “The Physcomitrella genome reveals insights into the conquest of land by plants.” Science 319: 64–69.Google Scholar
  38. Rensing, S., Y. S. Rombauts, et al. (2002). “Moss transcriptome and beyond.” Trends Plant Sci 7: 535–538.CrossRefPubMedGoogle Scholar
  39. Reski, R. (2003). Physcomitrella patens as a novel tool for plant functional genomics. Plant biotechnology 2002 and beyond. I. K. Vasil, Kluwer Acad. Publ.: 205–209.Google Scholar
  40. Roberts, A. and J. Bushoven (2007). “The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens.” Plant Mol Biol 63(2): 207–219.CrossRefPubMedGoogle Scholar
  41. Sarkar, P., E. Bosneaga, et al. (2009). “Plant cell walls throughout evolution: towards a molecular understanding of their design.” J Exp Biol 60(13): 3615–3635.Google Scholar
  42. Schaefer, D. and J. Zryd (1997). “Efficient gene targeting in the moss Physcomitrella patens.” Plant J 11: 1195–1206.CrossRefPubMedGoogle Scholar
  43. Schaefer, D. G. and J.-P. Zrÿd (2001). “The moss Physcomitrella patens, now and then.” Plant Physiol 127(4): 1430–1438.CrossRefPubMedGoogle Scholar
  44. Schipper, O., D. Schaefer, et al. (2002). “Expansins in the bryophyte Physcomitrella patens.” Plant Mol Biol 50(4): 789–802.CrossRefPubMedGoogle Scholar
  45. Schuette, S., A. J. Wood, et al. (2009). “Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family.” Ann Bot 103(5): 749–756.CrossRefPubMedGoogle Scholar
  46. Sørensen, I., H. L. Pedersen, et al. (2009). “An array of possibilities for pectin.” Carbohydr Res 344(14): 1872–1878.CrossRefPubMedGoogle Scholar
  47. Sterling, J. D., M. A. Atmodjo, et al. (2006). “Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase.” Proc Natl Acad Sci USA 103(13): 5236–5241.CrossRefPubMedGoogle Scholar
  48. Van Sandt, V. S. T., H. Stieperaere, et al. (2007). “XET activity is found near sites of growth and cell elongation in bryophytes and some green algae: new insights into the evolution of primary cell wall elongation.” Ann Bot 99(1): 39–51.CrossRefPubMedGoogle Scholar
  49. Vidali, L., R. C. Augustine, et al. (2009). “Rapid screening for temperature-sensitive alleles in plants.” Plant Physiol 151(2): 506–514.CrossRefPubMedGoogle Scholar
  50. Viëtor R, Loutelier-Bourhis C, et al. (2003). “Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants.” Planta 218: 269–275.CrossRefPubMedGoogle Scholar
  51. Walbot, V. (2000). “Saturation mutagenesis using maize transposons.” Curr Opin Plant Biol 3(2): 103–107.CrossRefPubMedGoogle Scholar
  52. Wang, X. Q., P. F. Yang, et al. (2009). “Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy.” Plant Physiol 149(4): 1739–1750.CrossRefPubMedGoogle Scholar
  53. Weise, A., F. Altmann, et al. (2007). “High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Delta-fuc-t Delta-xyl-t mutant.” Plant Biotechnol J 5(3): 389–401.CrossRefPubMedGoogle Scholar
  54. Wyatt, H. D. M., N. W. Ashton, et al. (2008). “Cell wall architecture of Physcomitrella patens is revealed by atomic force microscopy.” Botany 86(4): 385–397.CrossRefGoogle Scholar
  55. Yin, Y., J. Huang, et al. (2009). “The cellulose synthase superfamily in fully sequenced plants and algae.” BMC Plant Biol 9(1): 99.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Agricultural and Environmental BiotechnologyRutgers UniversityNew BrunswickUSA

Personalised recommendations