Skip to main content

Cell Wall Genomics in the Recombinogenic Moss Physcomitrella patens

  • Chapter
  • First Online:
Routes to Cellulosic Ethanol

Abstract

The growing interest in cellulosic ethanol as a sustainable biofuel has focused attention on modifying plants and plant cell walls in particular so that they can serve as a more effective feedstock for ethanol production. A substantial effort is now underway to develop methods that can increase the efficiency of cellulose breakdown by chemical or enzymatic pretreatments in order to generate fermentable sugars. This approach is leading to novel technologies for preprocessing and cell wall digestion, and the identification, selection, and production of enzymes with improved properties for industrial application (for example, heat stable hydrolytic enzymes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, J. M., A. N. Stepanova, et al. (2003). “Genome-wide insertional mutagenesis of Arabidopsis thaliana.” Science 301(5633): 653–657.

    Article  PubMed  Google Scholar 

  • Anderson, C.T., Carroll, A. et al. (2009). “Real-Time Imaging of Cellulose Reorientation during Cell Wall Expansion in Arabidopsis Roots.” Plant Physiol. 152: 787–796.

    Google Scholar 

  • Bacic, A. (2006). “Breaking an impasse in pectin biosynthesis.” Proc Natl Acad Sci USA 103(15): 5639–5640.

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen, J. L. and M. Freeling (1997). “The unified grass genome: synergy in synteny.” Genome Res 7(4): 301–306.

    CAS  PubMed  Google Scholar 

  • Burch-Smith, T. M., J. C. Anderson, et al. (2004). “Applications and advantages of virus-induced gene silencing for gene function studies in plants.” Plant J 39(5): 734–746.

    Article  CAS  PubMed  Google Scholar 

  • Carafa, A., J. G. Duckett, et al. (2005). “Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants.” New Phytol 168(1): 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Carey, R. E. and D. J. Cosgrove (2007). “Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins.” Ann Bot 99(6): 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier, D. M., O. Lerouxel, et al. (2008). “Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component.” Plant Cell 20(6): 1519–1537.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, L. J. and S. A. Robinson (2008). “Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus.” New Phytol 179(3): 776–783.

    Article  PubMed  Google Scholar 

  • Cove, D. (2000). “The moss, Physcomitrella patens.” J Plant Growth Regul 19: 275–283.

    Article  CAS  Google Scholar 

  • Cove, D., M. Bezanilla, et al. (2006). “Mosses as model systems for the study of metabolism and development.” Annu Rev Plant Biol 57(1): 497–520.

    Article  CAS  PubMed  Google Scholar 

  • Durai, S., M. Mani, et al. (2005). “Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.” Nucl Acids Res 33(18): 5978–5990.

    Article  CAS  PubMed  Google Scholar 

  • Gibeaut, D., M. Pauly, et al. (2004). “Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles.” Planta 221: 729–738.

    Article  Google Scholar 

  • Harrison, C. J., A. H. K. Roeder, et al. (2009). “Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens.” Curr Biol 19(6): 461–471.

    Article  CAS  PubMed  Google Scholar 

  • Hébant, C. (1977). The Conducting Tissues of Bryophytes. J. Cramer. Verlag, FL9490, Vaduz: 157.

    Google Scholar 

  • Hoffman, M., Z. Jia, et al. (2005). “Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae.” Carbohydr Res 340(11): 1826–1840.

    Article  CAS  PubMed  Google Scholar 

  • Kenrick, P. (2000). “The relationships of vascular plants.” Philos Trans R Soc Lond B Biol Sci 355(1398): 847–855.

    Article  CAS  PubMed  Google Scholar 

  • Koprivova, A., C. Stemmer, et al. (2004). “Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans.” Plant Biotechnol J 2(6): 517–523.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. J. D., C. D. Knight, et al. (2005a). “Physcomitrella patens: a moss system for the study of plant cell walls.” Plant Biosyst 139(1): 16–19.

    Google Scholar 

  • Lee, K. J. D., Y. Sakata, et al. (2005b). “Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens.” Plant Cell 17(11): 3051–3065.

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen, M. T., M. Akita, et al. (2009). “Quickly-released peroxidase of moss in defense against fungal invaders.” New Phytol 183(2): 432–443.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., C. P. Darley, et al. (2002). “Plant expansins are a complex multigene family with an ancient evolutionary origin.” Plant Physiol 128(3): 854–864.

    Article  CAS  PubMed  Google Scholar 

  • Liepman, A. H., C. J. Nairn, et al. (2007). “Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.” Plant Physiol 143(4): 1881–1893.

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga, T., T. Ishii, et al. (2004). “Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants.” Plant Physiol 134(1): 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Mega, T. (2007). “Plant-type N-glycans containing fucose and xylose in bryophyta (mosses) and tracheophyta (ferns).” Biosci Biotechnol Biochem 71(12): 2893–2904.

    Article  CAS  PubMed  Google Scholar 

  • Moller, I., S. Marcus, et al. (2008). “High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles.” Glycoconj J 25(1): 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Moller, I., I. Sørensen, et al. (2007). “High-throughput mapping of cell-wall polymers within and between plants using novel microarrays.” Plant J 50(6): 1118–1128.

    Article  CAS  PubMed  Google Scholar 

  • Nakata, M., Y. Watanabe, et al. (2004). “Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades.” Plant Mol Biol 56(3): 381–395.

    Article  CAS  PubMed  Google Scholar 

  • Papini-Terzi,F.S., Rocha, F.R. et al. (2009).“ Sugarcane genes associated with sucrose content.” BMC Genomics. 2009 Mar 21;10: 120.

    Google Scholar 

  • Paredez, A. R., S. Persson, et al. (2008). “Genetic evidence that cellulose synthase activity influences microtubule cortical array organization.” Plant Physiol 147(4): 1723–1734.

    Article  CAS  PubMed  Google Scholar 

  • Parinov, S. and V. Sundaresan (2000). “Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project.” Curr Opin Biotechnol 11(2): 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Pena, M. J., A. G. Darvill, et al. (2008). “Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.” Glycobiology 18(11): 891–904.

    Article  CAS  PubMed  Google Scholar 

  • Perroud, P.-F. and R. S. Quatrano (2008). “BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology.” Plant Cell 20(2): 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Petsch, K.A., Ma, C. et al. (2010). “Targeted forward mutagenesis by transitive RNAi.” Plant J. 61(5): 873–882.

    Google Scholar 

  • Popper, Z. A. and S. C. Fry (2003). “Primary cell wall composition of bryophytes and charophytes.” Ann Bot 91(1): 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Pressel, S., R. Ligrone, et al. (2008). “Cellular differentiation in moss protonemata: a morphological and experimental study.” Ann Bot 102(2): 227–245.

    Article  PubMed  Google Scholar 

  • Rensing, S.A., Lang, D. et al., (2008) “The Physcomitrella genome reveals insights into the conquest of land by plants.” Science 319: 64–69.

    Google Scholar 

  • Rensing, S., Y. S. Rombauts, et al. (2002). “Moss transcriptome and beyond.” Trends Plant Sci 7: 535–538.

    Article  CAS  PubMed  Google Scholar 

  • Reski, R. (2003). Physcomitrella patens as a novel tool for plant functional genomics. Plant biotechnology 2002 and beyond. I. K. Vasil, Kluwer Acad. Publ.: 205–209.

    Google Scholar 

  • Roberts, A. and J. Bushoven (2007). “The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens.” Plant Mol Biol 63(2): 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, P., E. Bosneaga, et al. (2009). “Plant cell walls throughout evolution: towards a molecular understanding of their design.” J Exp Biol 60(13): 3615–3635.

    CAS  Google Scholar 

  • Schaefer, D. and J. Zryd (1997). “Efficient gene targeting in the moss Physcomitrella patens.” Plant J 11: 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer, D. G. and J.-P. Zrÿd (2001). “The moss Physcomitrella patens, now and then.” Plant Physiol 127(4): 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  • Schipper, O., D. Schaefer, et al. (2002). “Expansins in the bryophyte Physcomitrella patens.” Plant Mol Biol 50(4): 789–802.

    Article  CAS  PubMed  Google Scholar 

  • Schuette, S., A. J. Wood, et al. (2009). “Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family.” Ann Bot 103(5): 749–756.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen, I., H. L. Pedersen, et al. (2009). “An array of possibilities for pectin.” Carbohydr Res 344(14): 1872–1878.

    Article  PubMed  Google Scholar 

  • Sterling, J. D., M. A. Atmodjo, et al. (2006). “Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase.” Proc Natl Acad Sci USA 103(13): 5236–5241.

    Article  CAS  PubMed  Google Scholar 

  • Van Sandt, V. S. T., H. Stieperaere, et al. (2007). “XET activity is found near sites of growth and cell elongation in bryophytes and some green algae: new insights into the evolution of primary cell wall elongation.” Ann Bot 99(1): 39–51.

    Article  PubMed  Google Scholar 

  • Vidali, L., R. C. Augustine, et al. (2009). “Rapid screening for temperature-sensitive alleles in plants.” Plant Physiol 151(2): 506–514.

    Article  CAS  PubMed  Google Scholar 

  • Viëtor R, Loutelier-Bourhis C, et al. (2003). “Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants.” Planta 218: 269–275.

    Article  PubMed  Google Scholar 

  • Walbot, V. (2000). “Saturation mutagenesis using maize transposons.” Curr Opin Plant Biol 3(2): 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. Q., P. F. Yang, et al. (2009). “Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy.” Plant Physiol 149(4): 1739–1750.

    Article  CAS  PubMed  Google Scholar 

  • Weise, A., F. Altmann, et al. (2007). “High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Delta-fuc-t Delta-xyl-t mutant.” Plant Biotechnol J 5(3): 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, H. D. M., N. W. Ashton, et al. (2008). “Cell wall architecture of Physcomitrella patens is revealed by atomic force microscopy.” Botany 86(4): 385–397.

    Article  Google Scholar 

  • Yin, Y., J. Huang, et al. (2009). “The cellulose synthase superfamily in fully sequenced plants and algae.” BMC Plant Biol 9(1): 99.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Lawton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lawton, M.A., Saidasan, H. (2011). Cell Wall Genomics in the Recombinogenic Moss Physcomitrella patens . In: Buckeridge, M., Goldman, G. (eds) Routes to Cellulosic Ethanol. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92740-4_14

Download citation

Publish with us

Policies and ethics