Skip to main content

Sugarcane Breeding and Selection for more Efficient Biomass Conversion in Cellulosic Ethanol

  • Chapter
  • First Online:
Book cover Routes to Cellulosic Ethanol

Abstract

Breeding is the more appropriate way to improve productivity in sugarcane. Since the implantation of the “Proálcool” Program in Brazil, the sugarcane productivity in the last 30 years has increased in proportion of 761 kg/ha/year (1.5%). This productivity increment rate is similar to the values related in Brazil and world for other important economical crops. The constant ongoing rise of new cultivars has been considered the major factor contributing to this growth, although agronomic ­technologies have also been important contributions. Historical international examples of the success of this strategy have been the control of important diseases such as smut (Ustilago scitaminea), common rust (Puccinia melanocephala), Fiji disease (virus) sugarcane mosaic virus, leaf scald (Xanthomonas albilineans), red rot (Glomerella ­ucumanensis), as well as sugar content and, very importantly for Brazil, precocious sugar ­accumulation, that have expanded the harvesting period from 3 to 9 months in Brazil. Recently, a new disease named as orange rust (Puccinia kuehnii) became an important actual research target. Several important cultivars actually in the market are not resistant to this desease, but some of the RIDESA cultivars, such RB857515, the more cultivated, are resistant to the actual races of this pathogen. Breeding for disease resistance in Brazil has been successful for the majority of diseases, in order that it is not common to use fungicides in sugarcane crops[A2] Not sure what you are trying to say in this sentence.. This recent disease resistance traits means that the germplasm used in our breeding research has enough genetic variability to obtain genetic improvements, as well as fiber content and composition, which will be discussed later in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, K. L. 2007. Evolution of duplicate gene expression in polyploid and hybrid plants. J. Hered. 98(2):136–141.

    CAS  PubMed  Google Scholar 

  • Adams, K. L., Cronn, R., Percifield, R., and Wendel. J. F. 2003. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc. Natl. Acad. Sci. USA 100:4649–4654.

    CAS  PubMed  Google Scholar 

  • Alwala, S., Suman, A., Arro, J. A., Veremis, J. C., and Kimbeng, C. A. 2006. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci. 46:448–455.

    CAS  Google Scholar 

  • Amaya, A., Gomez, A. L., Buitrago, J. T., Moreno, C. A., and Cassalett, C. 2000. Characterization of lodging in sugarcane. In Australian Society of Sugarcane Technologists Conference, ed. D. M. Hogarth, pp. 321–327, Bundaberg.

    Google Scholar 

  • Anderson, W. F., and Akin, D. E. 2008. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J. Ind. Microbiol. Biotechnol. 35:355–366.

    CAS  PubMed  Google Scholar 

  • Arencibia, A., Vazquez, R. I., Prieto, D., Tellez, P., Carmona, E. R., Coego, A., Hernandez, L., DelaRiva, G. A., and SelmanHousein, G. 1997. Transgenic sugarcane plants resistant to stem borer attack. Mol. Breed. 3:247–255.

    Google Scholar 

  • Asnaghi, C., Paulet, F., Kaye, C., Grivet, L., Deu, M., Glaszmann, J. C., and D’Hont, A. 2000. Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor. Appl. Genet. 101:962–969.

    CAS  Google Scholar 

  • Autrey, L. J. C., and Chang, K. W. 2007. The multi-functional role of the cane sugar industry in Mauritius: Progress and prospects. In Brazilian congress in plant breeding. Alagoas: Federal University of Alagoas

    Google Scholar 

  • Barbosa, L. C. A., Maltha, C. R. A., Silva, V. L., and Colodette, J. L. 2008. Determinação da relação siringila/guaiacila da lignina em madeiras de eucalipto por pirólise acoplada à cromatografia gasosa e espectrometria de massas (pi-cg/em). Quim. Nova 31:2035–2041.

    CAS  Google Scholar 

  • Barbosa, M. H. P., de Resende, M. D. V., Peternelli, L. A., Bressiani, J. A., da Silveira, L. C. I., da Silva, F. L., and de Figueiredo, I. C. R. 2004. Use of REML/BLUP for the selection of sugarcane families specialized in biomass production. Crop Breed. Appl. Biotechnol. 4:218–226.

    Google Scholar 

  • Bastos, I. T., Barbosa, M. H. P., Cruz, C. D., Burnquist, W. L., Bressiani, J. A., and Silva, F. L. 2003. Análise dialélica em clones de cana-de-açúcar. Bragantia 62:199–206.

    Google Scholar 

  • Berding, N., Hogarth, M., and Cox, M. C. 2004. Plant improvement of sugarcane. In Sugarcane, ed G. James, pp. 216. Oxford: Blackwell.

    Google Scholar 

  • Berding, N., Hurney, A. P., Salter, B., and Bonnett, G. D. 2005. Agronomic impact of sucker development in sugarcane under different environmental conditions. Field Crop. Res. 92:203–217.

    Google Scholar 

  • Besse, P., McIntyre, C. L., and Berding, N. 1996. Ribosomal DNA variations in Erianthus, a wild sugarcane relative (Andropogoneae–Saccharinae). Theor. Appl. Genet. 92:733–743.

    CAS  Google Scholar 

  • Besse, P., McIntyre, C. L., and Berding, N. 1997. Characterization of Erianthus sect. Ripidium and Saccharum germplasm (Andropogoneae–Saccharinae) using RFLP markers. Euphytica 93:283–292.

    CAS  Google Scholar 

  • Biocom. 2007. Abengoa compra Dedini Agro por US$ 684 milhões. http://biocomb.com.br/?p=426

  • Bower, R., and Birch, R. G. 1992. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2:409–416.

    CAS  Google Scholar 

  • Braga, D. P. V., Arrigoni, E. D. B., Silva-Filho, M. C., and Ulian, E. C. 2003. Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J. New Seeds 5:209–222.

    Google Scholar 

  • Bressiani, J. A. 2001. Seleção sequencial em cana-de-açúcar PhD, 134p. Piracicaba: ESALQ-USP.

    Google Scholar 

  • Bressiani, J. A., Vencovsky, R., and Burnquist, W. L. 2002. Interação entre famílias de cana-de-açúcar e locais: efeito na resposta esperada com a seleção. Bragantia 61:1–10.

    Google Scholar 

  • Bressiani, J. A., Sordi, R. A., Braga Jr, R. L. C., and Burnquis, W. L. 2005. Selection and field test of high biomass producing cane. In Biomass power generation: sugar cane bagasse and trash, eds S. J. Hassuani, M. R. L. V. Leal, and I. C. Macedo, pp. 216. Piracicaba: PNUD-CTC.

    Google Scholar 

  • Bressiani, J. A., Burnquist, W. L., Fuzatto, S. R., Bonato, A. L. V., and Geraldi, I. O. 2001. Combining ability in eight selected clones of sugarcane (Saccharum sp.). Crop Breed. Appl. Biotechnol. 2:411–416.

    Google Scholar 

  • Buanafina, M. M. D. O., Langdon, T., Hauck, B., Dalton, S., and Morris, P. 2008. Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol. J. 6:264–280.

    CAS  PubMed  Google Scholar 

  • Bull, T. A., and Glasziou, K. T. 1975. Sugarcane. In Crop Physiology, ed. L. T. Evans. Cambridge: Cambridge University Press.

    Google Scholar 

  • Casagrande, A. A., and Vasconcelos, A. C. M. 2008. Fisiologia da Parte Aérea. In Cana-de-açúcar, eds L. L. Dinardo Miranda, A. C. M. Vasconcelos, and M. G. A. Landell, pp. 882. Campinas: Instituto Agronômico.

    Google Scholar 

  • Cesnik, R., and Miocque, J. 2004. Melhoramento da cana-de-açúcar. Brasília, DF: Embrapa Informação Tecnológica.

    Google Scholar 

  • Chang, V. S., and Holtzapple, M. T. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84:5–37.

    PubMed  Google Scholar 

  • Chen, F., and Dixon, R. A. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25:759–761.

    CAS  PubMed  Google Scholar 

  • Chen, L. M., Carpita, N. C., Reiter, W. D., Wilson, R. H., Jeffries, C., and McCann, M. C. 1998. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J. 16:385–392.

    CAS  PubMed  Google Scholar 

  • Chernoglazov, V. M., Ermolova, O. V., and Klyosov, A. A. 1988. Adsorption of high-purity endo-1,4-beta-glucanases from trichoderma-reesei on components of lignocellulosic materials – cellulose, lignin, and xylan. Enzyme Microbiol. Technol. 10:503–507.

    CAS  Google Scholar 

  • Converse, A. O. 1993. Substrate factors limiting enzymatic hydrolysis. In Bioconversion of forest and agricultural plant residues, ed. J. N. Saddler, pp. 93–105. Wallingford: CAB International.

    Google Scholar 

  • Cox, M. C., McRae, T. A., Bull, J. K., and Hogarth, D. M. 1996. Family selection improves the efficiency and effectiveness of as sugarcane improvement program. In Research towards Efficient and Sustainable Production, eds J. R. Wilson, D. M. Hogarth, J. A. Campbell, and A. L. Garside, pp. 42–43. Brisbane: CSIRO Division of Tropical Crops and Pastures.

    Google Scholar 

  • Cox, M. C.; Hogarth D. M. 1983. The effectiveness of family select in early stages of sugarcane improvement program. In Proceedings of Autralian Plant Breeding Conference, pp. 53–54. Brisbane.

    Google Scholar 

  • Cox, M. C., Hogarth, D. M., Smith, G. 2000. Cane breeding and improvement. In Manual of cane growing, eds D. M. Hogarth, P. G. Allso, 436p. Brisbane: Bureau of Sugar Experiment Stations.

    Google Scholar 

  • Cuadrado, A., Acevedo, R., de la Espina, S. M. D., Jouve, N., and de la Torre, C. 2004. Genome remodelling in three modern S. officinarum x S. spontaneum sugarcane cultivars. J. Exp. Bot. 55:847–854.

    CAS  PubMed  Google Scholar 

  • Da Silva, J. A. G., Honeycutt, R. J., Burnquist, W. L., Al-Janabi, S. M., Sorrells, M. E., Tanksley, S., and Sobral, B. 1995. Saccharum spontaneum L. ‘SES 208’ genetic linkage map containing RFLP and PCR based markers. Mol. Breed. 1:165–179.

    CAS  Google Scholar 

  • Davison, B. H., Drescher, S. R., Tuskan, G. A., Davis, M. F., and Nghiem, N. P. 2006. Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis. Appl. Biochem. Biotechnol. 130:427–435.

    Google Scholar 

  • de Resende, M. D. V., and Barbosa, M. H. P. 2005. Melhoramento Genético de Plantas de Propagação Assexuada. Colombo: Embrapa Florestas.

    Google Scholar 

  • de Resende, M. D. V., and Barbosa, M. H. P. 2006. Selection via simulated individual BLUP based on family genotypic effects in sugarcane. Pesquisa Agropecuária Brasileira. 41:421–429.

    Google Scholar 

  • Demirbas, A. 2001. Relationships between lignin contents and heating values of biomass. Energ. Convers. Manage. 42:183–188.

    CAS  Google Scholar 

  • D’Hont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., and Glaszmann, J. C. 1996. Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 250:405–413.

    PubMed  Google Scholar 

  • Dhont, A., Rao, P. S., Feldmann, P., Grivet, L., Islamfaridi, N., Taylor, P., and Glaszmann, J. C. 1995. Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus, with molecular markers and DNA in-situ hybridization. Theor. Appl. Genet. 91:320–326.

    CAS  Google Scholar 

  • D’Hont, A. 2005. Unraveling the genome structure of polyploids using FISH and GISH: examples of sugarcane and banana. Cytogenet. Genome Res. 109:27–33.

    PubMed  Google Scholar 

  • DOE. 2006. Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095 Rockville, MD.

    Google Scholar 

  • Draude, K. M., Kurniawan, C. B., and Duff, S. J. B. 2001. Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol. 79:113–120.

    CAS  PubMed  Google Scholar 

  • Dufour, P., Deu, M., Grivet, L., DHont, A., Paulet, F., Bouet, A., Lanaud, C., Glaszmann, J. C., and Hamon, P. 1997. Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor. Appl. Genet. 94:409–418.

    CAS  Google Scholar 

  • Falco, M. C., and Silva-Filho, M. C. 2003. Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Physiol. Biochem. 41:761–766.

    CAS  Google Scholar 

  • Falco, M. C., Neto, A. T., and Ulian, E. C. 2000. Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep. 19:1188–1194.

    CAS  Google Scholar 

  • Ferreira, A., Barbosa, M. H. P., Cruz, C. D., Hoffmann, H. P., Vieira, M. A. S., Bassinello, A. I., Silva. M. F. 2005. Repetibilidade e número de colheitas para seleção de clones de cana-de-açúcar. Pesquisa Agropecuária Brasileira 40(8):761–767.

    Google Scholar 

  • Galletti, G. C., and Bocchini, P. 1995. Pyrolysis/gas chromatography/mass spectrometry of lignocellulose. Rapid Commun Mass Spectrom. 9:815–826.

    CAS  PubMed  Google Scholar 

  • Gani, A., and Naruse, I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew. Energ. 32:649–661.

    CAS  Google Scholar 

  • Ghannoum, O. 2009. C4 photosynthesis and water stress. Ann. Bot.103:635–644.

    CAS  PubMed  Google Scholar 

  • Gilbert, R. A., Gallo-Meagher, M., Comstock, J. C., Miller, J. D., Jain, M., and Abouzid, A. 2005. Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci. 45:2060–2067.

    Google Scholar 

  • Guo, Y. and Gan, S. 2005. Leaf senescence: signals, execution, and regulation. Curr. Top. Dev. Biol. 71:83–112.

    CAS  PubMed  Google Scholar 

  • Grivet, L., DHont, A., Roques, D., Feldmann, P., Lanaud, C., and Glaszmann, J. C. 1996. RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000.

    CAS  PubMed  Google Scholar 

  • Hamelinck, C. N., vanj Hoojidonk G., Faaij A. P. C. 2005. Energy form lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410.

    CAS  Google Scholar 

  • Hassuani, J. S., Leal, M. R. L. V., and Macedo, I. C. 2005. Biomass power generation: sugarcane bagasse and trash. Brasília: PNUD, CTC.

    Google Scholar 

  • Heinz, D. J. 2007. Sugarcane improvement through breeding. Elsevier, Amsterdam.

    Google Scholar 

  • Heller-Uszynska, K., Carling, J., Evers, M., Piperidis, G., Gilmour, R., Aitken, K., Jackson, P., Huttner, E., and Kilian, A. 2007. Diversity arrays technology (DArT) for high throughput whole-genome molecular analysis in sugarcane. International Consortium for Sugarcane Biotechnology. San Diego, CA: ICSB Town and Country Convention Center.

    Google Scholar 

  • Hoarau, J. Y., Offmann, B., D’Hont, A., Risterucci, A. M., Roques, D., Glaszmann, J. C., and Grivet, L. 2001. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor. Appl. Genet. 103:84–97.

    CAS  Google Scholar 

  • Hogarth, D. M., Wu, K. K., Heinz, D. J. 1981. Estimating genetic variance in sugar cane using a factorial cross design. Crop Sci. 21:21–25.

    Google Scholar 

  • Hovav, R., Udall, J. A., Chaudhary, B., Rapp, R., Flagel, F., and Wendel, J. F. 2008. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc. Natl. Acad. Sci. USA 105(16):6191–6195.

    CAS  PubMed  Google Scholar 

  • Jackson, P. A, McRae, T. A., Hogarth, D. M. 1995. Selection of sugarcane families across variable environments. II. Patterns of response and association with environmental factors. Field Crops Res. 43:119–130.

    Google Scholar 

  • James, N. I., and Smith, G. A. 1969. Effect of photoperiod and light intensity on flowering in sugarcane. Crop Sci. 9:794–797.

    Google Scholar 

  • James, G. 2004. Sugarcane. Oxford: Blackwell Science, 216p.

    Google Scholar 

  • Janaki Ammal, E. K. 1941. Intergeneric hybrids of Saccharum. J. Genet. 41:217–253.

    Google Scholar 

  • Jannoo, N., Grivet, L., Dookun, A., D’Hont, A., and Glaszmann, J. C. 1999. Linkage disequilibrium among modern sugarcane cultivars. Theor. Appl. Genet. 99:1053–1060.

    CAS  Google Scholar 

  • Kaufman, P. B., Ghosheh, N. S., Lee, M., Carlson, T. J., Jones, J. D., Rigot, W., Bigelow, W. C., Kraus, S., and Moore, P. H. 1981. Effect of gibberellic-acid on silica content and distribution in sugarcane. Plant Physiol. 68:314–317.

    CAS  PubMed  Google Scholar 

  • Kimbeng, C. A., Cox, M. 2003. Early generation selection of sugar cane families and clones in Australia: a review. J. Am. Soc. Sugar Cane Technol. 23:20–39.

    Google Scholar 

  • Kumar, R., Singh, S., and Singh, O. V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35:377–391.

    CAS  PubMed  Google Scholar 

  • Landell, M. G. A., and Bressiani, J. A. 2008. Melhoramento genético, caracterização e manejo varietal. In Cana-de-açúcar, eds L. L. Dinardo-Miranda, A. C. M. Vasconcelos, and M. G. A. Landell, pp. 882. Campinas: Instituto Agronômico.

    Google Scholar 

  • Leibbrandt, N. B., and Snyman, S. J. 2003. Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677.

    CAS  Google Scholar 

  • Li, H., Cheng, C., and Leung, T. 1951. Genetical analysis of hybrids obtained in crossing POJ 2725 and Miscantus japonicus. Proc. Int. Soc. Sugar Cane Technol. 7: 266–276.

    Google Scholar 

  • Lopes, J. F., Silverio, F. O., Barbosa, M. H. P., Loureiro, M. E. 2010. Determination of S/G/H ratio of lignin from sugarcane bagasse by Pyrolysis GC/MS. Journal of Wood Chemistry and Technology, in press.

    CAS  PubMed  Google Scholar 

  • Lynch, M., Conery, J. S. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155.

    CAS  PubMed  Google Scholar 

  • Lima, M. L. A., Garcia, A. A. F., Oliveira, K. M., Matsuoka, S., Arizono, H., de Souza, C. L., and de Souza, A. P. 2002. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor. Appl. Genet. 104:30–38.

    CAS  PubMed  Google Scholar 

  • Loh, C. S. 1947. Saccharum × Miscanthus hybrids. J. Sugar Cane Res. 1:1–9.

    Google Scholar 

  • Ma, Q. H., Xu, Y., Lin, Z. B., and He, P. 2002. Cloning of cDNA encoding COMT from wheat which is differentially expressed in lodging-sensitive and -resistant cultivars. J. Exp. Bot. 53:2281–2282.

    CAS  PubMed  Google Scholar 

  • Mccormick, A. J., Cramer, M. D. and Watt, D. A. 2008. Changes in photosynthetic rates and gene expression of leaves during a source–sink perturbation in sugarcane. Ann. Bot. 101:89–102.

    CAS  PubMed  Google Scholar 

  • McCann, M. C., Defernez, M., Urbanowicz, B. R., Tewari, J. C., Langewisch, T., Olek, A., Wells, B., Wilson, R. H., and Carpita, N. C. 2007. Neural network analyses of infrared spectra for classifying cell wall architectures. Plant Physiol. 143:1314–1326.

    CAS  PubMed  Google Scholar 

  • McRae, T. A., Hogarth, D. M., Foreman, J. W., and Braithwaite, M. J. 1993. Selection of sugarcane seedling families in the Burdekin district. In Focused plant improvement: towards responsible and sustainable agriculture. Proceedings of Tenth Australian Plant Breeding Conference, eds B. C. Imrie and J. B. Hacker, pp. 77–82. Gold Coast.

    Google Scholar 

  • Mochida, K., Yamazaki, Y., Ogihara, Y. 2004. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol. Genet. Genomics 270:371–377.

    Google Scholar 

  • Molinari, H. B. C., Marur, C. J., Daros, E., de Campos, M. K. F., de Carvalho, J. F. R. P., Bespalhok, J. C., Pereira, L. F. P., and Vieira, L. G. E. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol. Plant 130:218–229.

    CAS  Google Scholar 

  • Montane, D., Salvado, J., Torras, C., and Farriol, X. 2002. High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22:295–304.

    CAS  Google Scholar 

  • Mooney, C. A., Mansfield, S. D., Touhy, M. G., and Saddler, J. N. 1998. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technol. 64:113–119.

    CAS  Google Scholar 

  • Moore, P. H. 1985. Saccharum. In CRC handbook on flowering, ed. A. H. Halevey, Boca Raton, FL: CRC.

    Google Scholar 

  • Moore, P. H. 1987. Physiology and control of flowering. In COPERSUCAR International Sugarcane Breeding Workshop, pp. 102–127. São Paulo: COPERSUCAR.

    Google Scholar 

  • Mukherjee, S. K. 1957. Origin and distribution of Saccharum. Bot. Gaz. 119:55–61.

    Google Scholar 

  • Nigam, P., and Singh, D. 1995. Processes for fermentative production of xylitol – a sugar substitute. Process Biochem. 30:117–124.

    CAS  Google Scholar 

  • Oliveira, K. M., Pinto, L. R., Marconi, T. G., Margarido, G. R. A., Pastina, M. M., Teixeira, L. H. M., Figueira, A. V., Ulian, E. C., Garcia, A. A. F., and Souza, A. P. 2007. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol. Breed. 20:189–208.

    CAS  Google Scholar 

  • Nascimento, R. 2008. Invertia (http://invertia.terra.com.br/carbono/interna/0,OI2862416-EI8938,00.html)

  • Paes, L. A. D., and Oliveira, M. A. 2005. Potential trash biomass of the sugar cane plant. In Biomass power generation: sugar cane bagasse and trash, eds S. J. Hassuani, M. R. L. V. Leal, and I. Macedo, pp. 216. Piracicaba: PNUD-CTC.

    Google Scholar 

  • Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. 2004. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated soft wood and isolated lignin. J. Biotechnol. 107:65–72.

    CAS  PubMed  Google Scholar 

  • Piperidis, A., and D’Hont, A. 2001. Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH). Proc. Int. Soc. Sugarcane Technol. 24:556–559.

    Google Scholar 

  • Porter, K. S., Axtell, J. D., Lechtenberg, V. L., and Colenbrander, V. F. 1978. Phenotype, fiber composition, and invitro dry-matter disappearance of chemically-induced brown midrib (bmr) mutants of sorghum. Crop Sci. 18:205–208.

    CAS  Google Scholar 

  • Prado, A. P. A. 1988. Perfilhamento e produção da cana-de-açúcar (Saccharum spp.) em função da densidade de plantio, pp. 69. Piracicaba: ESALQ-USP.

    Google Scholar 

  • Prior, B. A., and Day, D. F. 2008. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, β-glucosidase, and hemicellulase preparations. Appl. Biochem. Biotechnol. 146, (1–3):151–164.

    CAS  PubMed  Google Scholar 

  • Raboin, L. M., Oliveira, K. M., Lecunff, L., Telismart, H., Roques, D., Butterfield, M., Hoarau, J. Y., and D’Hont, A. 2006. Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor. Appl. Genet. 112:1382–1391.

    CAS  PubMed  Google Scholar 

  • Rae, A. L., Grof, C. P. L., Casu, R. E., and Bonnett, G. D. 2005. Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crop Res. 92:159–168.

    Google Scholar 

  • Raghavan, T. S. 1952. Sugarcane × bamboo hybrids. Nature 170:329–330.

    Google Scholar 

  • Raghavan, T. S. 1954. Cytogenetics in relation to sugarcane breeding. Cytologia 19:133–143.

    Google Scholar 

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., et al. 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3:29–60.

    CAS  Google Scholar 

  • Rao, J. T., Alexander, M. P., and Kandaswami, P. A. 1967. Intergeneric hybridization between Saccharum (sugarcane) and Bambusa (bamboo). J. Ind. Bot. Soc. 46:199–208.

    Google Scholar 

  • Rao, O. S. 2007. Genetic potential of sugarcane germplasm for higher biomass production to generate energy. In IV Workshop de Pesquisa Sobre Sustentabilidade do Etanol São Paulo: FAPESP.

    Google Scholar 

  • Resende, M. D. V., Barbosa, M. H. P. 2006. Selection via simulated individual blup based on family genotypic effects in sugar cane. Pesquisa Agropecuária Brasileira 41:421–429.

    Google Scholar 

  • Roberto, I. C., de Mancilha, I. M., and Sato, S. 1999. Influence of k(L)a on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Bioprocess Eng. 21:505–508.

    CAS  Google Scholar 

  • Rocha, A. M. C. 1984. Emergência, perfilhamento e produção de colmos de cana-de-açúcar (Saccharum spp.) em função das épocas de plantio no Estado de São Paulo, pp. 154. Piracicaba: ESALQ-USP.

    Google Scholar 

  • Savant, N. K., Korndorfer, G. H., Datnoff, L. E., and Snyder, G. H. 1999. Silicon nutrition and sugarcane production: a review. J. Plant. Nutr. 22:1853–1903.

    CAS  Google Scholar 

  • Selvi, A., Nair, N. V., Noyer, J. L., Singh, N. K., Balasundaram, N., Bansal, K. C., Koundal, K. R., and Mohapatra, T. 2005. Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci. 45:1750–1757.

    CAS  Google Scholar 

  • Sendelius, J. 2005. Steam pretreatment optimisation for sugarcane bagasse in bioethanol production. Master of Science Thesis, 88 p. Department of Chemical Engineering, Lund University, Lund.

    Google Scholar 

  • Silva, M. A., Landell, M. G. A., Gonçalves, O. S., and Martins, A. L. M. 2002. Yield components in sugarcane families at four locations in the state of São Paulo Brazil. Crop Breed. Appl. Biotechnol. 2:97–106.

    Google Scholar 

  • Silverio, F. O., Barbosa, L. C. A., and Pilo-Veloso, D. 2008. A pirólise como técnica analítica. Quím. Nova 31:1543–1552.

    CAS  Google Scholar 

  • Singels, A., Donaldson, R. A., and Smit, M. A. 2005. Improving biomass production and partitioning in sugarcane: theory and practice. Field Crop Res. 92:291–303.

    Google Scholar 

  • Singh, G., Chapman, S. C., Jackson, P. A., and Lawn, R. J. 2000. A major constraint to high yield and CCS in the wet and dry tropics. In Australian Society of Sugarcane Technologists Conference, ed. D. M. Hogarth, pp. 315–321. Bundaberg.

    Google Scholar 

  • Singh, G., Chapman, S. C., Jackson, P. A., and Lawn, R. J. 2002. Lodging reduces sucrose accumulation of sugarcane in the wet and dry tropics. Aust. J. Agr. Res. 53:1183–1195.

    CAS  Google Scholar 

  • Skinner, J. C., Hogarth, D. M., and Wu, K. K. 1987. Selection, methods, criteria and indices. In Sugarcane improvement through breeding, ed. D. J. Heinz, pp. 409–453. Amsterdam: Elsevier.

    Google Scholar 

  • Stevenson, G. C. 1965. Genetics and Breeding of Sugar Cane. London: Longmans, Green.

    Google Scholar 

  • Sun, Y., and Cheng, J. Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores. Technol. 83:1–11.

    CAS  Google Scholar 

  • Thomas, R., and Venkatraman, T. S. 1930. Sugarcane–sorghum hybrids. Ind. J. Agri. Sci. 6:1105–1106.

    Google Scholar 

  • Vermerris, W., Thompson, K. J., and McIntyre, L. M. 2002. The maize brown midrib1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88:450–457.

    CAS  PubMed  Google Scholar 

  • Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., and Carpita, N. C. 2007. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47:142–153.

    Google Scholar 

  • Vogel, J. 2008. Unique aspects of the grass cell wall. Curr. Opin. Plant. Biol. 11:301–307.

    CAS  PubMed  Google Scholar 

  • Walton, N. J., Mayer, M. J., and Narbad, A. 2003. Molecules of interest – vanillin. Phytochemistry 63:505–515.

    CAS  PubMed  Google Scholar 

  • Weng, J. K., Li, X., Bonawitz, N. D., and Chapple, C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotech. 19:166–172.

    CAS  PubMed  Google Scholar 

  • Wyman, C. E. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25:153–157.

    CAS  PubMed  Google Scholar 

  • Wu, L. and Birch, R. G. 2007. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol. J. 5:109–117.

    CAS  PubMed  Google Scholar 

  • Zhang, L. and Birch, R. G. 1995. Genetic engineering of sugar cane for leaf scald phytotoxin and disease resistance. Proc. Int. Soc. Sugar Cane Technol. 22:397–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo E. Loureiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Loureiro, M.E., Barbosa, M.H.P., Lopes, F.J.F., Silvério, F.O. (2011). Sugarcane Breeding and Selection for more Efficient Biomass Conversion in Cellulosic Ethanol. In: Buckeridge, M., Goldman, G. (eds) Routes to Cellulosic Ethanol. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92740-4_13

Download citation

Publish with us

Policies and ethics