Sugarcane Breeding and Selection for more Efficient Biomass Conversion in Cellulosic Ethanol

  • Marcelo E. Loureiro
  • Márcio H. P. Barbosa
  • Francis J. F. Lopes
  • Flaviano O. Silvério


Breeding is the more appropriate way to improve productivity in sugarcane. Since the implantation of the “Proálcool” Program in Brazil, the sugarcane productivity in the last 30 years has increased in proportion of 761 kg/ha/year (1.5%). This productivity increment rate is similar to the values related in Brazil and world for other important economical crops. The constant ongoing rise of new cultivars has been considered the major factor contributing to this growth, although agronomic ­technologies have also been important contributions. Historical international examples of the success of this strategy have been the control of important diseases such as smut (Ustilago scitaminea), common rust (Puccinia melanocephala), Fiji disease (virus) sugarcane mosaic virus, leaf scald (Xanthomonas albilineans), red rot (Glomerella ­ucumanensis), as well as sugar content and, very importantly for Brazil, precocious sugar ­accumulation, that have expanded the harvesting period from 3 to 9 months in Brazil. Recently, a new disease named as orange rust (Puccinia kuehnii) became an important actual research target. Several important cultivars actually in the market are not resistant to this desease, but some of the RIDESA cultivars, such RB857515, the more cultivated, are resistant to the actual races of this pathogen. Breeding for disease resistance in Brazil has been successful for the majority of diseases, in order that it is not common to use fungicides in sugarcane crops[A2] Not sure what you are trying to say in this sentence.. This recent disease resistance traits means that the germplasm used in our breeding research has enough genetic variability to obtain genetic improvements, as well as fiber content and composition, which will be discussed later in this chapter.


Lignin Content Sugarcane Bagasse General Combine Ability Recurrent Selection Cane Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, K. L. 2007. Evolution of duplicate gene expression in polyploid and hybrid plants. J. Hered. 98(2):136–141.PubMedGoogle Scholar
  2. Adams, K. L., Cronn, R., Percifield, R., and Wendel. J. F. 2003. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc. Natl. Acad. Sci. USA 100:4649–4654.PubMedGoogle Scholar
  3. Alwala, S., Suman, A., Arro, J. A., Veremis, J. C., and Kimbeng, C. A. 2006. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci. 46:448–455.Google Scholar
  4. Amaya, A., Gomez, A. L., Buitrago, J. T., Moreno, C. A., and Cassalett, C. 2000. Characterization of lodging in sugarcane. In Australian Society of Sugarcane Technologists Conference, ed. D. M. Hogarth, pp. 321–327, Bundaberg.Google Scholar
  5. Anderson, W. F., and Akin, D. E. 2008. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J. Ind. Microbiol. Biotechnol. 35:355–366.PubMedGoogle Scholar
  6. Arencibia, A., Vazquez, R. I., Prieto, D., Tellez, P., Carmona, E. R., Coego, A., Hernandez, L., DelaRiva, G. A., and SelmanHousein, G. 1997. Transgenic sugarcane plants resistant to stem borer attack. Mol. Breed. 3:247–255.Google Scholar
  7. Asnaghi, C., Paulet, F., Kaye, C., Grivet, L., Deu, M., Glaszmann, J. C., and D’Hont, A. 2000. Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor. Appl. Genet. 101:962–969.Google Scholar
  8. Autrey, L. J. C., and Chang, K. W. 2007. The multi-functional role of the cane sugar industry in Mauritius: Progress and prospects. In Brazilian congress in plant breeding. Alagoas: Federal University of AlagoasGoogle Scholar
  9. Barbosa, L. C. A., Maltha, C. R. A., Silva, V. L., and Colodette, J. L. 2008. Determinação da relação siringila/guaiacila da lignina em madeiras de eucalipto por pirólise acoplada à cromatografia gasosa e espectrometria de massas (pi-cg/em). Quim. Nova 31:2035–2041.Google Scholar
  10. Barbosa, M. H. P., de Resende, M. D. V., Peternelli, L. A., Bressiani, J. A., da Silveira, L. C. I., da Silva, F. L., and de Figueiredo, I. C. R. 2004. Use of REML/BLUP for the selection of sugarcane families specialized in biomass production. Crop Breed. Appl. Biotechnol. 4:218–226.Google Scholar
  11. Bastos, I. T., Barbosa, M. H. P., Cruz, C. D., Burnquist, W. L., Bressiani, J. A., and Silva, F. L. 2003. Análise dialélica em clones de cana-de-açúcar. Bragantia 62:199–206.Google Scholar
  12. Berding, N., Hogarth, M., and Cox, M. C. 2004. Plant improvement of sugarcane. In Sugarcane, ed G. James, pp. 216. Oxford: Blackwell.Google Scholar
  13. Berding, N., Hurney, A. P., Salter, B., and Bonnett, G. D. 2005. Agronomic impact of sucker development in sugarcane under different environmental conditions. Field Crop. Res. 92:203–217.Google Scholar
  14. Besse, P., McIntyre, C. L., and Berding, N. 1996. Ribosomal DNA variations in Erianthus, a wild sugarcane relative (Andropogoneae–Saccharinae). Theor. Appl. Genet. 92:733–743.Google Scholar
  15. Besse, P., McIntyre, C. L., and Berding, N. 1997. Characterization of Erianthus sect. Ripidium and Saccharum germplasm (Andropogoneae–Saccharinae) using RFLP markers. Euphytica 93:283–292.Google Scholar
  16. Biocom. 2007. Abengoa compra Dedini Agro por US$ 684 milhões.
  17. Bower, R., and Birch, R. G. 1992. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2:409–416.Google Scholar
  18. Braga, D. P. V., Arrigoni, E. D. B., Silva-Filho, M. C., and Ulian, E. C. 2003. Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J. New Seeds 5:209–222.Google Scholar
  19. Bressiani, J. A. 2001. Seleção sequencial em cana-de-açúcar PhD, 134p. Piracicaba: ESALQ-USP.Google Scholar
  20. Bressiani, J. A., Vencovsky, R., and Burnquist, W. L. 2002. Interação entre famílias de cana-de-açúcar e locais: efeito na resposta esperada com a seleção. Bragantia 61:1–10.Google Scholar
  21. Bressiani, J. A., Sordi, R. A., Braga Jr, R. L. C., and Burnquis, W. L. 2005. Selection and field test of high biomass producing cane. In Biomass power generation: sugar cane bagasse and trash, eds S. J. Hassuani, M. R. L. V. Leal, and I. C. Macedo, pp. 216. Piracicaba: PNUD-CTC.Google Scholar
  22. Bressiani, J. A., Burnquist, W. L., Fuzatto, S. R., Bonato, A. L. V., and Geraldi, I. O. 2001. Combining ability in eight selected clones of sugarcane (Saccharum sp.). Crop Breed. Appl. Biotechnol. 2:411–416.Google Scholar
  23. Buanafina, M. M. D. O., Langdon, T., Hauck, B., Dalton, S., and Morris, P. 2008. Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol. J. 6:264–280.PubMedGoogle Scholar
  24. Bull, T. A., and Glasziou, K. T. 1975. Sugarcane. In Crop Physiology, ed. L. T. Evans. Cambridge: Cambridge University Press.Google Scholar
  25. Casagrande, A. A., and Vasconcelos, A. C. M. 2008. Fisiologia da Parte Aérea. In Cana-de-açúcar, eds L. L. Dinardo Miranda, A. C. M. Vasconcelos, and M. G. A. Landell, pp. 882. Campinas: Instituto Agronômico.Google Scholar
  26. Cesnik, R., and Miocque, J. 2004. Melhoramento da cana-de-açúcar. Brasília, DF: Embrapa Informação Tecnológica.Google Scholar
  27. Chang, V. S., and Holtzapple, M. T. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84:5–37.PubMedGoogle Scholar
  28. Chen, F., and Dixon, R. A. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25:759–761.PubMedGoogle Scholar
  29. Chen, L. M., Carpita, N. C., Reiter, W. D., Wilson, R. H., Jeffries, C., and McCann, M. C. 1998. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J. 16:385–392.PubMedGoogle Scholar
  30. Chernoglazov, V. M., Ermolova, O. V., and Klyosov, A. A. 1988. Adsorption of high-purity endo-1,4-beta-glucanases from trichoderma-reesei on components of lignocellulosic materials – cellulose, lignin, and xylan. Enzyme Microbiol. Technol. 10:503–507.Google Scholar
  31. Converse, A. O. 1993. Substrate factors limiting enzymatic hydrolysis. In Bioconversion of forest and agricultural plant residues, ed. J. N. Saddler, pp. 93–105. Wallingford: CAB International.Google Scholar
  32. Cox, M. C., McRae, T. A., Bull, J. K., and Hogarth, D. M. 1996. Family selection improves the efficiency and effectiveness of as sugarcane improvement program. In Research towards Efficient and Sustainable Production, eds J. R. Wilson, D. M. Hogarth, J. A. Campbell, and A. L. Garside, pp. 42–43. Brisbane: CSIRO Division of Tropical Crops and Pastures.Google Scholar
  33. Cox, M. C.; Hogarth D. M. 1983. The effectiveness of family select in early stages of sugarcane improvement program. In Proceedings of Autralian Plant Breeding Conference, pp. 53–54. Brisbane.Google Scholar
  34. Cox, M. C., Hogarth, D. M., Smith, G. 2000. Cane breeding and improvement. In Manual of cane growing, eds D. M. Hogarth, P. G. Allso, 436p. Brisbane: Bureau of Sugar Experiment Stations.Google Scholar
  35. Cuadrado, A., Acevedo, R., de la Espina, S. M. D., Jouve, N., and de la Torre, C. 2004. Genome remodelling in three modern S. officinarum x S. spontaneum sugarcane cultivars. J. Exp. Bot. 55:847–854.PubMedGoogle Scholar
  36. Da Silva, J. A. G., Honeycutt, R. J., Burnquist, W. L., Al-Janabi, S. M., Sorrells, M. E., Tanksley, S., and Sobral, B. 1995. Saccharum spontaneum L. ‘SES 208’ genetic linkage map containing RFLP and PCR based markers. Mol. Breed. 1:165–179.Google Scholar
  37. Davison, B. H., Drescher, S. R., Tuskan, G. A., Davis, M. F., and Nghiem, N. P. 2006. Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis. Appl. Biochem. Biotechnol. 130:427–435.Google Scholar
  38. de Resende, M. D. V., and Barbosa, M. H. P. 2005. Melhoramento Genético de Plantas de Propagação Assexuada. Colombo: Embrapa Florestas.Google Scholar
  39. de Resende, M. D. V., and Barbosa, M. H. P. 2006. Selection via simulated individual BLUP based on family genotypic effects in sugarcane. Pesquisa Agropecuária Brasileira. 41:421–429.Google Scholar
  40. Demirbas, A. 2001. Relationships between lignin contents and heating values of biomass. Energ. Convers. Manage. 42:183–188.Google Scholar
  41. D’Hont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., and Glaszmann, J. C. 1996. Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 250:405–413.PubMedGoogle Scholar
  42. Dhont, A., Rao, P. S., Feldmann, P., Grivet, L., Islamfaridi, N., Taylor, P., and Glaszmann, J. C. 1995. Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus, with molecular markers and DNA in-situ hybridization. Theor. Appl. Genet. 91:320–326.Google Scholar
  43. D’Hont, A. 2005. Unraveling the genome structure of polyploids using FISH and GISH: examples of sugarcane and banana. Cytogenet. Genome Res. 109:27–33.PubMedGoogle Scholar
  44. DOE. 2006. Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095 Rockville, MD.Google Scholar
  45. Draude, K. M., Kurniawan, C. B., and Duff, S. J. B. 2001. Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol. 79:113–120.PubMedGoogle Scholar
  46. Dufour, P., Deu, M., Grivet, L., DHont, A., Paulet, F., Bouet, A., Lanaud, C., Glaszmann, J. C., and Hamon, P. 1997. Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor. Appl. Genet. 94:409–418.Google Scholar
  47. Falco, M. C., and Silva-Filho, M. C. 2003. Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Physiol. Biochem. 41:761–766.Google Scholar
  48. Falco, M. C., Neto, A. T., and Ulian, E. C. 2000. Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep. 19:1188–1194.Google Scholar
  49. Ferreira, A., Barbosa, M. H. P., Cruz, C. D., Hoffmann, H. P., Vieira, M. A. S., Bassinello, A. I., Silva. M. F. 2005. Repetibilidade e número de colheitas para seleção de clones de cana-de-açúcar. Pesquisa Agropecuária Brasileira 40(8):761–767.Google Scholar
  50. Galletti, G. C., and Bocchini, P. 1995. Pyrolysis/gas chromatography/mass spectrometry of lignocellulose. Rapid Commun Mass Spectrom. 9:815–826.PubMedGoogle Scholar
  51. Gani, A., and Naruse, I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew. Energ. 32:649–661.Google Scholar
  52. Ghannoum, O. 2009. C4 photosynthesis and water stress. Ann. Bot.103:635–644.PubMedGoogle Scholar
  53. Gilbert, R. A., Gallo-Meagher, M., Comstock, J. C., Miller, J. D., Jain, M., and Abouzid, A. 2005. Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci. 45:2060–2067.Google Scholar
  54. Guo, Y. and Gan, S. 2005. Leaf senescence: signals, execution, and regulation. Curr. Top. Dev. Biol. 71:83–112.PubMedGoogle Scholar
  55. Grivet, L., DHont, A., Roques, D., Feldmann, P., Lanaud, C., and Glaszmann, J. C. 1996. RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000.PubMedGoogle Scholar
  56. Hamelinck, C. N., vanj Hoojidonk G., Faaij A. P. C. 2005. Energy form lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410.Google Scholar
  57. Hassuani, J. S., Leal, M. R. L. V., and Macedo, I. C. 2005. Biomass power generation: sugarcane bagasse and trash. Brasília: PNUD, CTC.Google Scholar
  58. Heinz, D. J. 2007. Sugarcane improvement through breeding. Elsevier, Amsterdam.Google Scholar
  59. Heller-Uszynska, K., Carling, J., Evers, M., Piperidis, G., Gilmour, R., Aitken, K., Jackson, P., Huttner, E., and Kilian, A. 2007. Diversity arrays technology (DArT) for high throughput whole-genome molecular analysis in sugarcane. International Consortium for Sugarcane Biotechnology. San Diego, CA: ICSB Town and Country Convention Center.Google Scholar
  60. Hoarau, J. Y., Offmann, B., D’Hont, A., Risterucci, A. M., Roques, D., Glaszmann, J. C., and Grivet, L. 2001. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor. Appl. Genet. 103:84–97.Google Scholar
  61. Hogarth, D. M., Wu, K. K., Heinz, D. J. 1981. Estimating genetic variance in sugar cane using a factorial cross design. Crop Sci. 21:21–25.Google Scholar
  62. Hovav, R., Udall, J. A., Chaudhary, B., Rapp, R., Flagel, F., and Wendel, J. F. 2008. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc. Natl. Acad. Sci. USA 105(16):6191–6195.PubMedGoogle Scholar
  63. Jackson, P. A, McRae, T. A., Hogarth, D. M. 1995. Selection of sugarcane families across variable environments. II. Patterns of response and association with environmental factors. Field Crops Res. 43:119–130.Google Scholar
  64. James, N. I., and Smith, G. A. 1969. Effect of photoperiod and light intensity on flowering in sugarcane. Crop Sci. 9:794–797.Google Scholar
  65. James, G. 2004. Sugarcane. Oxford: Blackwell Science, 216p.Google Scholar
  66. Janaki Ammal, E. K. 1941. Intergeneric hybrids of Saccharum. J. Genet. 41:217–253.Google Scholar
  67. Jannoo, N., Grivet, L., Dookun, A., D’Hont, A., and Glaszmann, J. C. 1999. Linkage disequilibrium among modern sugarcane cultivars. Theor. Appl. Genet. 99:1053–1060.Google Scholar
  68. Kaufman, P. B., Ghosheh, N. S., Lee, M., Carlson, T. J., Jones, J. D., Rigot, W., Bigelow, W. C., Kraus, S., and Moore, P. H. 1981. Effect of gibberellic-acid on silica content and distribution in sugarcane. Plant Physiol. 68:314–317.PubMedGoogle Scholar
  69. Kimbeng, C. A., Cox, M. 2003. Early generation selection of sugar cane families and clones in Australia: a review. J. Am. Soc. Sugar Cane Technol. 23:20–39.Google Scholar
  70. Kumar, R., Singh, S., and Singh, O. V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35:377–391.PubMedGoogle Scholar
  71. Landell, M. G. A., and Bressiani, J. A. 2008. Melhoramento genético, caracterização e manejo varietal. In Cana-de-açúcar, eds L. L. Dinardo-Miranda, A. C. M. Vasconcelos, and M. G. A. Landell, pp. 882. Campinas: Instituto Agronômico.Google Scholar
  72. Leibbrandt, N. B., and Snyman, S. J. 2003. Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677.Google Scholar
  73. Li, H., Cheng, C., and Leung, T. 1951. Genetical analysis of hybrids obtained in crossing POJ 2725 and Miscantus japonicus. Proc. Int. Soc. Sugar Cane Technol. 7: 266–276.Google Scholar
  74. Lopes, J. F., Silverio, F. O., Barbosa, M. H. P., Loureiro, M. E. 2010. Determination of S/G/H ratio of lignin from sugarcane bagasse by Pyrolysis GC/MS. Journal of Wood Chemistry and Technology, in press.PubMedGoogle Scholar
  75. Lynch, M., Conery, J. S. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155.PubMedGoogle Scholar
  76. Lima, M. L. A., Garcia, A. A. F., Oliveira, K. M., Matsuoka, S., Arizono, H., de Souza, C. L., and de Souza, A. P. 2002. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor. Appl. Genet. 104:30–38.PubMedGoogle Scholar
  77. Loh, C. S. 1947. Saccharum × Miscanthus hybrids. J. Sugar Cane Res. 1:1–9.Google Scholar
  78. Ma, Q. H., Xu, Y., Lin, Z. B., and He, P. 2002. Cloning of cDNA encoding COMT from wheat which is differentially expressed in lodging-sensitive and -resistant cultivars. J. Exp. Bot. 53:2281–2282.PubMedGoogle Scholar
  79. Mccormick, A. J., Cramer, M. D. and Watt, D. A. 2008. Changes in photosynthetic rates and gene expression of leaves during a source–sink perturbation in sugarcane. Ann. Bot. 101:89–102.PubMedGoogle Scholar
  80. McCann, M. C., Defernez, M., Urbanowicz, B. R., Tewari, J. C., Langewisch, T., Olek, A., Wells, B., Wilson, R. H., and Carpita, N. C. 2007. Neural network analyses of infrared spectra for classifying cell wall architectures. Plant Physiol. 143:1314–1326.PubMedGoogle Scholar
  81. McRae, T. A., Hogarth, D. M., Foreman, J. W., and Braithwaite, M. J. 1993. Selection of sugarcane seedling families in the Burdekin district. In Focused plant improvement: towards responsible and sustainable agriculture. Proceedings of Tenth Australian Plant Breeding Conference, eds B. C. Imrie and J. B. Hacker, pp. 77–82. Gold Coast.Google Scholar
  82. Mochida, K., Yamazaki, Y., Ogihara, Y. 2004. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol. Genet. Genomics 270:371–377.Google Scholar
  83. Molinari, H. B. C., Marur, C. J., Daros, E., de Campos, M. K. F., de Carvalho, J. F. R. P., Bespalhok, J. C., Pereira, L. F. P., and Vieira, L. G. E. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol. Plant 130:218–229.Google Scholar
  84. Montane, D., Salvado, J., Torras, C., and Farriol, X. 2002. High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22:295–304.Google Scholar
  85. Mooney, C. A., Mansfield, S. D., Touhy, M. G., and Saddler, J. N. 1998. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technol. 64:113–119.Google Scholar
  86. Moore, P. H. 1985. Saccharum. In CRC handbook on flowering, ed. A. H. Halevey, Boca Raton, FL: CRC.Google Scholar
  87. Moore, P. H. 1987. Physiology and control of flowering. In COPERSUCAR International Sugarcane Breeding Workshop, pp. 102–127. São Paulo: COPERSUCAR.Google Scholar
  88. Mukherjee, S. K. 1957. Origin and distribution of Saccharum. Bot. Gaz. 119:55–61.Google Scholar
  89. Nigam, P., and Singh, D. 1995. Processes for fermentative production of xylitol – a sugar substitute. Process Biochem. 30:117–124.Google Scholar
  90. Oliveira, K. M., Pinto, L. R., Marconi, T. G., Margarido, G. R. A., Pastina, M. M., Teixeira, L. H. M., Figueira, A. V., Ulian, E. C., Garcia, A. A. F., and Souza, A. P. 2007. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol. Breed. 20:189–208.Google Scholar
  91. Paes, L. A. D., and Oliveira, M. A. 2005. Potential trash biomass of the sugar cane plant. In Biomass power generation: sugar cane bagasse and trash, eds S. J. Hassuani, M. R. L. V. Leal, and I. Macedo, pp. 216. Piracicaba: PNUD-CTC.Google Scholar
  92. Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. 2004. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated soft wood and isolated lignin. J. Biotechnol. 107:65–72.PubMedGoogle Scholar
  93. Piperidis, A., and D’Hont, A. 2001. Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH). Proc. Int. Soc. Sugarcane Technol. 24:556–559.Google Scholar
  94. Porter, K. S., Axtell, J. D., Lechtenberg, V. L., and Colenbrander, V. F. 1978. Phenotype, fiber composition, and invitro dry-matter disappearance of chemically-induced brown midrib (bmr) mutants of sorghum. Crop Sci. 18:205–208.Google Scholar
  95. Prado, A. P. A. 1988. Perfilhamento e produção da cana-de-açúcar (Saccharum spp.) em função da densidade de plantio, pp. 69. Piracicaba: ESALQ-USP.Google Scholar
  96. Prior, B. A., and Day, D. F. 2008. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, β-glucosidase, and hemicellulase preparations. Appl. Biochem. Biotechnol. 146, (1–3):151–164.PubMedGoogle Scholar
  97. Raboin, L. M., Oliveira, K. M., Lecunff, L., Telismart, H., Roques, D., Butterfield, M., Hoarau, J. Y., and D’Hont, A. 2006. Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor. Appl. Genet. 112:1382–1391.PubMedGoogle Scholar
  98. Rae, A. L., Grof, C. P. L., Casu, R. E., and Bonnett, G. D. 2005. Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crop Res. 92:159–168.Google Scholar
  99. Raghavan, T. S. 1952. Sugarcane × bamboo hybrids. Nature 170:329–330.Google Scholar
  100. Raghavan, T. S. 1954. Cytogenetics in relation to sugarcane breeding. Cytologia 19:133–143.Google Scholar
  101. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., et al. 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3:29–60.Google Scholar
  102. Rao, J. T., Alexander, M. P., and Kandaswami, P. A. 1967. Intergeneric hybridization between Saccharum (sugarcane) and Bambusa (bamboo). J. Ind. Bot. Soc. 46:199–208.Google Scholar
  103. Rao, O. S. 2007. Genetic potential of sugarcane germplasm for higher biomass production to generate energy. In IV Workshop de Pesquisa Sobre Sustentabilidade do Etanol São Paulo: FAPESP.Google Scholar
  104. Resende, M. D. V., Barbosa, M. H. P. 2006. Selection via simulated individual blup based on family genotypic effects in sugar cane. Pesquisa Agropecuária Brasileira 41:421–429.Google Scholar
  105. Roberto, I. C., de Mancilha, I. M., and Sato, S. 1999. Influence of k(L)a on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Bioprocess Eng. 21:505–508.Google Scholar
  106. Rocha, A. M. C. 1984. Emergência, perfilhamento e produção de colmos de cana-de-açúcar (Saccharum spp.) em função das épocas de plantio no Estado de São Paulo, pp. 154. Piracicaba: ESALQ-USP.Google Scholar
  107. Savant, N. K., Korndorfer, G. H., Datnoff, L. E., and Snyder, G. H. 1999. Silicon nutrition and sugarcane production: a review. J. Plant. Nutr. 22:1853–1903.Google Scholar
  108. Selvi, A., Nair, N. V., Noyer, J. L., Singh, N. K., Balasundaram, N., Bansal, K. C., Koundal, K. R., and Mohapatra, T. 2005. Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci. 45:1750–1757.Google Scholar
  109. Sendelius, J. 2005. Steam pretreatment optimisation for sugarcane bagasse in bioethanol production. Master of Science Thesis, 88 p. Department of Chemical Engineering, Lund University, Lund.Google Scholar
  110. Silva, M. A., Landell, M. G. A., Gonçalves, O. S., and Martins, A. L. M. 2002. Yield components in sugarcane families at four locations in the state of São Paulo Brazil. Crop Breed. Appl. Biotechnol. 2:97–106.Google Scholar
  111. Silverio, F. O., Barbosa, L. C. A., and Pilo-Veloso, D. 2008. A pirólise como técnica analítica. Quím. Nova 31:1543–1552.Google Scholar
  112. Singels, A., Donaldson, R. A., and Smit, M. A. 2005. Improving biomass production and partitioning in sugarcane: theory and practice. Field Crop Res. 92:291–303.Google Scholar
  113. Singh, G., Chapman, S. C., Jackson, P. A., and Lawn, R. J. 2000. A major constraint to high yield and CCS in the wet and dry tropics. In Australian Society of Sugarcane Technologists Conference, ed. D. M. Hogarth, pp. 315–321. Bundaberg.Google Scholar
  114. Singh, G., Chapman, S. C., Jackson, P. A., and Lawn, R. J. 2002. Lodging reduces sucrose accumulation of sugarcane in the wet and dry tropics. Aust. J. Agr. Res. 53:1183–1195.Google Scholar
  115. Skinner, J. C., Hogarth, D. M., and Wu, K. K. 1987. Selection, methods, criteria and indices. In Sugarcane improvement through breeding, ed. D. J. Heinz, pp. 409–453. Amsterdam: Elsevier.Google Scholar
  116. Stevenson, G. C. 1965. Genetics and Breeding of Sugar Cane. London: Longmans, Green.Google Scholar
  117. Sun, Y., and Cheng, J. Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores. Technol. 83:1–11.Google Scholar
  118. Thomas, R., and Venkatraman, T. S. 1930. Sugarcane–sorghum hybrids. Ind. J. Agri. Sci. 6:1105–1106.Google Scholar
  119. Vermerris, W., Thompson, K. J., and McIntyre, L. M. 2002. The maize brown midrib1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88:450–457.PubMedGoogle Scholar
  120. Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., and Carpita, N. C. 2007. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47:142–153.Google Scholar
  121. Vogel, J. 2008. Unique aspects of the grass cell wall. Curr. Opin. Plant. Biol. 11:301–307.PubMedGoogle Scholar
  122. Walton, N. J., Mayer, M. J., and Narbad, A. 2003. Molecules of interest – vanillin. Phytochemistry 63:505–515.PubMedGoogle Scholar
  123. Weng, J. K., Li, X., Bonawitz, N. D., and Chapple, C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotech. 19:166–172.PubMedGoogle Scholar
  124. Wyman, C. E. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25:153–157.PubMedGoogle Scholar
  125. Wu, L. and Birch, R. G. 2007. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol. J. 5:109–117.PubMedGoogle Scholar
  126. Zhang, L. and Birch, R. G. 1995. Genetic engineering of sugar cane for leaf scald phytotoxin and disease resistance. Proc. Int. Soc. Sugar Cane Technol. 22:397–402.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marcelo E. Loureiro
    • 1
    • 2
  • Márcio H. P. Barbosa
  • Francis J. F. Lopes
  • Flaviano O. Silvério
  1. 1.RIDESA, Centro de Melhoramento da Cana-de-Açúcar-CECA, Rodovia -Oratórios Km 12 Ponte Nova-MGPonte NovaBrazil
  2. 2.Plant Biology DepartmentFederal University of ViçosaViçosaBrazil

Personalised recommendations