Improving Efficiency of Cellulosic Fermentation via Genetic Engineering to Create “Smart Plants” for Biofuel Production

  • Zeyu Xin
  • Naohide Watanabe
  • Eric Lam


Biomass-based fuel is a near-term alternative to petroleum for powering the global economy in an ecologically sustainable fashion while minimizing the carbon footprint by decreasing net greenhouse gas emission. To affect this major shift in energy use and fuel source in the near future, dramatic improvement in the efficiency of converting cellulose into biofuels will be a key step. Optimization of downstream fermentation and separation processes through microbial engineering and industrial technologies integration are clearly important steps that need to be taken. In addition, altering feedstock properties to facilitate cellulose breakdown to energy-rich sugars will also play an important role in minimizing the environmental and financial costs for biofuel production. With the rapid advances in genomics and molecular techniques in the past decade, the stage is set for the design and engineering of candidate feedstocks to endow them with specific traits or transgenes in order to facilitate their disassembly. In this chapter, we will concisely review and discuss the considerations and present status on the use of genetic engineering as an approach to modify plants for optimal biofuel production.


Transgenic Plant Rice Straw Corn Stover Biofuel Production Carbon Footprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work on biofuel research in the Lam lab is supported in part by the Biotechnology Center for Agriculture and the Environment, the Rutgers Energy Institute and the School of Environmental and Biological Sciences at Rutgers, the State University of New Jersey.


  1. Abdeev, R. M., Goldenkova, I. V., Musiychuk, K. A., Piruzian, E. S. 2003. Expression of a thermostable bacterial cellulase in transgenic tobacco plants. Russ J Genet 39:300–305.CrossRefGoogle Scholar
  2. Ahmadabadi, M., Ruf, S., Bock, R. 2007. A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16:437–448.CrossRefPubMedGoogle Scholar
  3. Baker, A. and Sparkes, I.A. 2005. Peroxisome protein import: some answers, more questions. Curr Opin Plant Biol 8:640–647.CrossRefPubMedGoogle Scholar
  4. Bassham, D.C. and Raikhel, N.V. 2000. Unique features of the plant vacuolar sorting machinery. Curr Opin Cell Biol 12:491–495.CrossRefPubMedGoogle Scholar
  5. Borlaug, N.E. 1983. Contributions of conventional plant breeding to food production. Science 219:689–693.CrossRefPubMedGoogle Scholar
  6. Carroll, A. and Somerville, C. 2009. Cellulosic biofuels. Annu Rev Plant Biol 60:165–182.CrossRefPubMedGoogle Scholar
  7. Chen, F. and Dixon, R. A. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761.CrossRefPubMedGoogle Scholar
  8. Clough, R. C., Pappu, K., Thompson, K., Beifuss, K., Lane, J., Delaney, D. E., Harkey, R., Drees, C., Howard, J. A., Hood, E. E. 2006. Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed. Plant Biotechnol J 4:53–62.CrossRefPubMedGoogle Scholar
  9. Dai, Z., Hooker, B. S., Anderson, D. B., Thomas, S. R. 2000. Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breed 6:277–285.CrossRefGoogle Scholar
  10. Dai, Z., Hooker, B. S., Quesenberry, R. D., Thomas, S. R. 2005. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res 14:627–643.CrossRefPubMedGoogle Scholar
  11. De Cosa, B., Moar, W., Lee, S.B., Miller, M., Daniell, H. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74.CrossRefPubMedGoogle Scholar
  12. De Marchis, F., Wang,Y., Stevanato, P., Arcioni, S., Bellucci, M. 2009. Genetic transformation of the sugar beet plastome. Transgenic Res 18:17–30.CrossRefPubMedGoogle Scholar
  13. Dufourmantel, N., Pelissier, B., Garcon, F., Peltier, G., Frullo, J.M., Tissot, G. 2004. Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489.CrossRefPubMedGoogle Scholar
  14. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., Kammen, D. M. 2006. Ethanol can contribute to energy and environment goals. Science 311:506–508.CrossRefPubMedGoogle Scholar
  15. Gray, B. N., Ahner, B. A., Hanson, M. R. 2009. High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054.CrossRefPubMedGoogle Scholar
  16. Gressel, J. 2008. Transgenics are imperative for biofuel crops. Plant Sci 174:246–263.CrossRefGoogle Scholar
  17. Hood, E.E., Bailey, M.R., Beifuss, K., Magallanes-Lundback, M., Horn, M.E., Callaway, E., Drees, C., Delaney, D.E., Clough, R., Howard, J.A. 2003. Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140.CrossRefPubMedGoogle Scholar
  18. Hood, E. E., Love, R., Lane, J., Bray, J., Clough, R., Pappu, K., Drees, C., Hood, K. R., Yoon, S., Ahmad, A., Howard, J. A. 2007. Subcellular targeting is a key condition for high level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719.CrossRefPubMedGoogle Scholar
  19. Hou, B. K., Zhou, Y. H., Wan, L. H., Zhang, Z. L., Shen, G. F., Chen, Z. H., Hu, Z. M. 2003. Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114.CrossRefPubMedGoogle Scholar
  20. Hu, W. J., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., Tsai, C., Chiang, V. L. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812.CrossRefGoogle Scholar
  21. Hyunjong, B., Lee, D., Hwang, I. 2006. Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57:161–169.CrossRefPubMedGoogle Scholar
  22. Jurgens, G. 2004. Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504.CrossRefPubMedGoogle Scholar
  23. Karp, A., Shield, I. 2008. Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32.CrossRefPubMedGoogle Scholar
  24. Keating, J. D., Panganiban, C., Mansfield, S. D. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulose inhibitory compounds. Biotech Bioeng 93:1196–1206.CrossRefGoogle Scholar
  25. Kumar, S., Dhingra, A., Daniell, H. 2004a. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854.CrossRefPubMedGoogle Scholar
  26. Kumar, S., Dhingra, A., Daniell, H. 2004b. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216.CrossRefPubMedGoogle Scholar
  27. Lam, E., Shine, J. Jr., Silva, J., Lawton, M., Bonos, S., Calvino, M., Carrer, H., Silva-Filho, M. C., Gynn, N., Helsel, Z., Ma, J., Richard, E. Jr., Souza, G., Ming, R. 2009. Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy 1:251–255.Google Scholar
  28. Lee, S. M., Kang, K., Chung, H., Yoo, S. H., Xu, X. M., Lee, S. B., Cheong, J. J., Daniell, H., Kim, M. 2006. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410.PubMedGoogle Scholar
  29. Lee, C., Teng, Q., Huang, W., Zhong, R., Ye, Z. 2009. Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089.CrossRefPubMedGoogle Scholar
  30. Lelivelt, C. L., McCabe, M. S., Newell, C. A., de Snoo, C. B., van Dun, K. M., Birch-Machin, I., Gray, J. C., Mills, K. H., Nugent, J. M. 2005. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774.CrossRefPubMedGoogle Scholar
  31. Liu, C. W., Lin, C. C., Chen, J. J., Tseng, M. J. 2007. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744.CrossRefPubMedGoogle Scholar
  32. Meisel, L. and Lam, E. 1996. The conserved ELK-homeodomain of KNOTTED-1 contains two regions that signal nuclear localization. Plant Mol Biol 30:1–14.CrossRefPubMedGoogle Scholar
  33. Nugent, G. D., Coyne, S., Nguyen, T. T., Kavanagh, T. A., Dix, P. J. 2006. Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplast. Plant Sci. 170:135–142.CrossRefGoogle Scholar
  34. Oey, M., Lohse, M., Kreikemeyer, B., Bock, R. 2009. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445.CrossRefPubMedGoogle Scholar
  35. Okumura, S., Sawada, M., Park, Y. W., Hayashi, T., Shimamura, M., Takase, H., Tomizawa, K. 2006. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646.CrossRefPubMedGoogle Scholar
  36. Oraby, H., Venkatesh, B., Dale, B., Ahamd, R., Ransome, C., Oehmke, J., Sticklen, M. B. 2007. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Trans Res. 16:739–749.CrossRefGoogle Scholar
  37. Papini-Terzi, F. S., Rocha, F. R., Vencio, R. Z., Felix, J. M., Branco, D. S., Waclawovsky, A. J., Del Bem, L. E., Lembke, C. G., Costa, M. D., Nishiyama, M. Y., Jr., Vicentini, R., Vincentz, M. G., Ulian, E. C., Menossi, M., Souza, G. M. 2009. Sugarcane genes associated with sucrose content. BMC Genomics 10:120.CrossRefPubMedGoogle Scholar
  38. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556.CrossRefPubMedGoogle Scholar
  39. Peters, N. and Small, I. 2001. Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541:54–63.CrossRefGoogle Scholar
  40. Piquemal, J., Chamayou, S., Nadaud, I., Beckert, M., Barriere, Y., Mila, I., Lapierre, C., Rigau, J., Puigdomenech, P., Jauneau, A., Digonnet, C., Boudet, A., Goffner, D., Pichon, M. 2002. Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130:1675–1685.CrossRefPubMedGoogle Scholar
  41. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J. Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., Tschaplinski, T. 2006. The path forward for biofuels and biomaterials. Science 311:484–489.CrossRefPubMedGoogle Scholar
  42. Rubin, E. M. 2008. Genomics of cellulosic biofuels. Nature 454:841–845.CrossRefPubMedGoogle Scholar
  43. Ruf, S., Hermann, M., Berger, I. J., Carrer, H., Bock, R. 2001. Stable genetic transformation of tomato plastids: foreign protein expression in fruit. Nat Biotechnol 19:870–875.CrossRefPubMedGoogle Scholar
  44. Sarath, G., Mitchell, R. B., Sattler, S. E., Funnell, D., Pedersen, J. F., Graybosch, R. A., Vogel, K. P. 2008. Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35:343–354.CrossRefPubMedGoogle Scholar
  45. Schiermeier, Q., Tollefson, J., Scully, T., Witze, A., Morton, O. 2008. Energy alternatives: electricity without carbon. Nature 454:816–823.CrossRefPubMedGoogle Scholar
  46. Schillberg, S., Fischer, R., Emans, N. 2003. Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60:433–445.CrossRefPubMedGoogle Scholar
  47. Sidorov, V., Kasten, D., Pang, S. Z., Hajdukiewicz, P. T. J., Staub, J. M., Nehra, N. S. 1999. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216.CrossRefPubMedGoogle Scholar
  48. Sikdar, S.R., Serino, G., Chaudhuri, S., Maliga, P. 1998. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24.CrossRefGoogle Scholar
  49. Skarjinskaia, M., Svab, Z., Maliga, P. 2003. Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122.CrossRefPubMedGoogle Scholar
  50. Stich, B., Piepho, H. P., Schulz, B, Melchinger, A. E. 2008. Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117:947–954.CrossRefPubMedGoogle Scholar
  51. Sticklen, M. B. 2006. Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319.CrossRefPubMedGoogle Scholar
  52. Sticklen, M. B. 2008. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443.CrossRefPubMedGoogle Scholar
  53. Svab, Z., Hajdukiewicz, P., Maliga, P. 1990. Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–3850.CrossRefPubMedGoogle Scholar
  54. Wang, L. and Roossinck, M. J. 2006. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Mol Biol 61:699–710.CrossRefPubMedGoogle Scholar
  55. Warnecke, F., Luginbühl, P. Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565.CrossRefPubMedGoogle Scholar
  56. Williams, N. 2007. Questions on biofuels. Curr Biol 17:R617.CrossRefPubMedGoogle Scholar
  57. Xue, H., Tong, K. L., Marck, C., Grosjean, H., Wong, J. T. 2003. Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 310:59–66.CrossRefPubMedGoogle Scholar
  58. Yu, L., Gray, B. N., Rutzke, C. J., Walker, L. P., Wilson, D. B., Hanson, M. R. 2007. Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J Biotechnol 131:362–369.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.The Department of Plant Biology and Pathology, RutgersThe State University of New JerseyNew BrunswickUSA

Personalised recommendations