Advertisement

Tropical Maize: Exploiting Maize Genetic Diversity to Develop a Novel Annual Crop for Lignocellulosic Biomass and Sugar Production

  • Wendy G. White
  • Stephen P. Moose
  • Clifford F. Weil
  • Maureen C. McCann
  • Nicholas C. Carpita
  • Fred E. Below
Chapter

Abstract

Maize (Zea mays L.) is truly a remarkable crop species, having been adapted from its tropical origins to a wide diversity of environments and end uses. According to the Food and Agriculture Organization of the United Nations FAOSTAT webpage, 792 million metric tons of maize were produced worldwide in 2007, making it the world’s highest yielding grain crop (http://faostat.fao.org/site/339/default.aspx). When maize varieties adapted to tropical latitudes are grown in temperate environments such as the US Corn Belt, they flower later and produce little or no grain, but have higher total biomass yields compared to modern commercial corn grain hybrids (Fig. 1). Further, tropical maize also accumulates high amounts of extractable stalk sugar (sucrose, glucose, and fructose) because of reduced grain formation. Although offering potential benefits as a feedstock for biofuels, the direct use of tropical maize germplasm in temperate environments is hampered by greater lodging, less stress tolerance, and susceptibility to disease and insect pests – traits that have been greatly improved in modern US corn grain hybrids. However, hybrids derived from crossing temperate-adapted and tropical parents successfully combine the high biomass potential of tropical maize with the genetic improvements from the past century of corn breeding for high grain yields in temperate environments. Named “tropical maize,” these tropical x temperate hybrids produce greater biomass and sugar compared to current US corn hybrids using at least 50% less nitrogen (N) fertilizer inputs (Table 1)

Keywords

Ethanol Production Corn Stover Lignocellulosic Biomass Perennial Grass Sweet Sorghum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ai, X., Xu, Q., Jones, M., Song, Q., Ding, S. Y., Ellingson, R. J., Himmel, M., and Rumbles, G. 2007. Photophysics of (CdSe) ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically modified proteins. Photochem. Photobiol. Sci. 6:1027–1033.CrossRefPubMedGoogle Scholar
  2. Boerjan, W., Ralph, J., and Baucher, M. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–546.CrossRefPubMedGoogle Scholar
  3. Campbell, C. M. 1964. Influence of seed formation of corn on accumulation of vegetative dry matter and stalk strength. Crop Sci. 4:31–34.CrossRefGoogle Scholar
  4. Carpita, N. C. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:445–476.CrossRefPubMedGoogle Scholar
  5. Carpita, N. C., and Gibeaut, D. M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1–30.CrossRefPubMedGoogle Scholar
  6. Carpita, N. C., and McCann, M. C. 2008. Maize and sorghum: genetic resources for the bioenergy grasses. Trends Plant Sci. 13:415–420.CrossRefPubMedGoogle Scholar
  7. Clark, C. F. 1913. Preliminary report on sugar production from maize. Circular 111, Bureau of Plant Industry. pp. 3–9.Google Scholar
  8. Crafts-Brandner, S. J., Below, F. E., Harper, J. E., and Hageman, R. H. 1984. Differential senescence of maize hybrids following ear removal. I. Whole plant. Plant Physiol. 74:360–367.CrossRefPubMedGoogle Scholar
  9. Eveland, A. L., McCarty, D. R., and Koch, K. E. 2008. Transcript profiling by 3’-untranslated region sequencing resolves expression of gene families. Plant Physiol. 146:32–44.CrossRefPubMedGoogle Scholar
  10. Goldemberg, J. 2007. Ethanol for an energy sustainable future. Science 315:808–810.CrossRefPubMedGoogle Scholar
  11. Gore, H. C. 1947. Alcohol yielding power of succulent corn stalk juice. J. Am. Food Manuf. 24:46–61.Google Scholar
  12. Himmel, M. E., Ding, S. Y., Johnson. D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., and Foust, T. D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.CrossRefPubMedGoogle Scholar
  13. Jacobs, J. 2006. Ethanol from sugar: what are the prospects for U.S. sugar co-ops. Rural Cooperatives 73:25–38.Google Scholar
  14. King, C. C., Thompson, D. L., and Burns, J. C. 1972. Plant component yield and cell contents of an adapted and a tropical corn Zea mays L. Crop Sci. 12:446–448.CrossRefGoogle Scholar
  15. Lange, J-P. 2007. Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels Bioproducts Biorefining 1:39–48.CrossRefGoogle Scholar
  16. Leshem, Y., and Wermke, M. 1981. Effect of plant density and removal of ears on the quality and quantity of forage maize in a temperate climate. Grass Forage Sci. 36:147–153.CrossRefGoogle Scholar
  17. Lu, F., and Ralph, J. 1999. The DFRC method for lignin analysis. 7. Behavior of cinnamyl end groups. J. Agric. Food Chem. 47:1981–1987.CrossRefPubMedGoogle Scholar
  18. Marten, G. C., and Westerberg, P. M. 1972. Maize fodder – influence of barrenness on yield and quality. Crop Sci. 12:367–369.CrossRefGoogle Scholar
  19. McCann, M. C., and Roberts, K. 1991. Architecture of the primary cell wall. In Cytoskeletal Basis of Plant Growth and Form, ed. C.W. Lloyd, pp. 109–129. New York: Academic.Google Scholar
  20. Morrell, P. L., Williams-Coplin, T. D., Lattu, A. L., Bowers, F. E., Chandler, J. M., and Paterson, A. H. 2005. Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Mol. Ecol. 14:2143–2154.CrossRefPubMedGoogle Scholar
  21. Penning, B. W., Hunter III, C. T., Tayengwa, R., Eveland, A. L., Dugard, C. K., Olek, A., Vermerris, W., Koch, K. E., McCarty, D. R., Davis, M., Thomas, S. R., McCann, M. C., and Carpita, N. C. 2009. Genetic resources for maize cell wall biology. Plant Physiol. 151:1703–1728.Google Scholar
  22. Ragouskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallet, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., Tschaplinski, T. 2006. The path forward for biofuels and biomaterials. Science 311:484–489.CrossRefGoogle Scholar
  23. Sayre, J. D., Morris, V. H., and Richey, F. D. 1931. The effect of preventing fruiting and of reducing leaf area on the accumulation of sugars in corn stem. J. Am. Soc. Agron. 23:751–753.Google Scholar
  24. Schnable, P., et al. [158 authors]. 2009. The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115.Google Scholar
  25. Singleton, W. R. 1948. Sucrose in the stalks of maize inbreds. Science 107:174.CrossRefPubMedGoogle Scholar
  26. Smalley, J., and Blake, M. 2003. Sweet beginnings: stalk sugar and the domestication of maize. Curr. Anthropol. 44:675–703.CrossRefGoogle Scholar
  27. Snow, A. A., Andow, D. A., Gepts, P., Hallerman, E. M., Power, A., Tiedje, J. M., and Wolfenbarger, L. L. 2005. Genetically engineered organisms and the environment: current status and recommendations. Ecol. Appl. 15:377–404.CrossRefGoogle Scholar
  28. Stake, P. E., Owens, M. L., Schingoethe, D. J., and Voelker, H. H. 1973. Comparative feeding value of high-sugar male sterile and regular dent corn silages. J. Dairy Sci. 56:1439–1444.CrossRefGoogle Scholar
  29. Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., Carpita, N. C. 2007. Molecular breeding to enhance ethanol production from maize and sorghum stover. Crop Sci. 47:S142–S153.CrossRefGoogle Scholar
  30. Wang, M., Wu, M., and Hong, H. 2007. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ. Res. Lett. 2: Art. No. 024001.Google Scholar
  31. Widstrom, N. W., Bagby, M. O., Palmer, D. M., Black, L. T., and Carr, M. E. 1984. Relative stalk sugar yields among maize populations, cultivars, and hybrids. Crop Sci. 24:913–915.CrossRefGoogle Scholar
  32. Winton, A. L., and Winton, K. B. 1939. The structure and composition of foods, Vol. 4. New York: Wiley.Google Scholar
  33. Yu, J. M., Holland, J. B., McMullen, M. D., and Buckler, E. S. 2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wendy G. White
  • Stephen P. Moose
  • Clifford F. Weil
  • Maureen C. McCann
  • Nicholas C. Carpita
  • Fred E. Below
    • 1
  1. 1.Department of Crop Sciences, 322A Edward R. Madigan Laboratory, MC 051University of IllinoisUrbanaUSA

Personalised recommendations