Skip to main content

Tropical Maize: Exploiting Maize Genetic Diversity to Develop a Novel Annual Crop for Lignocellulosic Biomass and Sugar Production

  • Chapter
  • First Online:

Abstract

Maize (Zea mays L.) is truly a remarkable crop species, having been adapted from its tropical origins to a wide diversity of environments and end uses. According to the Food and Agriculture Organization of the United Nations FAOSTAT webpage, 792 million metric tons of maize were produced worldwide in 2007, making it the world’s highest yielding grain crop (http://faostat.fao.org/site/339/default.aspx). When maize varieties adapted to tropical latitudes are grown in temperate environments such as the US Corn Belt, they flower later and produce little or no grain, but have higher total biomass yields compared to modern commercial corn grain hybrids (Fig. 1). Further, tropical maize also accumulates high amounts of extractable stalk sugar (sucrose, glucose, and fructose) because of reduced grain formation. Although offering potential benefits as a feedstock for biofuels, the direct use of tropical maize germplasm in temperate environments is hampered by greater lodging, less stress tolerance, and susceptibility to disease and insect pests – traits that have been greatly improved in modern US corn grain hybrids. However, hybrids derived from crossing temperate-adapted and tropical parents successfully combine the high biomass potential of tropical maize with the genetic improvements from the past century of corn breeding for high grain yields in temperate environments. Named “tropical maize,” these tropical x temperate hybrids produce greater biomass and sugar compared to current US corn hybrids using at least 50% less nitrogen (N) fertilizer inputs (Table 1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ai, X., Xu, Q., Jones, M., Song, Q., Ding, S. Y., Ellingson, R. J., Himmel, M., and Rumbles, G. 2007. Photophysics of (CdSe) ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically modified proteins. Photochem. Photobiol. Sci. 6:1027–1033.

    Article  CAS  PubMed  Google Scholar 

  • Boerjan, W., Ralph, J., and Baucher, M. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–546.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, C. M. 1964. Influence of seed formation of corn on accumulation of vegetative dry matter and stalk strength. Crop Sci. 4:31–34.

    Article  Google Scholar 

  • Carpita, N. C. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:445–476.

    Article  CAS  PubMed  Google Scholar 

  • Carpita, N. C., and Gibeaut, D. M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1–30.

    Article  CAS  PubMed  Google Scholar 

  • Carpita, N. C., and McCann, M. C. 2008. Maize and sorghum: genetic resources for the bioenergy grasses. Trends Plant Sci. 13:415–420.

    Article  CAS  PubMed  Google Scholar 

  • Clark, C. F. 1913. Preliminary report on sugar production from maize. Circular 111, Bureau of Plant Industry. pp. 3–9.

    Google Scholar 

  • Crafts-Brandner, S. J., Below, F. E., Harper, J. E., and Hageman, R. H. 1984. Differential senescence of maize hybrids following ear removal. I. Whole plant. Plant Physiol. 74:360–367.

    Article  CAS  PubMed  Google Scholar 

  • Eveland, A. L., McCarty, D. R., and Koch, K. E. 2008. Transcript profiling by 3’-untranslated region sequencing resolves expression of gene families. Plant Physiol. 146:32–44.

    Article  CAS  PubMed  Google Scholar 

  • Goldemberg, J. 2007. Ethanol for an energy sustainable future. Science 315:808–810.

    Article  CAS  PubMed  Google Scholar 

  • Gore, H. C. 1947. Alcohol yielding power of succulent corn stalk juice. J. Am. Food Manuf. 24:46–61.

    Google Scholar 

  • Himmel, M. E., Ding, S. Y., Johnson. D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., and Foust, T. D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, J. 2006. Ethanol from sugar: what are the prospects for U.S. sugar co-ops. Rural Cooperatives 73:25–38.

    Google Scholar 

  • King, C. C., Thompson, D. L., and Burns, J. C. 1972. Plant component yield and cell contents of an adapted and a tropical corn Zea mays L. Crop Sci. 12:446–448.

    Article  Google Scholar 

  • Lange, J-P. 2007. Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels Bioproducts Biorefining 1:39–48.

    Article  CAS  Google Scholar 

  • Leshem, Y., and Wermke, M. 1981. Effect of plant density and removal of ears on the quality and quantity of forage maize in a temperate climate. Grass Forage Sci. 36:147–153.

    Article  Google Scholar 

  • Lu, F., and Ralph, J. 1999. The DFRC method for lignin analysis. 7. Behavior of cinnamyl end groups. J. Agric. Food Chem. 47:1981–1987.

    Article  CAS  PubMed  Google Scholar 

  • Marten, G. C., and Westerberg, P. M. 1972. Maize fodder – influence of barrenness on yield and quality. Crop Sci. 12:367–369.

    Article  Google Scholar 

  • McCann, M. C., and Roberts, K. 1991. Architecture of the primary cell wall. In Cytoskeletal Basis of Plant Growth and Form, ed. C.W. Lloyd, pp. 109–129. New York: Academic.

    Google Scholar 

  • Morrell, P. L., Williams-Coplin, T. D., Lattu, A. L., Bowers, F. E., Chandler, J. M., and Paterson, A. H. 2005. Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Mol. Ecol. 14:2143–2154.

    Article  CAS  PubMed  Google Scholar 

  • Penning, B. W., Hunter III, C. T., Tayengwa, R., Eveland, A. L., Dugard, C. K., Olek, A., Vermerris, W., Koch, K. E., McCarty, D. R., Davis, M., Thomas, S. R., McCann, M. C., and Carpita, N. C. 2009. Genetic resources for maize cell wall biology. Plant Physiol. 151:1703–1728.

    Google Scholar 

  • Ragouskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallet, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., Tschaplinski, T. 2006. The path forward for biofuels and biomaterials. Science 311:484–489.

    Article  Google Scholar 

  • Sayre, J. D., Morris, V. H., and Richey, F. D. 1931. The effect of preventing fruiting and of reducing leaf area on the accumulation of sugars in corn stem. J. Am. Soc. Agron. 23:751–753.

    Google Scholar 

  • Schnable, P., et al. [158 authors]. 2009. The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115.

    Google Scholar 

  • Singleton, W. R. 1948. Sucrose in the stalks of maize inbreds. Science 107:174.

    Article  CAS  PubMed  Google Scholar 

  • Smalley, J., and Blake, M. 2003. Sweet beginnings: stalk sugar and the domestication of maize. Curr. Anthropol. 44:675–703.

    Article  Google Scholar 

  • Snow, A. A., Andow, D. A., Gepts, P., Hallerman, E. M., Power, A., Tiedje, J. M., and Wolfenbarger, L. L. 2005. Genetically engineered organisms and the environment: current status and recommendations. Ecol. Appl. 15:377–404.

    Article  Google Scholar 

  • Stake, P. E., Owens, M. L., Schingoethe, D. J., and Voelker, H. H. 1973. Comparative feeding value of high-sugar male sterile and regular dent corn silages. J. Dairy Sci. 56:1439–1444.

    Article  Google Scholar 

  • Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., Carpita, N. C. 2007. Molecular breeding to enhance ethanol production from maize and sorghum stover. Crop Sci. 47:S142–S153.

    Article  Google Scholar 

  • Wang, M., Wu, M., and Hong, H. 2007. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ. Res. Lett. 2: Art. No. 024001.

    Google Scholar 

  • Widstrom, N. W., Bagby, M. O., Palmer, D. M., Black, L. T., and Carr, M. E. 1984. Relative stalk sugar yields among maize populations, cultivars, and hybrids. Crop Sci. 24:913–915.

    Article  Google Scholar 

  • Winton, A. L., and Winton, K. B. 1939. The structure and composition of foods, Vol. 4. New York: Wiley.

    Google Scholar 

  • Yu, J. M., Holland, J. B., McMullen, M. D., and Buckler, E. S. 2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred E. Below .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

White, W.G., Moose, S.P., Weil, C.F., McCann, M.C., Carpita, N.C., Below, F.E. (2011). Tropical Maize: Exploiting Maize Genetic Diversity to Develop a Novel Annual Crop for Lignocellulosic Biomass and Sugar Production. In: Buckeridge, M., Goldman, G. (eds) Routes to Cellulosic Ethanol. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92740-4_11

Download citation

Publish with us

Policies and ethics