Genetic Improvement of Xylose Utilization by Saccharomyces cerevisiae



It is estimated that capital costs associated with lignocellulosic ethanol are about US $4 per gallon and that these need to be reduced by more than half to be ­economically sustainable (Hahn-Hagerdal et al. 2006; Gray et al. 2006). Complete substrate utilization is one of the prerequisites to render lignocellulosic ethanol processes economically competitive. This means that all types of sugars in cellulose must be converted to ethanol, and that microorganisms must be obtained that efficiently perform this conversion under industrial conditions. Biomass is composed of cellulose (40–50%), hemicellulose (25–35%), and lignin (15–20%) (Ragauskas et al. 2006; Lin and Tanaka 2006). Glucose constitutes about 60% of the total sugars available in cellulosic biomaterial. Fermentation of the available sugars in cellulosic biomass presents a unique challenge because of the presence of other sugars such as xylose and arabinose (C5 sugars). The degree of branching and identity of the minor sugars in hemicelluloses tends to vary depending upon the type of plant. The conversion of biomass to useable energy is, however, not economical, unless hemicellulose is used in addition to cellulose.


Pentose Phosphate Pathway Xylose Reductase Xylose Fermentation Xylose Isomerase Xylose Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amore, R., Kotter, P., Kuster, C., Ciriacy, M., and Hollenberg, C. P. 1991. Cloning and expression in S. cerevisiae of the NAD(P)H-dependent xylose reductase-enconding gene (XYL1) from the xylose assimilating yeast Pichia stipitis. Gene 109:8–97.CrossRefGoogle Scholar
  2. Amore, R., Wilhelm, M., and Hollenberg, C. P. 1989. The fermentation of xylose – an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl. Microbiol. Biotechnol. 30:351–357.CrossRefGoogle Scholar
  3. Attfield, P. V. and Bell, P. J. L. 2006. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res. 6:862–868.CrossRefPubMedGoogle Scholar
  4. Batista, A. S., Miletti, L. C., and Stambuck, B. U. 2004. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J. Mol. Microbiol. Biotechnol. 8:26–33.CrossRefPubMedGoogle Scholar
  5. Bertilsson, M., Andersson, J., and Liden, G. 2008. Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess Biosyst. Eng. 31:369–377.CrossRefPubMedGoogle Scholar
  6. Boles, E., Iller, S., and Zimmermann, F. K. 1996. A multi-layered sensory system controls yeast glycolytic gene expression. Mol. Microbiol. 1:641–642.CrossRefGoogle Scholar
  7. Brat, D., Boles, E., and Wiedemann, B. 2009. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Env. Microbiol. 75:2304–2311.CrossRefGoogle Scholar
  8. Chu, B. C. H. and Lee, H. 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25:425–441.CrossRefPubMedGoogle Scholar
  9. Diderich, J. A., Schepper, M., van Hoek, P., Luttik, M. A., van Dijken, J. P., Pronk, J. T., Klaassen, P., Boelens, H. F., de Mattos, M. J., van Dam, K., and Kruckeberg, A. L. 1999. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274:15350–15359.CrossRefPubMedGoogle Scholar
  10. Eliasson, A., Christensson, C., Wahlbom, C. F., and Hahn-Hagerdal, B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66:3381–3386.CrossRefPubMedGoogle Scholar
  11. Gray, K. A., Zhao, L., and Emptage, M. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10:141–146.CrossRefGoogle Scholar
  12. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., and Zacchi, G. 2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24:549–556.CrossRefPubMedGoogle Scholar
  13. Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M. F. 2007. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74:937–953.CrossRefPubMedGoogle Scholar
  14. Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahn-Hagerdal, B., Pentilla, M., and Kerasnen, S. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N.Y.) 9:1090–1095.Google Scholar
  15. Hamacher, T., Becker, J., Gardonyi, M., Hahn-Hagerdal, B., and Boles, E. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbilogy 148 (pt-9):2783–2788.Google Scholar
  16. Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320–326.CrossRefPubMedGoogle Scholar
  17. Jeffries, T. W. and Jin, Y. S. 2000. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv. Appl. Microbiol. 47:221–268.CrossRefPubMedGoogle Scholar
  18. Jeppsson, M., Bengtsson, O., Franke, K., Lee, H., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. 2006. The expression of a Pichia stipitis xylose reductase mutant with higher K M for NADPH increases ethanol production from xylose recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 3:665–673.Google Scholar
  19. Jin, Y., Lapaza, J. M., and Jeffries, T. W. 2004. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Env. Microbiol. 70:6816–6825.CrossRefGoogle Scholar
  20. Karhumaa, K., Fromanger, R., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:103–1046.Google Scholar
  21. Karkhumaa, K., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccaromyces cerevisiae using metabolic engineering. Appl. Microbiol. Biotechnol. 73:103–1046.Google Scholar
  22. Killian, S. G. and Uden, N. 1988. Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 27:545–548.Google Scholar
  23. Kotter, P. and Ciriacy, M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38:776–783CrossRefGoogle Scholar
  24. Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S., de Laat, W. T., den Ridder, J. J., Op den Camp, H. J., van Dijken, J. P., and Pronk, J. T. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae. FEMS Yeast Res. 4:6–78.CrossRefGoogle Scholar
  25. Lee, W. J., Kim, M. D., Ryu, Y. W., Bisson, L. F., and Seo, J. H. 2002. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 60:186–191.CrossRefPubMedGoogle Scholar
  26. Lin, Y. and Tanaka, S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69:627–642.CrossRefPubMedGoogle Scholar
  27. Liu, H., Yan, M., Lai, C., Xu, L., and Ouyang, P. 2010. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160(2):574–582.Google Scholar
  28. Lonn, A., Gardonyi, M., van Zyl, W., Hahn-Hagerdal, B., and Otero, R. C. 2002. Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur. J. Biochem. 26:157–163.CrossRefGoogle Scholar
  29. Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V. S., and Kondo, A. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82:1067–1078.CrossRefPubMedGoogle Scholar
  30. Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O., and Sawayama, S. 2008. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol productions from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81:243–255.CrossRefPubMedGoogle Scholar
  31. Meinander, N. Q., Boels, I., and Hahn-Hagerdal, B. 1999. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 abd XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour. Technol. 68:79–87.CrossRefGoogle Scholar
  32. Meinander, N. Q. and Hahn-Hagerdal, B. 1997. Influence of cosubstrate concentration on xylose conversion by recombinant, XYLI-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl. Environ. Microbiol. 63:195–1964.Google Scholar
  33. Moes, C. J., Pretorius, L. S., and van Zyl, W. H. 1996. Cloning and expressing of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 18:26–274.CrossRefGoogle Scholar
  34. Nelson, D. L. and Cox, M. M. 2008. Lehninger, Principles of Biochemistry, fifth edition. W. H. Freeman, New York.Google Scholar
  35. Nevoigt, E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbial. Mol. Biol. Rev. 72:37–412.Google Scholar
  36. Nissen, T. L., Anderlund, M., Nielsen, J., Villadsen, J., and Kielland-Brandt, M. C. 2001. Expression of a cytoplasmic trnashydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19–32.CrossRefPubMedGoogle Scholar
  37. Pitkanen, J., Aristidou, A., Salusjarvi, L., Ruohonen, L., and Pentilla, M. 2003. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng. 5:16–31.CrossRefPubMedGoogle Scholar
  38. Ragauskas, A. J., Williams, C. K., Davidson, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick Jr., W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., and Tschaplinski, T. 2006. The path forward for biofuels and biomaterials. Science 311:484–489.CrossRefPubMedGoogle Scholar
  39. Richard, P., Toivari, M. H., and Pentilla, M. 2000. The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett. 10:3–43.Google Scholar
  40. Santos, C. N. S. and Stephanopoulos, G. 2008. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol. 12:168–176.CrossRefPubMedGoogle Scholar
  41. Sarthy, A. V., McConaughy, B. L., Lobo, Z., Sundstrom, J. A., Furlong, C. E., and Hall, B. D. 1987. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Env. Microbiol. 53:196–2000.Google Scholar
  42. Senac, T. and Hahn-Hagerdal, B. 1990. Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 56:120–126.PubMedGoogle Scholar
  43. Takuma, S., Nakshima, N., Tantirungkij, M., Kinoshita, S., Okada, H., Seki, T., and Yoshida T. 1991. Isolation of xylose reductase gene of Pichia pastoris and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 28:327–340.CrossRefPubMedGoogle Scholar
  44. Toivari, M. H., Salusjarvi, L., Ruohonen, L., and Pentilla, M. 2004. Endogenous xylose pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70:3681–3686.CrossRefPubMedGoogle Scholar
  45. Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bulow, L., and Hahn-Hagerdal, B. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Env. Microbiol. 62:4648–4651.Google Scholar
  46. Walfridsson, M., Hallborn, J., Penttila, M., Keranen, S., and Hahn-Hagerdal, B. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 61:4184–4190.PubMedGoogle Scholar
  47. Watanabe, S., Kodaki, T., and Makino, K. 2005. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280:10340–1034.CrossRefPubMedGoogle Scholar
  48. Watanabe, S., Pack, S. P., Saleh, A. A., Annaluru, N., Kodaki, T., and Makino, K. 2007a. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 71:1365–1366.CrossRefPubMedGoogle Scholar
  49. Watanabe, S., Saleh, A. A., Pack, S. P., Annaluru, N., Kodaki, T., and Makino, K. 2007b. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J. Biotechnol. 130:316–319.CrossRefPubMedGoogle Scholar
  50. Wieczorke, R., Kramer, S., Weierstall, T., Frediedl, K., Hllenber, C. P., and Boles, E. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464:123–128.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Universidade de São PauloRibeirão Preto São PauloBrazil
  2. 2.National Laboratory of Science and Technology of Bioethanol (CTBE)Campinas, São PauloBrazil

Personalised recommendations