Bioinformatics pp 279-292 | Cite as

Phenome Analysis of Microorganisms

  • Christopher M. Gowen
  • Stephen S. Fong


Many terms used in systems biology and bioinformatics are loosely defined and may be interpreted differently depending upon the individual. The introductory section will detail our working definition of a phenome and phenomics and describe some ways in which microbial phenomics may differ from phenomic studies in other organisms.


High Performance Liquid Chromatography Metabolic Network Oxygen Consumption Rate Flux Balance Analysis Substrate Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11(7):1246–1255CrossRefPubMedGoogle Scholar
  2. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657CrossRefPubMedGoogle Scholar
  3. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PWN (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20(3):243–249CrossRefPubMedGoogle Scholar
  4. Delgado J, Liao JC (1997) Inverse flux analysis for reduction of acetate excretion in Escherichia coli. Biotechnol Prog 13(4):361–367CrossRefPubMedGoogle Scholar
  5. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130CrossRefPubMedGoogle Scholar
  6. Edwards JS, Covert M, Palsson B (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4(3):133–140CrossRefPubMedGoogle Scholar
  7. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4(6):457–469CrossRefPubMedGoogle Scholar
  8. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD et al (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648CrossRefPubMedGoogle Scholar
  9. Hua Q, Joyce AR, Fong SS, Palsson B (2006) Metabolic analysis of adaptive evolution for in silico designed lactate-producing strains. Biotechnol Bioeng 95(5):992–1002CrossRefPubMedGoogle Scholar
  10. Huerta AM, Salgado H, Thieffry D, Collado-Vides J (1998) RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res 26(1):55–59CrossRefPubMedGoogle Scholar
  11. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefPubMedGoogle Scholar
  12. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354–D357CrossRefPubMedGoogle Scholar
  13. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D484PubMedGoogle Scholar
  14. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D et al (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33(19):6083–6089CrossRefPubMedGoogle Scholar
  15. McNeil LK, Reich C, Aziz RK, Bartels D, Cohoon M, Disz T et al (2007) The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation. Nucleic Acids Res 35(Database issue):D347–D353CrossRefPubMedGoogle Scholar
  16. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376CrossRefPubMedGoogle Scholar
  17. Salgado H, Santos-Zavaleta A, Gama-Castro S, Millen-Zarate D, Diaz-Peredo E, Sanchez-Solano F et al (2001) RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res 29(1):72–74CrossRefPubMedGoogle Scholar
  18. Savageau MA, Voit EO, Irvine DH (1987a) Biochemical systems theory and metabolic control theory: I. Fundamental similarities and differences. Math Biosci 86:127–145CrossRefGoogle Scholar
  19. Savageau MA, Voit EO, Irvine DH (1987b) Biochemical systems theory and metabolic control theory: II. The role of summation and connectivity relationships. Biosciences 86:147–169CrossRefGoogle Scholar
  20. Schilling CH, Palsson BO (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol 203(3):249–283CrossRefPubMedGoogle Scholar
  21. Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248CrossRefPubMedGoogle Scholar
  22. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994–998CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical and Life Science EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations