Skip to main content

Developmental Axonal Pruning and Synaptic Plasticity

  • Chapter
  • First Online:
The Sticky Synapse

Abstract

The functioning of the nervous system depends upon the underlying specific and highly ordered patterns of neuronal connections. The embryonic pattern of neuronal connectivity is essentially established by specific molecular cues and is refined by synapse elimination and axonal pruning of exuberant or inaccurate connections during later developmental stages. In this chapter we provide a general description of the phenomena of synapse elimination, axonal pruning, and synaptic plasticity in the central and the peripheral nervous system. Also, we briefly describe the role of the adhesion molecules in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF and Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Abbott LF and Regehr WG (2004) Synaptic computation. Nature 431:796–803

    Article  PubMed  CAS  Google Scholar 

  • Akaaboune M, Culican SM, Turney SG et al. (1999) Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo [see comments]. Science 286:503–507

    Article  PubMed  CAS  Google Scholar 

  • Alger BE and Teyler TJ (1976) Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res 110:463–480

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–463

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG and Dent JA (1981) Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 195:51–86

    Article  PubMed  CAS  Google Scholar 

  • Andjus PR, Zhu L, Cesa R et al. (2003) A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Neuroscience 121:563–572

    Article  PubMed  CAS  Google Scholar 

  • Aoto J and Chen L (2007) Bidirectional ephrin/Eph signaling in synaptic functions. Brain Res 1184:72–80

    Article  PubMed  CAS  Google Scholar 

  • Araç D, Boucard AA, Ozkan E et al. (2007) Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron 56:992–1003

    Article  PubMed  CAS  Google Scholar 

  • Bagri A, Cheng HJ, Yaron A et al. (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113:285–299

    Article  PubMed  CAS  Google Scholar 

  • Balice-Gordon RJ and Lichtman JW (1994) Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372:519–524

    Article  PubMed  CAS  Google Scholar 

  • Baranes D, Lederfein D, Huang YY et al. (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21:813–825

    Article  PubMed  CAS  Google Scholar 

  • Barria A, Muller D, Derkach V et al. (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276:2042–2045

    Article  PubMed  CAS  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W et al. (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285

    Article  PubMed  CAS  Google Scholar 

  • Berardi N, Pizzorusso T and Maffei L (2004) Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron 44:905–908

    PubMed  CAS  Google Scholar 

  • Bernstein M and Lichtman JW (1999) Axonal atrophy: the retraction reaction. Curr Opin Neurobiol 9:364–370

    Article  PubMed  CAS  Google Scholar 

  • Betz WJ, Caldwell JH and Ribchester RR (1980) Sprouting of active nerve terminals in partially inactive muscles of the rat. J Physiol 303:281–297

    PubMed  CAS  Google Scholar 

  • Bidoia C, Misgeld T, Weinzierl E et al. (2004) Comment on “Reelin promotes peripheral synapse elimination and maturation”. Science 303:1977; author reply 1977

    Article  PubMed  CAS  Google Scholar 

  • Bishop DL, Misgeld T, Walsh MK et al. (2004) Axon branch removal at developing synapses by axosome shedding. Neuron 44:651–661

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV and Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  • Bonhoeffer T and Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function. Neuron 35:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Bosman LW, Takechi H, Hartmann J et al. (2008) Homosynaptic long-term synaptic potentiation of the “winner” climbing fiber synapse in developing Purkinje cells. J Neurosci 28:798–807

    Article  PubMed  CAS  Google Scholar 

  • Boulanger LM and Shatz CJ (2004) Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 5:521–531

    Article  PubMed  CAS  Google Scholar 

  • Bravin M, Rossi F and Strata P (1995) Different climbing fibres innervate separate dendritic regions of the same Purkinje cell in hypogranular cerebellum. J Comp Neurol 357:395–407

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Jansen JKS and Essen DV (1976) Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J Physiol 261:387–424

    PubMed  CAS  Google Scholar 

  • Brownlee H, Gao PP, Frisen J et al. (2000) Multiple ephrins regulate hippocampal neurite outgrowth. J Comp Neurol 425:315–322

    Article  PubMed  CAS  Google Scholar 

  • Buffelli M, Burgess RW, Feng G et al. (2003) Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424:430–434

    Article  PubMed  CAS  Google Scholar 

  • Buffelli M, Busetto G, Bidoia C et al. (2004) Activity-dependent synaptic competition at mammalian neuromuscular junctions. News Physiol Sci 19:85–91

    PubMed  Google Scholar 

  • Buffelli M, Busetto G, Cangiano L et al. (2002) Perinatal switch from synchronous to asynchronous activity of motoneurons: link with synapse elimination. Proc Natl Acad Sci USA 99:13200–13205

    Article  PubMed  CAS  Google Scholar 

  • Busetto G, Buffelli M, Tognana E et al. (2000) Hebbian mechanisms revealed by electrical stimulation at developing rat neuromuscular junctions. J Neurosci 20:685–695

    PubMed  CAS  Google Scholar 

  • Cabelli RJ, Shelton DL, Segal RA et al. (1997) Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron 19:63–76

    Article  PubMed  CAS  Google Scholar 

  • Cang J, Kaneko M, Yamada J et al. (2005) Ephrin-as guide the formation of functional maps in the visual cortex. Neuron 48:577–589

    Article  PubMed  CAS  Google Scholar 

  • Cash S, Dan Y, Poo MM et al. (1996) Postsynaptic elevation of calcium induces persistent depression of developing neuromuscular synapses. Neuron 16:745–754

    Article  PubMed  CAS  Google Scholar 

  • Celio MR, Spreafico R, De Biasi S et al. (1998) Perineuronal nets: past and present. Trends Neurosci 21:510–515

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Kano M, Abeliovich A et al. (1995) Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC gamma mutant mice. Cell 83:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Bagri A, Zupicich JA et al. (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25:43–56

    Article  PubMed  Google Scholar 

  • Cheng HJ, Bagri A, Yaron A et al. (2001) Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 32:249–263

    Article  PubMed  CAS  Google Scholar 

  • Cheng HJ, Nakamoto M, Bergemann AD et al. (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381

    Article  PubMed  CAS  Google Scholar 

  • Chih B and Scheiffele P (2003) Is reelin the answer to synapse elimination at the neuromuscular junction? Sci STKE 2003:pe45

    Article  Google Scholar 

  • Colbran RJ and Brown AM (2004) Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 14:318–327

    Article  PubMed  CAS  Google Scholar 

  • Colman H, Nabekura J and Lichtman JW (1997) Alterations in synaptic strength preceding axon withdrawal [see comments]. Science 275:356–361

    Article  PubMed  CAS  Google Scholar 

  • Comery TA, Harris JB, Willems PJ et al. (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94:5401–5404

    Article  PubMed  CAS  Google Scholar 

  • Connold AL, Evers JV and Vrbova G (1986) Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscle. Brain Res 393:99–107

    PubMed  CAS  Google Scholar 

  • Conquet F, Bashir ZI, Davies CH et al. (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237–243

    Article  PubMed  CAS  Google Scholar 

  • Corriveau RA, Huh GS and Shatz CJ (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21:505–520

    Article  PubMed  CAS  Google Scholar 

  • Costanzo EM, Barry JA and Ribchester RR (2000) Competition at silent synapses in reinnervated skeletal muscle. Nat Neurosci 3:694–700

    Article  PubMed  CAS  Google Scholar 

  • Crepel F, Dhanjal SS and Garthwaite J (1981) Morphological and electrophysiological characteristics of rat cerebellar slices maintained in vitro. J Physiol 316:127–138

    PubMed  CAS  Google Scholar 

  • Crowley JC and Katz LC (2002) Ocular dominance development revisited. Curr Opin Neurobiol 12:104–109

    Article  PubMed  CAS  Google Scholar 

  • Crusio WE and Schwegler H (1987) Hippocampal mossy fiber distribution covaries with open-field habituation in the mouse. Behav Brain Res 26:153–158

    Article  PubMed  CAS  Google Scholar 

  • Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323

    Article  PubMed  CAS  Google Scholar 

  • Davis GW and Bezprozvanny I (2001) Maintaining the stability of neural function: a homeostatic hypothesis. Annu Rev Physiol 63:847–869

    Article  PubMed  CAS  Google Scholar 

  • Davis GW and Goodman CS (1998) Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr Opin Neurobiol 8:149–156

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Gale NW, Aldrich TH et al. (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819

    Article  PubMed  CAS  Google Scholar 

  • Deppmann CD, Mihalas S, Sharma N et al. (2008) A model for neuronal competition during development. Science 320:369–373

    Article  PubMed  CAS  Google Scholar 

  • Desai NS, Rutherford LC and Turrigiano GG (1999) BDNF regulates the intrinsic excitability of cortical neurons. Learn Mem 6:284–291

    PubMed  CAS  Google Scholar 

  • Donoghue MJ and Rakic P (1999a) Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J Neurosci 19:5967–5979

    PubMed  CAS  Google Scholar 

  • Donoghue MJ and Rakic P (1999b) Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb Cortex 9:586–600

    Article  PubMed  CAS  Google Scholar 

  • Duxson MJ (1982) The effect of postsynaptic block on development of the neuromuscular junction in postnatal rats. J Neurocytol 11:395–408

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, Llinas R and Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268–296

    PubMed  CAS  Google Scholar 

  • Eckenhoff MF and Pysh JJ (1979) Double-walled coated vesicle formation: evidence for massive and transient conjugate internalization of plasma membranes during cerebellar development. J Neurocytol 8:623–638

    Article  PubMed  CAS  Google Scholar 

  • English AW and Schwartz G (1995) Both basic fibroblast growth factor and ciliary neurotrophic factor promote the retention of polyneuronal innervation of developing skeletal muscle fibers. Dev Biol 169:57–64

    Article  PubMed  CAS  Google Scholar 

  • Evers MR, Salmen B, Bukalo O et al. (2002) Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J Neurosci 22:7177–7194

    PubMed  CAS  Google Scholar 

  • Fagiolini M and Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186

    Article  PubMed  CAS  Google Scholar 

  • Faulkner RL, Low LK and Cheng HJ (2007) Axon pruning in the developing vertebrate hippocampus. Dev Neurosci 29:6–13

    Article  PubMed  CAS  Google Scholar 

  • Favero M, Lorenzetto E, Bidoia C et al. (2007) Synapse formation and elimination: role of activity studied in different models of adult muscle reinnervation. J Neurosci Res 85:2610–2619

    Article  PubMed  CAS  Google Scholar 

  • Feldman DE (2000) Inhibition and plasticity. Nat Neurosci 3:303–304

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimonds RM and Poo MM (1998) Retrograde signaling in the development and modification of synapses. Physiol Rev 78:143–170

    PubMed  CAS  Google Scholar 

  • Fladby T (1987) Postnatal loss of synaptic terminals in the normal mouse soleus muscle. Acta Physiol Scand 129:229–238

    Article  PubMed  CAS  Google Scholar 

  • Flourens P (1824) Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. In: Clarke EaOM, C. (eds) The Human Brain and Spinal Cord. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Gale NW, Holland SJ, Valenzuela DM et al. (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19

    Article  PubMed  CAS  Google Scholar 

  • Gan WB, Bishop DL, Turney SG et al. (1999) Vital imaging and ultrastructural analysis of individual axon terminals labeled by iontophoretic application of lipophilic dye. J Neurosci Methods 93:13–20

    Article  PubMed  CAS  Google Scholar 

  • Gan WB and Lichtman JW (1998) Synaptic segregation at the developing neuromuscular junction. Science 282:1508–1511

    Article  PubMed  CAS  Google Scholar 

  • Gao PP, Zhang JH, Yokoyama M et al. (1996) Regulation of topographic projection in the brain: Elf-1 in the hippocamposeptal system. Proc Natl Acad Sci USA 93:11161–11166

    Article  PubMed  CAS  Google Scholar 

  • Geuze E, Vermetten E and Bremner JD (2005a) MR-based in vivo hippocampal volumetrics: 1. Review of methodologies currently employed. Mol Psychiatry 10:147–159

    Article  PubMed  CAS  Google Scholar 

  • Geuze E, Vermetten E and Bremner JD (2005b) MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry 10:160–184

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Islas C and Wenner P (2006) Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Neuron 49:563–575

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS and Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 Suppl:77–98

    Article  PubMed  Google Scholar 

  • Greenough WT, Hwang HM and Gorman C (1985) Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proc Natl Acad Sci USA 82:4549–4552

    Article  PubMed  CAS  Google Scholar 

  • Gualandris A, Jones TE, Strickland S et al. (1996) Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci 16:2220–2225

    PubMed  CAS  Google Scholar 

  • Guimaraes A, Zaremba S and Hockfield S (1990) Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301. J Neurosci 10:3014–3024

    PubMed  CAS  Google Scholar 

  • Haas JS, Nowotny T and Abarbanel HD (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96:3305–3313

    Article  PubMed  Google Scholar 

  • Hashimoto K, Ichikawa R, Takechi H et al. (2001a) Roles of glutamate receptor delta 2 subunit (GluRdelta 2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 21:9701–9712

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Miyata M, Watanabe M et al. (2001b) Roles of phospholipase Cbeta4 in synapse elimination and plasticity in developing and mature cerebellum. Mol Neurobiol 23:69–82

    Article  PubMed  CAS  Google Scholar 

  • Hata Y, Butz S and Südhof TC (1996) CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci 16:2488–2494

    PubMed  CAS  Google Scholar 

  • Hebb D (1949) The Organization of Behavior. Wiley, New York

    Google Scholar 

  • Hensch TK, Fagiolini M, Mataga N et al. (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508

    Article  PubMed  CAS  Google Scholar 

  • Hinton VJ, Brown WT, Wisniewski K et al. (1991) Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 41:289–294

    Article  PubMed  CAS  Google Scholar 

  • Hirai H (2001) Modification of AMPA receptor clustering regulates cerebellar synaptic plasticity. Neurosci Res 39:261–267

    Article  PubMed  CAS  Google Scholar 

  • Hua JY and Smith SJ (2004) Neural activity and the dynamics of central nervous system development. Nat Neurosci 7:327–332

    Article  PubMed  CAS  Google Scholar 

  • Huang ZJ, Kirkwood A, Pizzorusso T et al. (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH and Wiesel TN (1963) Receptive Fields of Cells in Striate Cortex of Very Young, Visually Inexperienced Kittens. J Neurophysiol 26:994–1002

    PubMed  CAS  Google Scholar 

  • Hubel DH and Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN and LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409

    Article  PubMed  CAS  Google Scholar 

  • Huber AB, Kolodkin AL, Ginty DD et al. (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563

    Article  PubMed  CAS  Google Scholar 

  • Huh GS, Boulanger LM, Du H et al. (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–2159

    Article  PubMed  CAS  Google Scholar 

  • Hume RI and Purves D (1981) Geometry of neonatal neurones and the regulation of synapse elimination. Nature 293:469–471

    Article  PubMed  CAS  Google Scholar 

  • Hunt CA, Schenker LJ and Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388

    Google Scholar 

  • Ichtchenko K, Nguyen T and Südhof TC (1996) Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 271:2676–2682

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1984) The Cerebellum and Neural Control. Raven Press, New York

    Google Scholar 

  • Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Ito M and Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258

    Article  PubMed  CAS  Google Scholar 

  • Ivanco TL and Greenough WT (2002) Altered mossy fiber distributions in adult Fmr1 (FVB) knockout mice. Hippocampus 12:47–54

    Article  PubMed  Google Scholar 

  • Jansen JK and Fladby T (1990) The perinatal reorganization of the innervation of skeletal muscle in mammals. Prog Neurobiol 34:39–90

    Article  PubMed  CAS  Google Scholar 

  • Jennings C (1994) Developmental neurobiology. Death of a synapse. Nature 372:498–499

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Hashimoto K, Chen C et al. (1995) Impaired synapse elimination during cerebellar development in PKC gamma mutant mice. Cell 83:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Kantor DB and Kolodkin AL (2003) Curbing the excesses of youth: molecular insights into axonal pruning. Neuron 38:849–852

    Article  PubMed  CAS  Google Scholar 

  • Kasthuri N and Lichtman JW (2003) The role of neuronal identity in synaptic competition. Nature 424:426–430

    Article  PubMed  CAS  Google Scholar 

  • Katz LC and Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3:34–42

    Article  PubMed  CAS  Google Scholar 

  • Katz LC and Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Keller-Peck CR, Walsh MK, Gan WB et al. (2001) Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31:381–394.

    Article  PubMed  CAS  Google Scholar 

  • Kirov SA, Sorra KE and Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19:2876–2886

    PubMed  CAS  Google Scholar 

  • Knight R (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin AL (1998) Semaphorin-mediated neuronal growth cone guidance. Prog Brain Res 117:115–132

    Article  PubMed  CAS  Google Scholar 

  • Kornau HC and Seeburg PH (1997) Partner selection by PDZ domains. Nat Biotechnol 15:319

    Article  PubMed  CAS  Google Scholar 

  • Kreitzer AC and Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727

    Article  PubMed  CAS  Google Scholar 

  • Krueger S and Fitzsimonds RM (2006) Remodeling the plasticity debate: the presynaptic locus revisited. Physiology (Bethesda) 21:346–351

    CAS  Google Scholar 

  • Kuffler D, Thompson W and Jansen J (1977) The elimination of synapses in multiply-innervated skeletal muscle fibres of the rat: dependence on the distance between end-plates. Brain Res 138:353–358

    Article  PubMed  CAS  Google Scholar 

  • Kullander K and Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486

    Article  PubMed  CAS  Google Scholar 

  • Kwon YW, Abbondanzo SJ, Stewart CL et al. (1995) Leukemia inhibitory factor influences the timing of programmed synapses withdrawal from neonatal muscles. J Neurobiol 28:35–50

    Article  PubMed  CAS  Google Scholar 

  • Kwon YW and Gurney ME (1996) Brain-derived neurotrophic factor transiently stabilizes silent synapses on developing neuromuscular junctions. J Neurobiol 29:503–516

    Article  PubMed  CAS  Google Scholar 

  • Lauder JM and Mugnaini E (1980) Infrapyramidal mossy fibers in the hippocampus of the hyperthyroid rat. A light and electron microscopic study. Dev Neurosci 3:248–265

    Article  PubMed  CAS  Google Scholar 

  • Lauri SE, Kaukinen S, Kinnunen T et al. (1999) Regulatory role and molecular interactions of a cell-surface heparan sulfate proteoglycan (N-syndecan) in hippocampal long-term potentiation. J Neurosci 19:1226–1235

    PubMed  CAS  Google Scholar 

  • Lauri SE, Palmer M, Segerstrale M et al. (2007) Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology 52:1–11

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Lein ES and Shatz CJ (2000) Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation. J Neurosci 20:1470–1483

    PubMed  CAS  Google Scholar 

  • Leslie KR, Nelson SB and Turrigiano GG (2001) Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J Neurosci 21:RC170

    PubMed  CAS  Google Scholar 

  • LeVay S, Stryker MP and Shatz CJ (1978) Ocular dominance columns and their development in layer IV of the cat’s visual cortex: a quantitative study. J Comp Neurol 179:223–244

    Article  PubMed  CAS  Google Scholar 

  • Lissin DV, Gomperts SN, Carroll RC et al. (1998) Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc Natl Acad Sci USA 95:7097–7102

    Article  PubMed  CAS  Google Scholar 

  • Liu XB, Low LK, Jones EG et al. (2005) Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus. J Neurosci 25:9124–9134

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Fields RD, Fitzgerald S et al. (1994) Proteolytic activity, synapse elimination, and the Hebb synapse. J Neurobiol 25:325–335

    Article  PubMed  CAS  Google Scholar 

  • Lo YJ and Poo MM (1991) Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. Science 254:1019–1022

    Article  PubMed  CAS  Google Scholar 

  • Lohof AM, Delhaye-Bouchaud N and Mariani J (1996) Synapse elimination in the central nervous system: functional significance and cellular mechanisms. Rev Neurosci 7:85–101

    PubMed  CAS  Google Scholar 

  • Lowel S and Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255:209–212

    Article  PubMed  CAS  Google Scholar 

  • Luo L and O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    Article  PubMed  CAS  Google Scholar 

  • Luthl A, Laurent JP, Figurov A et al. (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777–779

    Article  PubMed  CAS  Google Scholar 

  • Mackarehtschian K, Lau CK, Caras I et al. (1999) Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. Cereb Cortex 9:601–610

    Article  PubMed  CAS  Google Scholar 

  • Maffei A, Nelson SB and Turrigiano GG (2004) Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat Neurosci 7:1353–1359

    Article  PubMed  CAS  Google Scholar 

  • Maguire EA, Burgess N and O’Keefe J (1999) Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. Curr Opin Neurobiol 9:171–177

    Article  PubMed  CAS  Google Scholar 

  • Maguire EA, Frith CD, Burgess N et al. (1998) Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76

    Article  PubMed  CAS  Google Scholar 

  • Mainen ZF, Maletic-Savatic M, Shi SH et al. (1999) Two-photon imaging in living brain slices. Methods 18:231–239, 181

    Article  PubMed  CAS  Google Scholar 

  • Majewska AK and Sur M (2006) Plasticity and specificity of cortical processing networks. Trends Neurosci 29:323–329

    Article  PubMed  CAS  Google Scholar 

  • Marder E and Prinz AA (2003) Current compensation in neuronal homeostasis. Neuron 37:2–4

    Article  PubMed  CAS  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    Article  PubMed  CAS  Google Scholar 

  • Mariani J and Changeux JP (1980) Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the adult staggerer mutant mouse. J Neurobiol 11:41–50

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Otal R, Sieber BA et al. (2005) Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience 135:451–461

    Article  PubMed  CAS  Google Scholar 

  • Mason CA, Christakos S and Catalano SM (1990) Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J Comp Neurol 297:77–90

    Article  PubMed  CAS  Google Scholar 

  • Mataga N, Mizuguchi Y and Hensch TK (2004) Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Mataga N, Nagai N and Hensch TK (2002) Permissive proteolytic activity for visual cortical plasticity. Proc Natl Acad Sci USA 99:7717–7721

    Article  PubMed  CAS  Google Scholar 

  • Maya Vetencourt JF, Sale A, Viegi A et al. (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320:385–388

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin T, Hindges R and O’Leary DD (2003) Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr Opin Neurobiol 13:57–69

    Article  PubMed  CAS  Google Scholar 

  • Midtgaard J (1995) Spatial synaptic integration in Purkinje cell dendrites. J Physiol Paris 89:23–32

    Article  PubMed  CAS  Google Scholar 

  • Mineur YS, Sluyter F, de Wit S et al. (2002) Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12:39–46

    Article  PubMed  Google Scholar 

  • Miyata M, Kim HT, Hashimoto K et al. (2001) Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. Eur J Neurosci 13:1945–1954

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Hashimoto K, Shin HS et al. (2004) P/Q-type Ca2+ channel alpha1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci 24:1734–1743

    Article  PubMed  CAS  Google Scholar 

  • Mizumori SJ, Ragozzino KE, Cooper BG et al. (1999) Hippocampal representational organization and spatial context. Hippocampus 9:444–451

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Wanaka A, Taguchi A et al. (1995) Differential expressions of the eph family of receptor tyrosine kinase genes (sek, elk, eck) in the developing nervous system of the mouse. Brain Res Mol Brain Res 29:325–335

    Article  PubMed  CAS  Google Scholar 

  • Murthy VN, Schikorski T, Stevens CF et al. (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto M, Cheng HJ, Friedman GC et al. (1996) Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86:755–766

    Article  PubMed  CAS  Google Scholar 

  • Napper RM and Harvey RJ (1988) Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol 274:168–177

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QT and Lichtman JW (1996) Mechanism of synapse disassembly at the developing neuromuscular junction. Curr Opin Neurobiol 6:104–112

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QT, Parsadanian AS, Snider WD et al. (1998) Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science 279:1725–1729

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA and Malenka RC (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 868:515–525

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RA, Ostberg AJ and Vrbova G (1980) The effect of acetylcholine on the function and structure of the developing mammalian neuromuscular junction. Neuroscience 5:1367–1379

    Article  PubMed  Google Scholar 

  • O’Brien RJ, Lau LF and Huganir RL (1998) Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr Opin Neurobiol 8:364–369

    Article  PubMed  Google Scholar 

  • O’Brien RJ, Xu D, Petralia RS et al. (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–323

    Article  PubMed  Google Scholar 

  • O’Leary DD and Koester SE (1993) Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10:991–1006

    Article  PubMed  Google Scholar 

  • Oray S, Majewska A and Sur M (2004) Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Palay SL, Billings-Gagliardi S and Chan-Palay V (1974) Neuronal perikarya with dispersed, single ribosomes in the visual cortex of Macaca mulatta. J Cell Biol 63:1074–1089

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Sweeney ST and Davis GW (2001) Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30:737–749

    Article  PubMed  CAS  Google Scholar 

  • Patrizi A, Scelfo B, Viltono L et al. (2008) Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors. Proc Natl Acad Sci USA 105:13151–13156

    Article  PubMed  Google Scholar 

  • Penn AA, Riquelme PA, Feller MB et al. (1998) Competition in retinogeniculate patterning driven by spontaneous activity. Science 279:2108–2112

    Article  PubMed  CAS  Google Scholar 

  • Perrier JF, Alaburda A and Hounsgaard J (2002) Spinal plasticity mediated by postsynaptic L-type Ca2+ channels. Brain Res Brain Res Rev 40:223–229

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T, Medini P, Berardi N et al. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Pulver SR, Bucher D, Simon DJ et al. (2005) Constant amplitude of postsynaptic responses for single presynaptic action potentials but not bursting input during growth of an identified neuromuscular junction in the lobster, Homarus americanus. J Neurobiol 62:47–61

    Article  PubMed  Google Scholar 

  • Purves D and Hume RI (1981) The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglion cells. J Neurosci 1:441–452

    PubMed  CAS  Google Scholar 

  • Purves D and Lichtman JW (1980) Elimination of synapses in the developing nervous system. Science 210:153–157

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchi CC, Huang C, Niu S et al. (2003) Reelin promotes peripheral synapse elimination and maturation. Science 301:649–653

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi S, Bailly Y, Delhaye-Bouchaud N et al. (1992a) Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256:1823–1825

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi SA, Bailly Y, Delhaye-Bouchaud N et al. (1992b) Role of the target in synapse elimination: studies in cerebellum of developing lurcher mutants and adult chimeric mice. J Neurosci 12:4712–4720

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1911) Histologie du Systeme Nerveux de I’Homme et des Vertebres. Maloine, Paris

    Google Scholar 

  • Raymond CR, Ireland DR and Abraham WC (2003) NMDA receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus. Brain Res 968:263–272

    Article  PubMed  CAS  Google Scholar 

  • Riley DA (1981) Ultrastructural evidence for axon retraction during the spontaneous elimination of polyneuronal innervation of the rat soleus muscle. J Neurocytol 10:425–440

    Article  PubMed  CAS  Google Scholar 

  • Rossi FM, Bozzi Y, Pizzorusso T et al. (1999) Monocular deprivation decreases brain-derived neurotrophic factor immunoreactivity in the rat visual cortex. Neuroscience 90:363–368

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti B, Scelfo B, Tempia F et al. (2004) Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42:973–982

    Article  PubMed  CAS  Google Scholar 

  • Saghatelyan AK, Gorissen S, Albert M et al. (2000) The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. Eur J Neurosci 12:3331–3342

    Article  PubMed  CAS  Google Scholar 

  • Sahay A, Kim CH, Sepkuty JP et al. (2005) Secreted semaphorins modulate synaptic transmission in the adult hippocampus. J Neurosci 25:3613–3620

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR and Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  PubMed  CAS  Google Scholar 

  • Scelfo B, Sacchetti B and Strata P (2008) Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci USA 105:769–774

    Article  PubMed  Google Scholar 

  • Scelfo B and Strata P (2005) Correlation between multiple climbing fibre regression and parallel fibre response development in the postnatal mouse cerebellum. Eur J Neurosci 21:971–978

    Article  PubMed  Google Scholar 

  • Scelfo B, Strata P and Knöpfel T (2003) Sodium imaging of climbing fiber innervation fields in developing mouse Purkinje cells. J Neurophysiol 89:2555–2563

    Article  PubMed  Google Scholar 

  • Schopke R, Wolfer DP, Lipp HP et al. (1991) Swimming navigation and structural variations of the infrapyramidal mossy fibers in the hippocampus of the mouse. Hippocampus 1:315–328

    Article  PubMed  CAS  Google Scholar 

  • Schwegler H, Crusio WE, Lipp HP et al. (1991) Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice. J Neurosci 11:2102–2106

    PubMed  CAS  Google Scholar 

  • Segal M and Andersen P (2000) Dendritic spines shaped by synaptic activity. Curr Opin Neurobiol 10:582–586

    Article  PubMed  CAS  Google Scholar 

  • Shapiro L, Love J and Colman DR (2007) Adhesion molecules in the nervous system: structural insights into function and diversity. Annu Rev Neurosci 30:451–474

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ (1990) Competitive interactions between retinal ganglion cells during prenatal development. J Neurobiol 21:197–211

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JD, Rumbaugh G, Wu J et al. (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52:475–484

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Hayashi Y, Esteban JA et al. (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343

    Article  PubMed  CAS  Google Scholar 

  • Singh KK and Miller FD (2005) Activity regulates positive and negative neurotrophin-derived signals to determine axon competition. Neuron 45:837–845

    Article  PubMed  CAS  Google Scholar 

  • Singh KK, Park KJ, Hong EJ et al. (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658

    Article  PubMed  CAS  Google Scholar 

  • Snider WD and Lichtman JW (1996) Are neurotrophins synaptotrophins? Mol Cell Neurosci 7:433–442

    Article  PubMed  CAS  Google Scholar 

  • Song JY, Ichtchenko K, Südhof TC et al. (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96:1100–1105

    Article  PubMed  CAS  Google Scholar 

  • Srihari T and Vrbova G (1978) The role of muscle activity in the differentiation of neuromuscular junctions in slow and fast chick muscles. J Neurocytol 7:529–540

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan J, Schachner M and Catterall WA (1998) Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc Natl Acad Sci USA 95:15753–15757

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen D and Shatz CJ (2002) An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33:357–367

    Article  PubMed  CAS  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE et al. (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    Article  PubMed  CAS  Google Scholar 

  • Sur M and Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2:251–262

    Article  PubMed  CAS  Google Scholar 

  • Swanwick CC, Murthy NR and Kapur J (2006) Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Mol Cell Neurosci 31:481–492

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Hung CP and Schuman EM (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20:1165–1175

    Article  PubMed  CAS  Google Scholar 

  • Tao HW and Poo M (2001) Retrograde signaling at central synapses. Proc Natl Acad Sci USA 98:11009–11015

    Article  PubMed  CAS  Google Scholar 

  • Thach WT (2007) On the mechanism of cerebellar contributions to cognition. Cerebellum 6:163–167

    Article  PubMed  CAS  Google Scholar 

  • Thiagarajan TC, Lindskog M and Tsien RW (2005) Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47:725–737

    Article  PubMed  CAS  Google Scholar 

  • Thompson RF (1990) Neural mechanisms of classical conditioning in mammals. Philos Trans R Soc Lond B Biol Sci 329:161–170

    Article  PubMed  CAS  Google Scholar 

  • Thompson W and Jansen JK (1977) The extent of sprouting of remaining motor units in partly denervated immature and adult rat soleus muscle. Neuroscience 2:523–535

    Article  PubMed  CAS  Google Scholar 

  • Thompson WJ (1983) Synapse elimination in neonatal rat muscle is sensitive to the pattern of muscle use. Nature 302:614–616

    Article  PubMed  CAS  Google Scholar 

  • Thompson WJ, Kuffler DP and Jansen JKS (1979) The effect of prolonged reversible block of nerve impulses on the elimination of polyneuronal innervation of new-born rat skeletal muscle. Neuroscience 4:271–281

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS et al. (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG and Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  PubMed  CAS  Google Scholar 

  • Walsh MK and Lichtman JW (2003) In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37:67–73

    Article  PubMed  CAS  Google Scholar 

  • Weimann JM, Zhang YA, Levin ME et al. (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24:819–831

    Article  PubMed  CAS  Google Scholar 

  • Wierenga CJ, Ibata K and Turrigiano GG (2005) Postsynaptic expression of homeostatic plasticity at neocortical synapses. J Neurosci 25:2895–2905

    Article  PubMed  CAS  Google Scholar 

  • Wierenga CJ, Walsh MF and Turrigiano GG (2006) Temporal regulation of the expression locus of homeostatic plasticity. J Neurophysiol 96:2127–2133

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN and Hubel DH (1963) Effects of Visual Deprivation on Morphology and Physiology of Cells in the Cats Lateral Geniculate Body. J Neurophysiol 26:978–993

    PubMed  CAS  Google Scholar 

  • Windrem MS and Finlay BL (1991) Thalamic ablations and neocortical development: alterations of cortical cytoarchitecture and cell number. Cereb Cortex 1:230–240

    Article  PubMed  CAS  Google Scholar 

  • Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22:29–47

    Article  PubMed  CAS  Google Scholar 

  • Xiao P, Bahr BA, Staubli U et al. (1991) Evidence that matrix recognition contributes to stabilization but not induction of LTP. Neuroreport 2:461–464

    Article  PubMed  CAS  Google Scholar 

  • Xiao ZC, Ragsdale DS, Malhotra JD et al. (1999) Tenascin-R is a functional modulator of sodium channel beta subunits. J Biol Chem 274:26511–26517

    Article  PubMed  CAS  Google Scholar 

  • Yates PA, Roskies AL, McLaughlin T et al. (2001) Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. J Neurosci 21:8548–8563

    PubMed  CAS  Google Scholar 

  • Yue Y, Chen ZY, Gale NW et al. (2002) Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci USA 99:10777–10782

    Article  PubMed  CAS  Google Scholar 

  • Zakharenko SS, Zablow L and Siegelbaum SA (2001) Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 4:711–717

    Article  PubMed  CAS  Google Scholar 

  • Zhang W and Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Telethon-Italy for the Grant No. GGP030164, MIUR-Italy for the Grant PRIN-2006, Fondazione Cariverona, University of Verona, the National Institute of Neuroscience-Italy and the Regione Piemonte, grant for Ricerca Sanitaria Finalizzata 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Rosario Buffelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scelfo, B., Buffelli, M.R. (2009). Developmental Axonal Pruning and Synaptic Plasticity. In: Umemori, H., Hortsch, M. (eds) The Sticky Synapse. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92708-4_5

Download citation

Publish with us

Policies and ethics