Extracellular Matrix Molecules in Neuromuscular Junctions and Central Nervous System Synapses

  • Laurent BogdanikEmail author
  • Robert W. BurgessEmail author


The formation and function of chemical synapses require the precise apposition of pre- and postsynaptic specializations. This alignment process requires trans-synaptic signaling, often mediated by transmembrane or matrix-bound molecules. In addition to the pre- and postsynaptic cells, the surrounding glial cells also contribute factors that are important in synapse formation and maintenance. This chapter will focus on the extracellular matrix molecules of the synapse, including those derived from the presynaptic terminal, the postsynaptic cell, and glial cells. We will also compare the composition and function of the matrix present in the cleft of the neuromuscular junction to that of central nervous system synapses and discuss the structural and signaling properties of these components.


Agrin Laminin Collagen Proteoglycans Thrombospondins 


  1. Adler M, Manley HA, Purcell AL et al. (2004) Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Muscle Nerve 30:317–327PubMedCrossRefGoogle Scholar
  2. Ai X, Kitazawa T, Do AT et al. (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development (Cambridge, England) 134:3327–3338Google Scholar
  3. Arber S and Caroni P (1995) Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol 131:1083–1094PubMedCrossRefGoogle Scholar
  4. Beeson D, Higuchi O, Palace J et al. (2006) Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science (New York, NY) 313:1975–1978Google Scholar
  5. Beltran-Valero de Bernabe D, Currier S, Steinbrecher A et al. (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Human Genet 71:1033–1043CrossRefGoogle Scholar
  6. Bogdanik L, Framery B, Frolich A et al. (2008) Muscle dystroglycan organizes the postsynapse and regulates presynaptic neurotransmitter release at the Drosophila neuromuscular junction. PLoS ONE 3:e2084PubMedCrossRefGoogle Scholar
  7. Brockington M, Blake DJ, Prandini P et al. (2001a) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Human Genet 69:1198–1209CrossRefGoogle Scholar
  8. Brockington M, Yuva Y, Prandini P et al. (2001b) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Human Mol Genet 10:2851–2859CrossRefGoogle Scholar
  9. Burden SJ, Sargent PB and McMahan UJ (1979) Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol 82:412–425PubMedCrossRefGoogle Scholar
  10. Burgess RW, Dickman DK, Nunez L et al. (2002) Mapping sites responsible for interactions of agrin with neurons. J Neurochem 83:271–284PubMedCrossRefGoogle Scholar
  11. Burgess RW, Nguyen QT, Son YJ et al. (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23:33–44PubMedCrossRefGoogle Scholar
  12. Burgess RW, Skarnes WC and Sanes JR (2000) Agrin isoforms with distinct amino termini: differential expression, localization, and function. J Cell Biol 151:41–52PubMedCrossRefGoogle Scholar
  13. Cartaud A, Strochlic L, Guerra M et al. (2004) MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. J Cell Biol 165:505–515PubMedCrossRefGoogle Scholar
  14. Cho SI, Ko J, Patton BL et al. (1998) Motor neurons and Schwann cells distinguish between synaptic and extrasynaptic isoforms of laminin. J Neurobiol 37:339–358PubMedCrossRefGoogle Scholar
  15. Christopherson KS, Ullian EM, Stokes CC et al. (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433PubMedCrossRefGoogle Scholar
  16. Cohen I, Rimer M, Lomo T et al. (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol Cell Neurosci 9:237–253PubMedCrossRefGoogle Scholar
  17. Colognato H and Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234PubMedCrossRefGoogle Scholar
  18. Cote PD, Moukhles H, Lindenbaum M et al. (1999) Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nature Genet 23:338–342PubMedCrossRefGoogle Scholar
  19. Dai Z and Peng HB (1995) Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J Neurosci 15:5466–5475PubMedGoogle Scholar
  20. DeChiara TM, Bowen DC, Valenzuela DM et al. (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512PubMedCrossRefGoogle Scholar
  21. Deprez P, Inestrosa NC and Krejci E (2003) Two different heparin-binding domains in the triple-helical domain of ColQ, the collagen tail subunit of synaptic acetylcholinesterase. J Biol Chem 278:23233–23242PubMedCrossRefGoogle Scholar
  22. Donger C, Krejci E, Serradell AP et al. (1998) Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (type Ic). Am J Hum Genet 63:967–75Google Scholar
  23. Feng G, Krejci E, Molgo J et al. (1999) Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J Cell Biol 144:1349–1360PubMedCrossRefGoogle Scholar
  24. Feng G, Tintrup H, Kirsch J et al. (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science (New York, NY) 282:1321–1324PubMedCrossRefGoogle Scholar
  25. Ferns M, Hoch W, Campanelli JT et al. (1992) RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron 8:1079–1086PubMedCrossRefGoogle Scholar
  26. Ferns MJ, Campanelli JT, Hoch W et al. (1993) The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11:491–502PubMedCrossRefGoogle Scholar
  27. Flanagan-Steet H, Fox MA, Meyer D et al. (2005) Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development (Cambridge, England) 132:4471–4481Google Scholar
  28. Fox MA, Sanes JR, Borza DB et al. (2007) Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129:179–193PubMedCrossRefGoogle Scholar
  29. Galtrey CM and Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54:1–18PubMedCrossRefGoogle Scholar
  30. Gingras J, Rassadi S, Cooper E et al. (2002) Agrin plays an organizing role in the formation of sympathetic synapses. J Cell Biol 158:1109–1118PubMedCrossRefGoogle Scholar
  31. Glass DJ, Bowen DC, Stitt TN et al. (1996) Agrin acts via a MuSK receptor complex. Cell 85:513–523PubMedCrossRefGoogle Scholar
  32. Godfrey EW, Nitkin RM, Wallace BG et al. (1984) Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J Cell Biol 99:615–627PubMedCrossRefGoogle Scholar
  33. Gould DB, Phalan FC, Breedveld GJ et al. (2005) Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science (New York, NY) 308:1167–1171PubMedCrossRefGoogle Scholar
  34. Grady RM, Zhou H, Cunningham JM et al. (2000) Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex. Neuron 25:279–293PubMedCrossRefGoogle Scholar
  35. Grewal PK, Holzfeind PJ, Bittner RE et al. (2001) Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nature Genet 28:151–154PubMedCrossRefGoogle Scholar
  36. Grow WA, Ferns M and Gordon H (1999a) A mechanism for acetylcholine receptor clustering distinct from agrin signaling. Dev Neurosci 21:436–443PubMedCrossRefGoogle Scholar
  37. Grow WA, Ferns M and Gordon H (1999b) Agrin-independent activation of the agrin signal transduction pathway. J Neurobiol 40:356–365PubMedCrossRefGoogle Scholar
  38. Hayashi YK, Ogawa M, Tagawa K et al. (2001) Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57:115–121PubMedGoogle Scholar
  39. Helbling-Leclerc A, Zhang X, Topaloglu H et al. (1995) Mutations in the laminin α-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nature Genet 11:216–218PubMedCrossRefGoogle Scholar
  40. Hess D, Keusch JJ, Oberstein SA et al. (2008) Peters Plus syndrome is a new congenital disorder of glycosylation and involves defective Omicron-glycosylation of thrombospondin type 1 repeats. J Biol Chem 283:7354–7360PubMedCrossRefGoogle Scholar
  41. Hilgenberg LG, Ho KD, Lee D et al. (2002) Agrin regulates neuronal responses to excitatory neurotransmitters in vitro and in vivo. Mol Cell Neurosci 19:97–110PubMedCrossRefGoogle Scholar
  42. Hilgenberg LG, Su H, Gu H et al. (2006) Alpha3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 125:359–369PubMedCrossRefGoogle Scholar
  43. Hoch W, Ferns M, Campanelli JT et al. (1993) Developmental regulation of highly active alternatively spliced forms of agrin. Neuron 11:479–490PubMedCrossRefGoogle Scholar
  44. Hunter DD, Shah V, Merlie JP et al. (1989) Laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338:229–234PubMedCrossRefGoogle Scholar
  45. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ et al. (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702PubMedCrossRefGoogle Scholar
  46. Ji RR, Bose CM, Lesuisse C et al. (1998) Specific agrin isoforms induce cAMP response element binding protein phosphorylation in hippocampal neurons. J Neurosci 18:9695–9702PubMedGoogle Scholar
  47. Kanagawa M, Michele DE, Satz JS et al. (2005) Disruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function. FEBS Lett 579:4792–4796PubMedCrossRefGoogle Scholar
  48. Kanagawa M, Saito F, Kunz S et al. (2004) Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117:953–964PubMedCrossRefGoogle Scholar
  49. Khoshnoodi J, Pedchenko V and Hudson BG (2008) Mammalian collagen IV. Microscopy research and technique 71:357–370PubMedCrossRefGoogle Scholar
  50. Kim N and Burden SJ (2008) MuSK controls where motor axons grow and form synapses. Nature Neurosci 11:19–27PubMedCrossRefGoogle Scholar
  51. Kim N, Stiegler AL, Cameron TO et al. (2008) Lrp4 Is a Receptor for Agrin and Forms a Complex with MuSK. Cell 135:334–42Google Scholar
  52. Kobayashi K, Nakahori Y, Miyake M et al. (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392PubMedCrossRefGoogle Scholar
  53. Krejci E, Thomine S, Boschetti N et al. (1997) The mammalian gene of acetylcholinesterase-associated collagen. J Biol Chem 272:22840–22847PubMedCrossRefGoogle Scholar
  54. Ksiazek I, Burkhardt C, Lin S et al. (2007) Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 27:7183–7195PubMedCrossRefGoogle Scholar
  55. Lein ES, Hawrylycz MJ, Ao N et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176PubMedCrossRefGoogle Scholar
  56. Letinsky MS, Fischbeck KH and McMahan UJ (1976) Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol 5:691–718PubMedCrossRefGoogle Scholar
  57. Levedakou EN, Chen XJ, Soliven B et al. (2005) Disruption of the mouse Large gene in the enr and myd mutants results in nerve, muscle, and neuromuscular junction defects. Mol Cell Neurosci 28:757–769PubMedCrossRefGoogle Scholar
  58. Libby RT, Lavallee CR, Balkema GW et al. (1999) Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 19:9399–9411PubMedGoogle Scholar
  59. Lin S, Landmann L, Ruegg MA et al. (2008a) The role of nerve- versus muscle-derived factors in mammalian neuromuscular junction formation. J Neurosci 28:3333–3340PubMedCrossRefGoogle Scholar
  60. Lin S, Maj M, Bezakova G et al. (2008b) Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc Natl Acad Sci USA 105:11406–11411PubMedCrossRefGoogle Scholar
  61. Lin W, Burgess RW, Dominguez B et al. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410:1057–1064PubMedCrossRefGoogle Scholar
  62. Lin W, Dominguez B, Yang J et al. (2005) Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46:569–579PubMedCrossRefGoogle Scholar
  63. Liu Y, Padgett D, Takahashi M et al. (2008) Essential roles of the acetylcholine receptor gamma-subunit in neuromuscular synaptic patterning. Development (Cambridge, England) 135:1957–1967PubMedCrossRefGoogle Scholar
  64. Longman C, Brockington M, Torelli S et al. (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Human Mol Genet 12:2853–2861CrossRefGoogle Scholar
  65. Marshall LM, Sanes JR and McMahan UJ (1977) Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proc Natl Acad Sci USA 74:3073–3077PubMedCrossRefGoogle Scholar
  66. Martin PT and Sanes JR (1995) Role for a synapse-specific carbohydrate in agrin-induced clustering of acetylcholine receptors. Neuron 14:743–754PubMedCrossRefGoogle Scholar
  67. Martin PT, Scott LJ, Porter BE et al. (1999) Distinct structures and functions of related pre- and postsynaptic carbohydrates at the mammalian neuromuscular junction. Mol Cell Neurosci 13:105–118PubMedCrossRefGoogle Scholar
  68. McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418PubMedGoogle Scholar
  69. Meier T, Hauser DM, Chiquet M et al. (1997) Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J Neurosci 17:6534–6544PubMedGoogle Scholar
  70. Michele DE, Barresi R, Kanagawa M et al. (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418:417–422PubMedCrossRefGoogle Scholar
  71. Miner JH, Patton BL, Lentz SI et al. (1997) The laminin α chains: expression, developmental transitions, and chromosomal locations of α1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel α3 isoform. J Cell Biol 137:685–701PubMedCrossRefGoogle Scholar
  72. Misgeld T, Kummer TT, Lichtman JW et al. (2005) Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc Natl Acad Sci USA 102:11088–11093PubMedCrossRefGoogle Scholar
  73. Molinari F, Rio M, Meskenaite V et al. (2002) Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science (New York, NY) 298:1779–1781PubMedCrossRefGoogle Scholar
  74. Neumann FR, Bittcher G, Annies M et al. (2001) An alternative amino-terminus expressed in the central nervous system converts agrin to a type II transmembrane protein. Mol Cell Neurosci 17:208–225PubMedCrossRefGoogle Scholar
  75. Nguyen QT, Parsadanian AS, Snider WD et al. (1998) Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science (New York, NY) 279:1725–1729PubMedCrossRefGoogle Scholar
  76. Nishimune H, Sanes JR and Carlson SS (2004) A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432:580–587PubMedCrossRefGoogle Scholar
  77. Nitkin RM, Smith MA, Magill C et al. (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478PubMedCrossRefGoogle Scholar
  78. Noakes PG, Gautam M, Mudd J et al. (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β 2. Nature 374:258–262PubMedCrossRefGoogle Scholar
  79. Ohno K, Brengman J, Tsujino A et al. (1998) Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (COLQ) of the asymmetric enzyme. Proc Natl Acad USA 95:9654–9659CrossRefGoogle Scholar
  80. Okada K, Inoue A, Okada M et al. (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science (New York, NY) 312:1802–1805PubMedCrossRefGoogle Scholar
  81. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22:108–112PubMedCrossRefGoogle Scholar
  82. Parkhomovskiy N, Kammesheidt A and Martin PT (2000) N-acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependent activation of MuSK and acetylcholine receptor clustering in skeletal muscle. Mol Cell Neurosci 15:380–397PubMedCrossRefGoogle Scholar
  83. Patton BL, Chiu AY and Sanes JR (1998) Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393:698–701PubMedCrossRefGoogle Scholar
  84. Patton BL, Cunningham JM, Thyboll J et al. (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nature Neurosci 4:597–604PubMedCrossRefGoogle Scholar
  85. Patton BL, Miner JH, Chiu AY et al. (1997) Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol 139:1507–1521PubMedCrossRefGoogle Scholar
  86. Perrier AL, Massoulie J and Krejci E (2002) PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron 33:275–285PubMedCrossRefGoogle Scholar
  87. Pizzorusso T, Medini P, Berardi N et al. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science (New York, NY) 298:1248–1251PubMedCrossRefGoogle Scholar
  88. Prior P, Schmitt B, Grenningloh G et al. (1992) Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8:1161–1170PubMedCrossRefGoogle Scholar
  89. Reif R, Sales S, Hettwer S et al. (2007) Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J 21:3468–3478PubMedCrossRefGoogle Scholar
  90. Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6:489–492PubMedCrossRefGoogle Scholar
  91. Rupp F, Ozcelik T, Linial M et al. (1992) Structure and chromosomal localization of the mammalian agrin gene. J Neurosci 12:3535–3544PubMedGoogle Scholar
  92. Rupp F, Payan DG, Magill-Solc C et al. (1991) Structure and expression of a rat agrin. Neuron 6:811–823PubMedCrossRefGoogle Scholar
  93. Saito F, Masaki T, Saito Y et al. (2007) Defective peripheral nerve myelination and neuromuscular junction formation in fukutin-deficient chimeric mice. J Neurochem 101:1712–1722PubMedCrossRefGoogle Scholar
  94. Sanes JR and Cheney JM (1982) Lectin binding reveals a synapse-specific carbohydrate in skeletal muscle. Nature 300:646–647PubMedCrossRefGoogle Scholar
  95. Sanes JR, Marshall LM and McMahan UJ (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol 78:176–198PubMedCrossRefGoogle Scholar
  96. Satz JS, Barresi R, Durbeej M et al. (2008) Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J Neurosci 28:10567–10575PubMedCrossRefGoogle Scholar
  97. Schwartz NB, Pirok EW, 3rd, Mensch JR, Jr. et al. (1999) Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. Prog Nucleic Acid Res Mol Biol 62:177–225PubMedCrossRefGoogle Scholar
  98. Scott LJ, Bacou F and Sanes JR (1988) A synapse-specific carbohydrate at the neuromuscular junction: association with both acetylcholinesterase and a glycolipid. J Neurosci 8:932–944PubMedGoogle Scholar
  99. Smith CL, Mittaud P, Prescott ED et al. (2001) Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J Neurosci 21:3151–3160PubMedGoogle Scholar
  100. Smith MA, Yao YM, Reist NE et al. (1987) Identification of agrin in electric organ extracts and localization of agrin-like molecules in muscle and central nervous system. J Exp Biol 132:223–230PubMedGoogle Scholar
  101. Son YJ, Scranton TW, Sunderland WJ et al. (2000) The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. J Biol Chem 275:451–460PubMedCrossRefGoogle Scholar
  102. Stanco AM and Werle MJ (1997) Agrin and acetylcholine receptors are removed from abandoned synaptic sites at reinnervated frog neuromuscular junctions. J Neurobiol 999–1018Google Scholar
  103. Stephan A, Mateos JM, Kozlov SV et al. (2008) Neurotrypsin cleaves agrin locally at the synapse. FASEB J 22:1861–1873PubMedCrossRefGoogle Scholar
  104. Sunada Y, Bernier SM, Utani A et al. (1995) Identification of a novel mutant transcript of laminin α2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Human Mol Genet 4:1055–1061CrossRefGoogle Scholar
  105. Sunderland WJ, Son YJ, Miner JH et al. (2000) The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (alpha4beta2gamma1) with non-erythroid spectrin. J Neurosci 20:1009–1019PubMedGoogle Scholar
  106. Takeda S, Kondo M, Sasaki J et al. (2003) Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Human Mol Genet 12:1449–1459CrossRefGoogle Scholar
  107. Tsim KW, Ruegg MA, Escher G et al. (1992a) cDNA that encodes active agrin. Neuron 8:677–689PubMedCrossRefGoogle Scholar
  108. Tsim KW, Ruegg MA, Escher G et al. (1992b) cDNA that encodes active agrin (published erratum appears in Neuron 1992 Aug. 9(2): following 381). Neuron 8:677–689PubMedCrossRefGoogle Scholar
  109. van Reeuwijk J, Grewal PK, Salih MA et al. (2007) Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Human Genet 121:685–690CrossRefGoogle Scholar
  110. van Reeuwijk J, Janssen M, van den Elzen C et al. (2005) POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med genetics 42:907–912CrossRefGoogle Scholar
  111. Van Saun M, Herrera AA and Werle MJ (2003) Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J Neurocytol 32:1129–1142CrossRefGoogle Scholar
  112. Van Saun M and Werle MJ (2000) Matrix metalloproteinase-3 removes agrin from synaptic basal lamina. J Neurobiol 44:369CrossRefGoogle Scholar
  113. Wairkar YP, Fradkin LG, Noordermeer JN et al. (2008) Synaptic defects in a Drosophila model of congenital muscular dystrophy. J Neurosci 28:3781–3789PubMedCrossRefGoogle Scholar
  114. Weatherbee SD, Anderson KV and Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development (Cambridge, England) 133:4993–5000PubMedCrossRefGoogle Scholar
  115. Xia B, Hoyte K, Kammesheidt A et al. (2002) Overexpression of the CT GalNAc transferase in skeletal muscle alters myofiber growth, neuromuscular structure, and laminin expression. Dev Biol 242:58–73PubMedCrossRefGoogle Scholar
  116. Xu H, Wu XR, Wewer UM et al. (1994) Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nature Genet 8:297–302PubMedCrossRefGoogle Scholar
  117. Yang X, Arber S, William C et al. (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30:399–410PubMedCrossRefGoogle Scholar
  118. Yin Y, Kikkawa Y, Mudd JL et al. (2003) Expression of laminin chains by central neurons: analysis with gene and protein trapping techniques. Genesis 36:114–127PubMedCrossRefGoogle Scholar
  119. Yoshida A, Kobayashi K, Manya H et al. (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1:717–724PubMedCrossRefGoogle Scholar
  120. Yurchenco PD and Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4:1577–1590PubMedGoogle Scholar
  121. Zhang B, Luo S, Wang Q et al. (2008) LRP4 serves as a coreceptor of agrin. Neuron 60:285–297PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Jackson LaboratoryBar HarborUSA

Personalised recommendations