Skip to main content

Ephrins and Eph Receptor Tyrosine Kinases in Synapse Formation

  • Chapter
  • First Online:
The Sticky Synapse

Abstract

Here, we discuss what is known about the function of ephrins and Eph receptors in synapse formation in the peripheral nervous system and central nervous system. Ephrins have been shown to be present and functional at synapses at the neuromuscular junction and in the brain; evidence at the neuromuscular junction implicates ephrins in the topographic mapping of synapses on certain muscles. Also, certain Eph receptors also function in synapse formation but less information is known about them including their distribution and function. In addition, future directions are defined. Together, these data implicate ephrins, as well as Ephs, strongly in synaptic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH, Wilkinson GA, Weiss C et al. (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    Article  PubMed  CAS  Google Scholar 

  • Arvanitis D and Davy A (2008) Eph/ephrin signaling: networks. Genes Dev 22:416–429

    Article  PubMed  CAS  Google Scholar 

  • Buchert M, Schneider S, Meskenaite V et al. (1999) The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell-cell contact in the brain. J Cell Biol 144:361–371

    Article  PubMed  CAS  Google Scholar 

  • Bourgin C, Murai KK, Richter M et al. (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178:1295–1307

    Article  PubMed  CAS  Google Scholar 

  • Chadaram SR, Laskowski MB and Madison RD (2007) Topographic specificity within membranes of a single muscle detected in vitro. J Neurosci 27:13938–13948

    Article  PubMed  CAS  Google Scholar 

  • Chauvet S, Cohen S, Yoshida Y et al. (2007) Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 56:807–822

    Article  PubMed  CAS  Google Scholar 

  • Cheng HJ, Nakamoto M, Bergemann AD et al. (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381

    Article  PubMed  CAS  Google Scholar 

  • Cowan CA and Henkemeyer M (2001) The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413:174–179

    Article  PubMed  CAS  Google Scholar 

  • Dailey ME and Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:2983–2994

    PubMed  CAS  Google Scholar 

  • Dalva MB, Takasu MA, Lin MZ et al. (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Gale NW, Aldrich TH et al. (1994) Ligands for the Eph-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819

    Article  PubMed  CAS  Google Scholar 

  • Davy A, Gale NW, Murray EW et al. (1999) Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev 13:3125–3135

    Article  PubMed  CAS  Google Scholar 

  • Donoghue MJ, Merlie J and Sanes JR (1996) The Eph kinase ligand AL-1 is expressed by rostral muscles and inhibits outgrowth from caudal neurons. Mol Cell Neurosci 8:185–198

    Article  CAS  Google Scholar 

  • Dottori M, Hartley L, Galea M et al. (1998) EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. PNAS 95:13248–13253

    Article  PubMed  CAS  Google Scholar 

  • Eberhart J, Swartz M, Koblar SA et al. (2000) Expression of EphA4, ephrin-A2 and ephrin-A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding. Dev Neurosci 22:237–250

    Article  PubMed  CAS  Google Scholar 

  • Eberhart J, Barr J, O’Connell S et al. (2004) Ephrin-A5 exerts positive or inhibitory effects on distinct subsets of EphA4-positive motor neurons. J Neurosci 24:1070–1078

    Article  PubMed  CAS  Google Scholar 

  • Eberhart J, Swartz ME, Koblar SA et al. (2002) EphA4 constitutes a population-specific guidance cue for motor neurons. Dev Biol 247:89–101

    Article  PubMed  CAS  Google Scholar 

  • Egea J, Nissen UV, Dufour A et al. (2005) Regulation of EphA4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47:515–528

    Article  PubMed  CAS  Google Scholar 

  • Ethell IM, Irie F, Kalo MS et al. (2001) EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Fanning AS and Anderson JM (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 103:767–772

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Laskowski MB, Feldheim DA et al. (2000) Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron 25:295–306

    Article  PubMed  CAS  Google Scholar 

  • Freywald A, Sharfe N and Roifman CM (2002) The kinase-null EphB6 receptor undergoes transphorylation in a complex with EphB1. J Biol Chem 277:3823–3828

    Article  PubMed  CAS  Google Scholar 

  • Fu W-Y, Chen Y, Sahin M et al. (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10:67–76

    Article  PubMed  CAS  Google Scholar 

  • Gale NW, Flenniken A, Compton DC et al. (1996) Elk-3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate, and hindbrain segments. Oncogene 13:1343–1352

    PubMed  CAS  Google Scholar 

  • Garcia SM, Casanueva MO, Silva MC et al. (2007) Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells. Genes Dev 21:3006–3016

    Article  PubMed  CAS  Google Scholar 

  • Giger RJ, Cloutier JF, Sahay A et al. (2000) Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25:29–41

    Article  PubMed  CAS  Google Scholar 

  • Grunwald IC, Korte M, Wolfer D et al. (2001) Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32:1027–1040

    Article  PubMed  CAS  Google Scholar 

  • Grunwald IC, Korte M, Adelmann G et al. (2004) Hippocampal plasticity requires postsynaptic ephrin-Bs. Nat Neurosci 7:33–40

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Osterfield M and Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289:1360–1365

    Article  PubMed  CAS  Google Scholar 

  • Helmbacher F, Schneider-Maunoury S, Topilko P et al. (2000) Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 127:3313–3324

    PubMed  CAS  Google Scholar 

  • Henkemeyer M, Orioli D, Henderson JT et al. (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer M, Itkis OS, Ngo M et al. (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Himanen JP, Saha N and Nikolov DB (2007) Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 19:534–542

    Article  PubMed  CAS  Google Scholar 

  • Himanen JP, Chumley MJ, Lackmann M et al. (2004) Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7:501–509

    Article  PubMed  CAS  Google Scholar 

  • Hoogenraad CC, Milstein AD, Ethell IM et al. (2005) GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat Neurosci 8:906–915

    PubMed  CAS  Google Scholar 

  • Hu JY, Chen Y and Schacher S (2007) Multifunctional role of protein kinase C in regulating the formation and maturation of specific synapses. J Neurosci 27:11712–11724

    Article  PubMed  CAS  Google Scholar 

  • Huber AB, Kania A, Tran TS et al. (2005) Distinct roles for secreted semaphoring signaling in spinal motor axon guidance. Neuron 48:949–964

    Article  PubMed  CAS  Google Scholar 

  • Irie F, Okuno M, Pasquale EB et al. (2005) EphrinB-EphB signaling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol 7:454–456

    Article  CAS  Google Scholar 

  • Irie F, Okumo M, Matsumoto K et al. (2008) Heparan sulfate regulates ephrin-A3/EphA receptor signaling. PNAS 34:12307–12312

    Article  Google Scholar 

  • Kayser MS, McClelland AC, Hughes EG et al. (2006) Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J Neurosci 26:12152–12164.

    Article  PubMed  CAS  Google Scholar 

  • Kayser MS, Nolt MJ and Dalva MB (2008) EphB receptors couple dendritic filopodia motility to synapse formation. Neuron 59:56–69

    Article  PubMed  CAS  Google Scholar 

  • Kania A, Johnson RL and Jessell TM (2000) Coordinate roles for LIM homeobox genes in directing dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102:161–173

    Article  PubMed  CAS  Google Scholar 

  • Kramer ER, Knott L, Su F et al. (2006) Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor axon pathway selection in the limb. Neuron 50:35–47

    Article  PubMed  CAS  Google Scholar 

  • Krull CE, Lansford R, Gale NW et al. (1997) Interaction of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 7:571–580

    Article  PubMed  CAS  Google Scholar 

  • Kullander K and Klein R (2002) Mechanisms and functions of Eph and ephrin signaling. Nat Rev Mol Cell Biol 3:475–486

    Article  PubMed  CAS  Google Scholar 

  • Kullander K, Mather NK, Diella F et al. (2001) Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 29:73–84

    Article  PubMed  CAS  Google Scholar 

  • Lackmann M, Oates AC, Dottori M et al. (1998) Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem 273:20228–20237

    Article  PubMed  CAS  Google Scholar 

  • Lampa SJ, Potluri S, Norton AS et al. (2004) Ephrin-A5 overexpression degrades topographic specificity in the mouse gluteus maximus muscle. Dev Brain Res 153:271–274

    Article  CAS  Google Scholar 

  • Lauterbach J and Klein R (2006) Release of full-length EphB2 receptors from hippocampal neurons to cocultured glial cells. J Neurosci 26:11575–11581

    Article  PubMed  CAS  Google Scholar 

  • Liebl DJ, Morris CJ, Henkemeyer M et al. (2003) mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res 71:7–22

    Article  PubMed  CAS  Google Scholar 

  • Lim BK, Matsuda N and Poo MM (2008) Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo. Nat Neurosci 11:160–169

    Article  PubMed  CAS  Google Scholar 

  • Lin KT, Sloniowski S, Ethell DW et al. (2008) Ephrin-B2 induced cleavage of EphB2 receptor is mediated by matrix metalloproteinases to trigger cell repulsion. J Biol Chem. (Available online)

    Google Scholar 

  • Liu Z, Conroy WG, Stawicki TM et al. (2008) EphB receptors co-distribute with a nicotinic receptor subtype and regulate nicotinic downstream signaling in neurons. Mol Cell Neurosci 38:236–244

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Sun EE, Klein RS et al. (2001) Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105:69–79

    Article  PubMed  CAS  Google Scholar 

  • Marston DJ, Dickinson S and Nobes CD (2003) Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat Cell Biol 5:879–888

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin T, Hindges R, Yates PA et al. (2003) Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal-ventral retinotopic mapping. Development 130:2407–2418

    Article  PubMed  CAS  Google Scholar 

  • Mendes SW, Henkemeyer M and Liebl DJ (2006) Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain. J Neurosci 26:882–892

    Article  PubMed  CAS  Google Scholar 

  • Migani P, Bartlett C, Dunlop S et al. (2007) Ephrin-B2 immunoreactivity distribution in the adult mouse brain. Brain Res 1182:60–72

    Article  PubMed  CAS  Google Scholar 

  • Murai KK, Nguyen LN, Irie F et al. (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153–160

    Article  PubMed  CAS  Google Scholar 

  • Murai KK and Pasquale EB (2004) Eph receptors, ephrins and synaptic function. The Neuroscientist 10:304–314

    Article  PubMed  CAS  Google Scholar 

  • Nishida H and Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27:331–340

    Article  PubMed  CAS  Google Scholar 

  • Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52

    Article  PubMed  CAS  Google Scholar 

  • Penzes P, Beeser A, Chernoff J et al. (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263–274

    Article  PubMed  CAS  Google Scholar 

  • Rodenas-Ruano A, Perez-Pinzon MA, Green EJ et al. (2006) Distinct roles for ephrin-B3 in the formation and function of hippocampal synapses. Dev Biol 292:34–45

    Article  PubMed  CAS  Google Scholar 

  • Sahin M, Greer PL, Lin MZ et al. (2005) Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46:191–204

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo M, Sudol M, Tang Z et al. (1993) Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122:789–807

    Article  PubMed  CAS  Google Scholar 

  • Shenoy-Scaria AM, Dietzen DJ, Kwong J et al. (1994) Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Cell Biol 126:353–363

    Article  PubMed  CAS  Google Scholar 

  • Shintani T, Ihara M, Sakuta H et al. (2006) Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 9:761–769

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Robinson V, Patel K et al. (1997) The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of brachial neural crest cells. Curr Biol 7:561–570

    Article  PubMed  CAS  Google Scholar 

  • Stapleton D, Balan I, Pawson T et al. (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 6:44–49

    Article  PubMed  CAS  Google Scholar 

  • Tolias KF, Bikoff JB, Kane CG et al. (2007) The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. PNAS 104:7265–7270

    Article  PubMed  CAS  Google Scholar 

  • Torres R, Firestein BL, Dong H et al. (1998) PDZ proteins bind, cluster and synaptically co-localize with Ephs and their ephrin ligands. Neuron 21:1227–1229

    Article  Google Scholar 

  • Thanos CD, Faham S, Goodwill KE et al. (1999) Monomeric structure of the human EphB2 sterile alpha motif domain. J Biol Chem 274:37301–37306

    Article  PubMed  CAS  Google Scholar 

  • Wang HU and Anderson DJ (1997) Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18:383–396

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Chadaram SR, Norton AS et al. (2001) Development of inhibition by ephrin-A5 on outgrowth of embryonic spinal motor neurites. J Neurobiol 47:233–243

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2:155–164

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y and Pasquale EB (2004) Eph receptors in the adult brain. Curr Opin Neurobiol 14:288–296

    Article  PubMed  CAS  Google Scholar 

  • Zimmer M, Palmer A, Kohler J et al. (2003) EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol 5:869–878

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Krull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krull, C.E., Liebl, D.J. (2009). Ephrins and Eph Receptor Tyrosine Kinases in Synapse Formation. In: Umemori, H., Hortsch, M. (eds) The Sticky Synapse. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92708-4_16

Download citation

Publish with us

Policies and ethics