Skip to main content

Cell Adhesion Molecules of the NCAM Family and Their Roles at Synapses

  • Chapter
  • First Online:
The Sticky Synapse

Abstract

NCAM-type proteins modulate multiple neuronal functions, including the outgrowth and guidance of neurites, the formation, maturation, and plasticity of synapses, and the induction of both long-term potentiation and long-term depression. The ectodomains of NCAM proteins have a basic structure of five amino-terminal immunoglobulin (Ig), followed by two fibronectin type III (FnIII) modules. As a result of alternative splicing, many NCAM-type proteins exist in several isoforms, including both transmembrane and glycosylphosphatidylinositol (GPI)-anchored versions. Extracellularly, NCAM proteins mediate cell–cell adhesion through homophilic interactions and bind to growth factors, growth factor receptors, glutamate receptors, other CAMs, and components of the extracellular matrix. Intracellularly, NCAM-type proteins interact with various cytoskeletal proteins and regulators of intracellular signal transduction. A central feature of the synaptic function of NCAM proteins is the regulation of their extracellular interactions by adhesion-modulating glycoepitopes, their removal from the cell surface by endocytosis, and the elimination of their adhesion-mediating interactions by the proteolytic cleavage of their ectodomains. Although specific aspects of NCAM proteins have changed through evolution, core structural and functional features are conserved between NCAM-type proteins in vertebrates and invertebrates, demonstrating that the functions of this class of adhesive proteins are of general importance during nervous system formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G, Verkhrastky A et al. (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci. 32:19–29

    Google Scholar 

  • Alberini CM, Ghirardi M, Metz R et al. (1994) C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76:1099–1114

    PubMed  CAS  Google Scholar 

  • Alenius M and Bohm S (1997) Identification of a novel neural cell adhesion molecule-related gene with a potential role in selective axonal projection. J Biol Chem 272:26083–26086

    PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan YL et al. (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    PubMed  CAS  Google Scholar 

  • Angata K, Huckaby V, Ranscht B et al. (2007) Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol 27:6659–6668

    PubMed  CAS  Google Scholar 

  • Angata K, Long JM, Bukalo O et al. (2004) Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J Biol Chem 279:32603–32613

    PubMed  CAS  Google Scholar 

  • Angata K, Suzuki M and Fukuda M (2002) ST8Sia II and ST8Sia IV polysialyltransferases exhibit marked differences in utilizing various acceptors containing oligosialic acid and short polysialic acid. The basis for cooperative polysialylation by two enzymes. J Biol Chem 277:36808–36817

    PubMed  CAS  Google Scholar 

  • Aparicio S (2000) Vertebrate evolution: recent perspectives from fish. Trends Genet 16:54–56

    PubMed  CAS  Google Scholar 

  • Bailey CH, Chen M, Keller F et al. (1992) Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science 256:645–649

    PubMed  CAS  Google Scholar 

  • Bailey CH, Kaang BK, Chen M et al. (1997) Mutation in the phosphorylation sites of MAP kinase blocks learning-related internalization of apCAM in Aplysia sensory neurons. Neuron 18:913–924

    PubMed  CAS  Google Scholar 

  • Baines RA, Seugnet L, Thompson A et al. (2002) Regulation of synaptic connectivity: levels of Fasciclin II influence synaptic growth in the Drosophila CNS. J Neurosci 22:6587–6595

    PubMed  CAS  Google Scholar 

  • Barbeau D, Liang JJ, Robitalille Y et al. (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92:2785–2789

    PubMed  CAS  Google Scholar 

  • Barthels D, Vopper G, Boned A et al. (1992) High degree of NCAM diversity generated by alternative RNA splicing in brain and muscle. Eur J Neurosci 4:327–337

    PubMed  Google Scholar 

  • Barthels D, Vopper G and Wille W (1988) NCAM-180, the large isoform of the neural cell adhesion molecule of the mouse, is encoded by an alternatively spliced transcript. Nucleic Acids Res 16:4217–4225

    PubMed  CAS  Google Scholar 

  • Beltran PJ and Bixby JL (2003) Receptor protein tyrosine phosphatases as mediators of cellular adhesion. Front Biosci 8:d87–99

    PubMed  CAS  Google Scholar 

  • Bixby JL, Baerwald-De la Torre K, Wang C et al. (2002) A neuronal inhibitory domain in the N-terminal half of agrin. J Neurobiol 50:164–179

    PubMed  CAS  Google Scholar 

  • Bodrikov V, Leshchyns’ka I, Sytnyk V et al. (2005) RPTPalpha is essential for NCAM-mediated p59fyn activation and neurite elongation. J Cell Biol 168:127–139

    PubMed  CAS  Google Scholar 

  • Bodrikov V, Sytnyk V, Leshchyns’ka I et al. (2008) NCAM induces CaMKIIalpha-mediated RPTPalpha phosphorylation to enhance its catalytic activity and neurite outgrowth. J Cell Biol 182:1185–1200

    PubMed  CAS  Google Scholar 

  • Boggon TJ, Murray J, Chappuis-Flament S et al. (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313

    PubMed  CAS  Google Scholar 

  • Bouzioukh F, Tell F, Jean A et al. (2001) NMDA receptor and nitric oxide synthase activation regulate polysialylated neural cell adhesion molecule expression in adult brainstem synapses. J Neurosci 21:4721–4730

    PubMed  CAS  Google Scholar 

  • Brunner A and O’Kane CJ (1997) The fascination of the Drosophila NMJ. Trends Genet 13:85–87

    PubMed  CAS  Google Scholar 

  • Bruses JL and Rutishauser U (1998) Regulation of neural cell adhesion molecule polysialylation: evidence for nontranscriptional control and sensitivity to an intracellular pool of calcium. J Cell Biol 140:1177–1186

    PubMed  CAS  Google Scholar 

  • Budnik V (1996) Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol 6:858–867

    PubMed  CAS  Google Scholar 

  • Bushell KM, Sollner C, Schuster-Boeckler B et al. (2008) Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res 18:622–630

    PubMed  CAS  Google Scholar 

  • Buttner B and Horstkorte R (2008) Intracelluar ligands of NCAM. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9592-1

    Google Scholar 

  • Buttner B, Kannicht C, Reutter W et al. (2003) The neural cell adhesion molecule is associated with major components of the cytoskeleton. Biochem Biophys Res Commun 310:967–971

    PubMed  Google Scholar 

  • Buttner B, Kannicht C, Reutter W et al. (2005) Novel cytosolic binding partners of the neural cell adhesion molecule: mapping the binding domains of PLC gamma, LANP, TOAD-64, syndapin, PP1, and PP2A. Biochemistry 44:6938–6947

    PubMed  Google Scholar 

  • Chen A, Haines S, Maxson K et al. (1994) VASE exon expression alters NCAM-mediated cell-cell interactions. J Neurosci Res 38:483–492

    PubMed  CAS  Google Scholar 

  • Chen CP, Posy S, Ben-Shaul A et al. (2005) Specificity of cell-cell adhesion by classical cadherins: critical role for low-affinity dimerization through beta-strand swapping. Proc Natl Acad Sci USA 102:8531–8536

    PubMed  CAS  Google Scholar 

  • Close BE, Mendiratta SS, Geiger KM et al. (2003) The minimal structural domains required for neural cell adhesion molecule polysialylation by PST/ST8Sia IV and STX/ST8Sia II. J Biol Chem 278:30796–30805

    PubMed  CAS  Google Scholar 

  • Cole GJ and Akeson R (1989) Identification of a heparin binding domain of the neural cell adhesion molecule N-CAM using synthetic peptides. Neuron 2:1157–1165

    PubMed  CAS  Google Scholar 

  • Colley KJ (2008) Structural basis for the polysialylation of the neural cell adhesion molecule. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9652-6

    Google Scholar 

  • Consortium TU (2008) The universal protein resource (UniProt). Nucleic Acids Res 36:D190–195

    Google Scholar 

  • Cunningham BA, Hemperly JJ, Murray BA et al. (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–806

    PubMed  CAS  Google Scholar 

  • Davis GW, Schuster CM and Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. III. CREB is necessary for presynaptic functional plasticity. Neuron 17:669–679

    PubMed  CAS  Google Scholar 

  • Dickson G, Gower HJ, Barton CH et al. (1987) Human muscle neural cell adhesion molecule (N-CAM): identification of a muscle-specific sequence in the extracellular domain. Cell 50:1119–1130

    PubMed  CAS  Google Scholar 

  • Diestel S, Hinkle CL, Schmitz B et al. (2005) NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding. J Neurochem 95:1777–1784

    PubMed  CAS  Google Scholar 

  • Ditlevsen DK and Kolkova K (2008) Signaling pathways involved in NCAM-induced neurite outgrowth. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9768-8

    Google Scholar 

  • Ditlevsen DK, Povlsen GK, Berezin V et al. (2008) NCAM-induced intracellular signaling revisited. J Neurosci Res 86:727–743

    PubMed  CAS  Google Scholar 

  • Dityatev A, Dityateva G, Sytnyk V et al. (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372–9382

    PubMed  CAS  Google Scholar 

  • Doherty P, Ashton SV, Moore SE et al. (1991) Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 67:21–33

    PubMed  CAS  Google Scholar 

  • Doherty P, Moolenaar CE, Ashton SV et al. (1992) The VASE exon downregulates the neurite growth-promoting activity of NCAM 140. Nature 356:791–793

    PubMed  CAS  Google Scholar 

  • Dowsing B, Puche A, Hearn C et al. (1997) Presence of novel N-CAM glycoforms in the rat olfactory system. J Neurobiol 32:659–670

    PubMed  CAS  Google Scholar 

  • Dzhandzhugazyan K and Bock E (1993) Demonstration of (Ca(2+)-Mg2+)-ATPase activity of the neural cell adhesion molecule. FEBS Lett 336:279–283

    PubMed  CAS  Google Scholar 

  • Dzhandzhugazyan K and Bock E (1997) Demonstration of an extracellular ATP-binding site in NCAM: functional implications of nucleotide binding. Biochemistry 36:15381–15395

    PubMed  CAS  Google Scholar 

  • Eckhardt M, Bukalo O, Chazal G et al. (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20:5234–5244

    PubMed  CAS  Google Scholar 

  • Edelman GM and Chuong CM (1982) Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci USA 79:7036–7040

    PubMed  CAS  Google Scholar 

  • El Maarouf A and Rutishauser U (2003) Removal of polysialic acid induces aberrant pathways, synaptic vesicle distribution, and terminal arborization of retinotectal axons. J Comp Neurol 460:203–211

    PubMed  CAS  Google Scholar 

  • El Maarouf A and Rutishauser U (2008) Use of PSA-NCAM in repair of the central nervous system. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9635-7

    Google Scholar 

  • Endo A, Hashimoto K, Takada Y et al. (1999a) The activation of the tissue plasminogen activator-plasmin system induced in the mouse hippocampus after injection of trimethyltin: possible proteolysis of highly polysialylated NCAM. Jpn J Physiol 49:463–466

    Google Scholar 

  • Endo A, Nagai N, Urano T et al. (1998) Proteolysis of highly polysialylated NCAM by the tissue plasminogen activator-plasmin system in rats. Neurosci Lett 246:37–40

    PubMed  CAS  Google Scholar 

  • Endo A, Nagai N, Urano T et al. (1999b) Proteolysis of neuronal cell adhesion molecule by the tissue plasminogen activator-plasmin system after kainate injection in the mouse hippocampus. Neurosci Res 33:1–8

    Google Scholar 

  • Fazeli MS, Breen K, Errington ML et al. (1994) Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci Lett 169:77–80

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    PubMed  CAS  Google Scholar 

  • Fewou SN, Ramakrishnan H, Bussow H et al. (2007) Down-regulation of polysialic acid is required for efficient myelin formation. J Biol Chem 282:16700–16711

    PubMed  CAS  Google Scholar 

  • Foley AG, Hartz BP, Gallagher HC et al. (2000) A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J Neurochem 74:2607–2613

    PubMed  CAS  Google Scholar 

  • Forni JJ, Romani S, Doherty P et al. (2004) Neuroglian and Fasciclin II can promote neurite outgrowth via the FGF receptor Heartless. Mol Cell Neurosci 26:282–291

    PubMed  CAS  Google Scholar 

  • Friedlander DR, Milev P, Karthikeyan L et al. (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 125:669–680

    PubMed  CAS  Google Scholar 

  • Fu M, Vohra BP, Wind D et al. (2006) BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev Biol 299:137–150

    PubMed  CAS  Google Scholar 

  • Fux CM, Krug M, Dityatev A et al. (2003) NCAM180 and glutamate receptor subtypes in potentiated spine synapses: an immunogold electron microscopic study. Mol Cell Neurosci 24:939–950

    PubMed  CAS  Google Scholar 

  • Gallagher HC, Murphy KJ, Foley AG et al. (2001) Protein kinase C delta regulates neural cell adhesion molecule polysialylation state in the rat brain. J Neurochem 77:425–434

    PubMed  CAS  Google Scholar 

  • Gallagher HC, Odumeru OA and Regan CM (2000) Regulation of neural cell adhesion molecule polysialylation state by cell-cell contact and protein kinase C delta. J Neurosci Res 61:636–645

    PubMed  CAS  Google Scholar 

  • Gascon E, Vutskits L and Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101–118

    PubMed  CAS  Google Scholar 

  • Gascon E, Vutskits L and Kiss JZ (2008) The Role of PSA-NCAM in Adult Neurogenesis. Neurochem Res

    Google Scholar 

  • Gennarini G, Rougon G, Deagostini-Bazin H et al. (1984) Studies on the transmembrane disposition of the neural cell adhesion molecule N-CAM. A monoclonal antibody recognizing a cytoplasmic domain and evidence for the presence of phosphoserine residues. Eur J Biochem 142:57–64

    PubMed  CAS  Google Scholar 

  • Gower HJ, Barton CH, Elsom VL et al. (1988) Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55:955–964

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Rehm EJ and Goodman CS (1991) Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell 67:45–57

    PubMed  CAS  Google Scholar 

  • Grumet M, Flaccus A and Margolis RU (1993) Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol 120:815–824

    PubMed  CAS  Google Scholar 

  • Hammond MS, Sims C, Parameshwaran K et al. (2006) Neural cell adhesion molecule-associated polysialic acid inhibits NR2B-containing N-methyl-d-aspartate receptors and prevents glutamate-induced cell death. J Biol Chem 281:34859–34869

    PubMed  CAS  Google Scholar 

  • Hamshere M, Dickson G and Eperon I (1991) The muscle specific domain of mouse N-CAM: structure and alternative splicing patterns. Nucleic Acids Res 19:4709–4716

    PubMed  CAS  Google Scholar 

  • Han JH, Lim CS, Lee YS et al. (2004) Role of Aplysia cell adhesion molecules during 5-HT-induced long-term functional and structural changes. Learn Mem 11:421–435

    PubMed  Google Scholar 

  • Hansen RK, Christensen C, Korshunova I et al. (2007) Identification of NCAM-binding peptides promoting neurite outgrowth via a heterotrimeric G-protein-coupled pathway. J Neurochem 103:1396–1407

    PubMed  CAS  Google Scholar 

  • Harduin-Lepers A, Mollicone R, Delannoy P et al. (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817

    PubMed  CAS  Google Scholar 

  • Hata K, Polo-Parada L and Landmesser LT (2007) Selective targeting of different neural cell adhesion molecule isoforms during motoneuron myotube synapse formation in culture and the switch from an immature to mature form of synaptic vesicle cycling. J Neurosci 27:14481–14493

    PubMed  CAS  Google Scholar 

  • He HT, Barbet J, Chaix JC et al. (1986) Phosphatidylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule. Embo J 5:2489–2494

    PubMed  CAS  Google Scholar 

  • Hebbar S, Hall RE, Demski SA et al. (2006) The adult abdominal neuromuscular junction of Drosophila: a model for synaptic plasticity. J Neurobiol 66:1140–1155

    PubMed  Google Scholar 

  • Hemperly JJ, Murray BA, Edelman GM et al. (1986) Sequence of a cDNA clone encoding the polysialic acid-rich and cytoplasmic domains of the neural cell adhesion molecule N-CAM. Proc Natl Acad Sci USA 83:3037–3041

    PubMed  CAS  Google Scholar 

  • Higgins MR, Gibson NJ, Eckholdt PA et al. (2002) Different isoforms of fasciclin II are expressed by a subset of developing olfactory receptor neurons and by olfactory-nerve glial cells during formation of glomeruli in the moth Manduca sexta. Dev Biol 244:134–154

    PubMed  CAS  Google Scholar 

  • Hildebrandt H, Becker C, Murau M et al. (1998) Heterogeneous expression of the polysialyltransferases ST8Sia II and ST8Sia IV during postnatal rat brain development. J Neurochem 71:2339–2348

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt H, Muhlenhoff M and Gerardy-Schahn R (2008) Polysialylation of NCAM. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9724-7

    Google Scholar 

  • Hildebrandt H, Muhlenhoff M, Weinhold B et al. (2007) Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 103 Suppl 1:56–64

    Google Scholar 

  • HLDM (2008) http://www.hcdm.org/MoleculeInformation/tabid/54/Default.aspx.

  • Hoeffer CA, Sanyal S and Ramaswami M (2003) Acute induction of conserved synaptic signaling pathways in Drosophila melanogaster. J Neurosci 23:6362–6372

    PubMed  CAS  Google Scholar 

  • Hoffman KB, Larson J, Bahr BA et al. (1998) Activation of NMDA receptors stimulates extracellular proteolysis of cell adhesion molecules in hippocampus. Brain Res 811:152–155

    PubMed  CAS  Google Scholar 

  • Hoffman S, Chuong CM and Edelman GM (1984) Evolutionary conservation of key structures and binding functions of neural cell adhesion molecules. Proc Natl Acad Sci USA 81:6881–6885

    PubMed  CAS  Google Scholar 

  • Horstkorte R, Schachner M, Magyar JP et al. (1993) The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J Cell Biol 121:1409–1421

    PubMed  CAS  Google Scholar 

  • Hotta K, Motoi Y, Okutani A et al. (2007) Role of GPI-anchored NCAM-120 in rabies virus infection. Microbes Infect 9:167–174

    PubMed  CAS  Google Scholar 

  • Hu Y, Barzilai A, Chen M et al. (1993) 5-HT and cAMP induce the formation of coated pits and vesicles and increase the expression of clathrin light chain in sensory neurons of aplysia. Neuron 10:921–929

    PubMed  CAS  Google Scholar 

  • Huang Y, Jellies J, Johansen KM et al. (1997) Differential glycosylation of tractin and LeechCAM, two novel Ig superfamily members, regulates neurite extension and fascicle formation. J Cell Biol 138:143–157

    PubMed  CAS  Google Scholar 

  • Hubschmann MV, Skladchikova G, Bock E et al. (2005) Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J Neurosci Res 80:826–837

    PubMed  Google Scholar 

  • Jacque CM, Jorgensen OS and Bock E (1974) Quantitative studies on the brain specific antigens S-100, GFA, 14-3-2, D1, D2, D3 and C1 in Quaking mouse. FEBS Lett 49:264–266

    PubMed  CAS  Google Scholar 

  • Jakovcevski I, Mo Z and Zecevic N (2007) Down-regulation of the axonal polysialic acid-neural cell adhesion molecule expression coincides with the onset of myelination in the human fetal forebrain. Neuroscience 149:328–337

    PubMed  CAS  Google Scholar 

  • Jie C, Zipser B, Jellies J et al. (1999) Differential glycosylation and proteolytical processing of LeechCAM in central and peripheral leech neurons. Biochim Biophys Acta 1452:161–171

    PubMed  CAS  Google Scholar 

  • Jin K, Peel AL, Mao XO et al. (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343–347

    PubMed  CAS  Google Scholar 

  • Jorgensen OS and Bock E (1974) Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J Neurochem 23:879–880

    PubMed  CAS  Google Scholar 

  • Kalus I, Bormann U, Mzoughi M et al. (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98:78–88

    PubMed  CAS  Google Scholar 

  • Kasper C, Rasmussen H, Kastrup JS et al. (2000) Structural basis of cell-cell adhesion by NCAM. Nat Struct Biol 7:389–393

    PubMed  CAS  Google Scholar 

  • Kazama H, Nose A and Morimoto-Tanifuji T (2007) Synaptic components necessary for retrograde signaling triggered by calcium/calmodulin-dependent protein kinase II during synaptogenesis. Neuroscience 145:1007–1015

    PubMed  CAS  Google Scholar 

  • Kessels MM and Qualmann B (2004) The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci 117:3077–3086

    PubMed  CAS  Google Scholar 

  • Key B and Akeson RA (1990) Olfactory neurons express a unique glycosylated form of the neural cell adhesion molecule (N-CAM). J Cell Biol 110:1729–1743

    PubMed  CAS  Google Scholar 

  • Key B and Akeson RA (1991) Delineation of olfactory pathways in the frog nervous system by unique glycoconjugates and N-CAM glycoforms. Neuron 6:381–396

    PubMed  CAS  Google Scholar 

  • Kiryushko D, Korshunova I, Berezin V et al. (2006) Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis. Mol Biol Cell 17:2278–2286

    PubMed  CAS  Google Scholar 

  • Kiselyov VV, Skladchikova G, Hinsby AM et al. (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11:691–701

    PubMed  CAS  Google Scholar 

  • Kiselyov VV, Soroka V, Berezin V et al. (2005) Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 94:1169–1179

    PubMed  CAS  Google Scholar 

  • Kitazume-Kawaguchi S, Kabata S and Arita M (2001) Differential biosynthesis of polysialic or disialic acid Structure by ST8Sia II and ST8Sia IV. J Biol Chem 276:15696–15703

    PubMed  CAS  Google Scholar 

  • Kochoyan A, Poulsen FM, Berezin V et al. (2008) Structural basis for the activation of FGFR by NCAM. Protein Sci 17:1698–1705

    PubMed  CAS  Google Scholar 

  • Koh YH, Ruiz-Canada C, Gorczyca M et al. (2002) The Ras1-mitogen-activated protein kinase signal transduction pathway regulates synaptic plasticity through fasciclin II-mediated cell adhesion. J Neurosci 22:2496–2504

    PubMed  CAS  Google Scholar 

  • Kohsaka H, Takasu E and Nose A (2007) In vivo induction of postsynaptic molecular assembly by the cell adhesion molecule Fasciclin2. J Cell Biol 179:1289–1300

    PubMed  CAS  Google Scholar 

  • Kolkova K, Stensman H, Berezin V et al. (2005) Distinct roles of PKC isoforms in NCAM-mediated neurite outgrowth. J Neurochem 92:886–894

    PubMed  CAS  Google Scholar 

  • Krieg PA, Sakaguchi DS and Kintner CR (1989) Primary structure and developmental expression of a large cytoplasmic domain form of Xenopus laevis neural cell adhesion molecule (NCAM). Nucleic Acids Res 17:10321–10335

    PubMed  CAS  Google Scholar 

  • Kristiansen LV and Hortsch M (2008) Fasciclin II: the NCAM Ortholog in Drosophila melanogaster. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-007-9566-8

    Google Scholar 

  • Kristiansen LV, Marques FA, Soroka V et al. (1999) Homophilic NCAM interactions interfere with L1 stimulated neurite outgrowth. FEBS Lett 464:30–34

    PubMed  CAS  Google Scholar 

  • Kudo M, Takayama E, Tadakuma T et al. (1998) Molecular cloning of ssd-form neural cell adhesion molecules (N-CAMs) as the major form in Xenopus heart. Biochem Biophys Res Commun 245:127–132

    PubMed  CAS  Google Scholar 

  • Kulahin N, Rudenko O, Kiselyov V et al. (2005) Modulation of the homophilic interaction between the first and second Ig modules of neural cell adhesion molecule by heparin. J Neurochem 95:46–55

    PubMed  CAS  Google Scholar 

  • Kulahin N and Walmod PS (2008) The neural cell adhesion molecule NCAM2/OCAM/RNCAM, a close relative to NCAM. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9614-z

    Google Scholar 

  • Lafon M (2005) Rabies virus receptors. J Neurovirol 11:82–87

    PubMed  CAS  Google Scholar 

  • Lee SH, Lim CS, Park H et al. (2007) Nuclear translocation of CAM-associated protein activates transcription for long-term facilitation in Aplysia. Cell 129:801–812

    PubMed  CAS  Google Scholar 

  • Leshchyns’ka I, Sytnyk V, Morrow JS et al. (2003) Neural cell adhesion molecule (NCAM) association with PKCbeta2 via betaI spectrin is implicated in NCAM-mediated neurite outgrowth. J Cell Biol 161:625–639

    PubMed  Google Scholar 

  • Lewis CM, Levinson DF, Wise LH et al. (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 73:34–48

    PubMed  CAS  Google Scholar 

  • Li M, Makkinje A and Damuni Z (1996) Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. Biochemistry 35:6998–7002

    PubMed  CAS  Google Scholar 

  • Liedtke S, Geyer H, Wuhrer M et al. (2001) Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology 11:373–384

    PubMed  CAS  Google Scholar 

  • Lin DM, Fetter RD, Kopczynski C et al. (1994) Genetic analysis of Fasciclin II in Drosophila: defasciculation, refasciculation, and altered fasciculation. Neuron 13:1055–1069

    PubMed  CAS  Google Scholar 

  • Little EB, Crossin KL, Krushel LA et al. (2001) A short segment within the cytoplasmic domain of the neural cell adhesion molecule (N-CAM) is essential for N-CAM-induced NF-kappa B activity in astrocytes. Proc Natl Acad Sci USA 98:2238–2243

    PubMed  CAS  Google Scholar 

  • Little EB, Edelman GM and Cunningham BA (1998) Palmitoylation of the cytoplasmic domain of the neural cell adhesion molecule N-CAM serves as an anchor to cellular membranes. Cell Adhes Commun 6:415–430

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Haines S, Shew R et al. (1993) Axon growth is enhanced by NCAM lacking the VASE exon when expressed in either the growth substrate or the growing axon. J Neurosci Res 35:327–345

    PubMed  CAS  Google Scholar 

  • Lyles JM, Linnemann D and Bock E (1984) Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes. J Cell Biol 99:2082–2091

    PubMed  CAS  Google Scholar 

  • Markram K, Gerardy-Schahn R and Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 144:788–796

    PubMed  CAS  Google Scholar 

  • Martin KC, Michael D, Rose JC et al. (1997) MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18:899–912

    PubMed  CAS  Google Scholar 

  • Martin PT (2002) Glycobiology of the synapse. Glycobiology 12:1R–7R

    PubMed  CAS  Google Scholar 

  • Marx M, Rivera-Milla E, Stummeyer K et al. (2007) Divergent evolution of the vertebrate polysialyltransferase Stx and Pst genes revealed by fish-to-mammal comparison. Dev Biol 306:560–571

    PubMed  CAS  Google Scholar 

  • Mathew D, Popescu A and Budnik V (2003) Drosophila amphiphysin functions during synaptic Fasciclin II membrane cycling. J Neurosci 23:10710–10716

    PubMed  CAS  Google Scholar 

  • Mayanil CS, George D, Freilich L et al. (2001) Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 276:49299–49309

    PubMed  CAS  Google Scholar 

  • Mayanil CS, George D, Mania-Farnell B et al. (2000) Overexpression of murine Pax3 increases NCAM polysialylation in a human medulloblastoma cell line. J Biol Chem 275:23259–23266

    PubMed  CAS  Google Scholar 

  • Mayford M, Barzilai A, Keller F et al. (1992) Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256:638–644

    PubMed  CAS  Google Scholar 

  • Mendiratta SS, Sekulic N, Hernandez-Guzman FG et al. (2006) A novel alpha-helix in the first fibronectin type III repeat of the neural cell adhesion molecule is critical for N-glycan polysialylation. J Biol Chem 281:36052–36059

    PubMed  CAS  Google Scholar 

  • Mendiratta SS, Sekulic N, Lavie A et al. (2005) Specific amino acids in the first fibronectin type III repeat of the neural cell adhesion molecule play a role in its recognition and polysialylation by the polysialyltransferase ST8Sia IV/PST. J Biol Chem 280:32340–32348

    PubMed  CAS  Google Scholar 

  • Milev P, Maurel P, Haring M et al. (1996) TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-zeta/beta, and N-CAM. J Biol Chem 271:15716–15723

    PubMed  CAS  Google Scholar 

  • Milev P, Meyer-Puttlitz B, Margolis RK et al. (1995) Complex-type asparagine-linked oligosaccharides on phosphacan and protein-tyrosine phosphatase-zeta/beta mediate their binding to neural cell adhesion molecules and tenascin. J Biol Chem 270:24650–24653

    PubMed  CAS  Google Scholar 

  • Minana R, Duran JM, Tomas M et al. (2001) Neural cell adhesion molecule is endocytosed via a clathrin-dependent pathway. Eur J Neurosci 13:749–756

    PubMed  CAS  Google Scholar 

  • Minturn JE, Fryer HJ, Geschwind DH et al. (1995) TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J Neurosci 15:6757–6766

    PubMed  CAS  Google Scholar 

  • Mizuno T, Kawasaki M, Nakahira M et al. (2001) Molecular diversity in zebrafish NCAM family: three members with different VASE usage and distinct localization. Mol Cell Neurosci 18:119–130

    PubMed  CAS  Google Scholar 

  • Montarolo PG, Goelet P, Castellucci VF et al. (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234:1249–1254

    PubMed  CAS  Google Scholar 

  • Montarolo PG, Kandel ER and Schacher S (1988) Long-term heterosynaptic inhibition in Aplysia. Nature 333:171–174

    PubMed  CAS  Google Scholar 

  • Muller D, Wang C, Skibo G et al. (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413–422

    PubMed  CAS  Google Scholar 

  • Murakami T and Ohtsuka A (2003) Perisynaptic barrier of proteoglycans in the mature brain and spinal cord. Arch Histol Cytol 66:195–207

    PubMed  CAS  Google Scholar 

  • Murphy KJ, Foley AG, O’Connell A W et al. (2006) Chronic exposure of rats to cognition enhancing drugs produces a neuroplastic response identical to that obtained by complex environment rearing. Neuropsychopharmacology 31:90–100

    PubMed  CAS  Google Scholar 

  • Murray BA, Hemperly JJ, Prediger EA et al. (1986a) Alternatively spliced mRNAs code for different polypeptide chains of the chicken neural cell adhesion molecule (N-CAM). J Cell Biol 102:189–193

    Google Scholar 

  • Murray BA, Owens GC, Prediger EA et al. (1986b) Cell surface modulation of the neural cell adhesion molecule resulting from alternative mRNA splicing in a tissue-specific developmental sequence. J Cell Biol 103:1431–1439

    Google Scholar 

  • Nene V, Wortman JR, Lawson D et al. (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    PubMed  CAS  Google Scholar 

  • Ngo ST, Noakes PG and Phillips WD (2007) Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol 39:863–867

    PubMed  CAS  Google Scholar 

  • Nielsen J, Kulahin N and Walmod PS (2008) Extracellular protein interactions mediated by the neural cell adhesion molecule, NCAM: heterophilic interactions between NCAM and cell adhesion molecules, extracellular matrix proteins, and viruses. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9761-2

    Google Scholar 

  • Niethammer P, Delling M, Sytnyk V et al. (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 157:521–532

    PubMed  CAS  Google Scholar 

  • Noble M, Albrechtsen M, Moller C et al. (1985) Glial cells express N-CAM/D2-CAM-like polypeptides in vitro. Nature 316:725–728

    PubMed  CAS  Google Scholar 

  • Oka S, Bruses JL, Nelson RW et al. (1995) Properties and developmental regulation of polysialyltransferase activity in the chicken embryo brain. J Biol Chem 270:19357–19363

    PubMed  CAS  Google Scholar 

  • Okamoto M, Sakiyama J, Kurazono S et al. (2001) Developmentally regulated expression of brain-specific chondroitin sulfate proteoglycans, neurocan and phosphacan, in the postnatal rat hippocampus. Cell Tissue Res 306:217–229

    PubMed  CAS  Google Scholar 

  • Olsen M, Krog L, Edvardsen K et al. (1993) Intact transmembrane isoforms of the neural cell adhesion molecule are released from the plasma membrane. Biochem J 295 (Pt 3):833–840

    PubMed  CAS  Google Scholar 

  • Ong E, Nakayama J, Angata K et al. (1998) Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases, PST and STX. Glycobiology 8:415–424

    PubMed  CAS  Google Scholar 

  • Ong E, Suzuki M, Belot F et al. (2002) Biosynthesis of HNK-1 glycans on O-linked oligosaccharides attached to the neural cell adhesion molecule (NCAM): the requirement for core 2 beta 1,6-N-acetylglucosaminyltransferase and the muscle-specific domain in NCAM. J Biol Chem 277:18182–18190

    PubMed  CAS  Google Scholar 

  • Owens GC, Edelman GM and Cunningham BA (1987) Organization of the neural cell adhesion molecule (N-CAM) gene: alternative exon usage as the basis for different membrane-associated domains. Proc Natl Acad Sci USA 84:294–298

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A et al. (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452:589–597

    PubMed  CAS  Google Scholar 

  • Paoloni-Giacobino A, Chen H and Antonarakis SE (1997) Cloning of a novel human neural cell adhesion molecule gene (NCAM2) that maps to chromosome region 21q21 and is potentially involved in Down syndrome. Genomics 43:43–51

    PubMed  CAS  Google Scholar 

  • Paratcha G, Ledda F and Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867–879

    PubMed  CAS  Google Scholar 

  • Pebusque MJ, Coulier F, Birnbaum D et al. (1998) Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol 15:1145–1159

    PubMed  CAS  Google Scholar 

  • Persohn E, Pollerberg GE and Schachner M (1989) Immunoelectron-microscopic localization of the 180 kD component of the neural cell adhesion molecule N-CAM in postsynaptic membranes. J Comp Neurol 288:92–100

    PubMed  CAS  Google Scholar 

  • Pestean A, Krizbai I, Bottcher H et al. (1995) Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats. Neurosci Lett 195:117–120

    PubMed  CAS  Google Scholar 

  • Peter N, Aronoff B, Wu F et al. (1994) Decrease in growth cone-neurite fasciculation by sensory or motor cells in vitro accompanies downregulation of Aplysia cell adhesion molecules by neurotransmitters. J Neurosci 14:1413–1421

    PubMed  CAS  Google Scholar 

  • Petridis AK, EI-Maarouf A, and Rutishauser U (2004) Polysialic acid regulates cell contact-dependent neuronal differentiation of progenitor cells from the subventricular zone. Dev Dyn. 230:675–684

    Google Scholar 

  • Phillips GR, Krushel LA and Crossin KL (1997) Developmental expression of two rat sialyltransferases that modify the neural cell adhesion molecule, N-CAM. Brain Res Dev Brain Res 102:143–155

    PubMed  CAS  Google Scholar 

  • Pielage J, Fetter RD and Davis GW (2005) Presynaptic spectrin is essential for synapse stabilization. Curr Biol 15:918–928

    PubMed  CAS  Google Scholar 

  • Pillai-Nair N, Panicker AK, Rodriguiz RM et al. (2005) Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J Neurosci 25:4659–4671

    PubMed  CAS  Google Scholar 

  • Pinsker H, Kupfermann I, Castellucci V et al. (1970) Habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science 167:1740–1742

    PubMed  CAS  Google Scholar 

  • Pollerberg GE, Burridge K, Krebs KE et al. (1987) The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res 250:227–236

    PubMed  CAS  Google Scholar 

  • Polo-Parada L, Bose CM, Plattner F et al. (2004) Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci 24:1852–1864

    PubMed  CAS  Google Scholar 

  • Polo-Parada L, Plattner F, Bose C et al. (2005) NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation. Neuron 46:917–931

    PubMed  CAS  Google Scholar 

  • Ponimaskin E, Dityateva G, Ruonala MO et al. (2008) Fibroblast growth factor-regulated palmitoylation of the neural cell adhesion molecule determines neuronal morphogenesis. J Neurosci 28:8897–8907

    PubMed  CAS  Google Scholar 

  • Prediger EA, Hoffman S, Edelman GM et al. (1988) Four exons encode a 93-base-pair insert in three neural cell adhesion molecule mRNAs specific for chicken heart and skeletal muscle. Proc Natl Acad Sci USA 85:9616–9620

    PubMed  CAS  Google Scholar 

  • Probstmeier R, Bilz A and Schneider-Schaulies J (1994) Expression of the neural cell adhesion molecule and polysialic acid during early mouse embryogenesis. J Neurosci Res 37:324–335

    PubMed  CAS  Google Scholar 

  • Probstmeier R, Fahrig T, Spiess E et al. (1992) Interactions of the neural cell adhesion molecule and the myelin-associated glycoprotein with collagen type I: involvement in fibrillogenesis. J Cell Biol 116:1063–1070

    PubMed  CAS  Google Scholar 

  • Probstmeier R, Kuhn K and Schachner M (1989) Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J Neurochem 53:1794–1801

    PubMed  CAS  Google Scholar 

  • Qin S, Zheng F, Chen GH et al. (2005) Variable alternative spliced exon (VASE)-containing and VASE-lacking neural cell adhesion molecule in the dorsal and ventral hippocampus of SAMP8 mice. J Neurosci Res 80:838–844

    PubMed  CAS  Google Scholar 

  • Rasmussen KK, Kulahin N, Kristensen O et al. (2008) Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping. J Mol Biol 382:1113–1120

    PubMed  CAS  Google Scholar 

  • Rathbone MP, Middlemiss PJ, Gysbers JW et al. (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    PubMed  CAS  Google Scholar 

  • Rayport SG and Schacher S (1986) Synaptic plasticity in vitro: cell culture of identified Aplysia neurons mediating short-term habituation and sensitization. J Neurosci 6:759–763

    PubMed  CAS  Google Scholar 

  • Reyes AA, Small SJ and Akeson R (1991) At least 27 alternatively spliced forms of the neural cell adhesion molecule mRNA are expressed during rat heart development. Mol Cell Biol 11:1654–1661

    PubMed  CAS  Google Scholar 

  • Rivlin PK, St Clair RM, Vilinsky I et al. (2004) Morphology and molecular organization of the adult neuromuscular junction of Drosophila. J Comp Neurol 468:596–613

    PubMed  CAS  Google Scholar 

  • Rodriguez MM, Ron D, Touhara K et al. (1999) RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro. Biochemistry 38:13787–13794

    PubMed  CAS  Google Scholar 

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    PubMed  CAS  Google Scholar 

  • Rutishauser U, Acheson A, Hall AK et al. (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240:53–57

    PubMed  CAS  Google Scholar 

  • Rutishauser U, Thiery JP, Brackenbury R et al. (1976) Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc Natl Acad Sci USA 73:577–581

    PubMed  CAS  Google Scholar 

  • Sadoul K, Meyer A, Low MG et al. (1986) Release of the 120 kDa component of the mouse neural cell adhesion molecule N-CAM from cell surfaces by phosphatidylinositol-specific phospholipase C. Neurosci Lett 72:341–346

    PubMed  CAS  Google Scholar 

  • Saffell JL, Walsh FS and Doherty P (1994) Expression of NCAM containing VASE in neurons can account for a developmental loss in their neurite outgrowth response to NCAM in a cellular substratum. J Cell Biol 125:427–436

    PubMed  CAS  Google Scholar 

  • Sandig M, Rao Y and Siu CH (1994) The homophilic binding site of the neural cell adhesion molecule NCAM is directly involved in promoting neurite outgrowth from cultured neural retinal cells. J Biol Chem 269:14841–14848

    PubMed  CAS  Google Scholar 

  • Santoni MJ, Barthels D, Vopper G et al. (1989) Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. Embo J 8:385–392

    PubMed  CAS  Google Scholar 

  • Santuccione A, Sytnyk V, Leshchyns’ka I et al. (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341–354

    PubMed  CAS  Google Scholar 

  • Saraste M, Sibbald PR and Wittinghofer A (1990) The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    PubMed  Google Scholar 

  • Schacher S and Montarolo PG (1991) Target-dependent structural changes in sensory neurons of Aplysia accompany long-term heterosynaptic inhibition. Neuron 6:679–690

    PubMed  CAS  Google Scholar 

  • Schmitt-Ulms G, Legname G, Baldwin MA et al. (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314:1209–1225

    PubMed  CAS  Google Scholar 

  • Schuch U, Lohse MJ and Schachner M (1989) Neural cell adhesion molecules influence second messenger systems. Neuron 3:13–20

    PubMed  CAS  Google Scholar 

  • Schuster CM, Davis GW, Fetter RD et al. (1996) Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17:641–654

    PubMed  CAS  Google Scholar 

  • Schuster T, Krug M, Hassan H et al. (1998) Increase in proportion of hippocampal spine synapses expressing neural cell adhesion molecule NCAM180 following long-term potentiation. J Neurobiol 37:359–372

    PubMed  CAS  Google Scholar 

  • Schuster T, Krug M, Stalder M et al. (2001) Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. J Neurobiol 49:142–158

    PubMed  CAS  Google Scholar 

  • Schwarzacher SW, Vuksic M, Haas CA et al. (2006) Neuronal hyperactivity induces astrocytic expression of neurocan in the adult rat hippocampus. Glia 53:704–714

    PubMed  Google Scholar 

  • Schwenkert I, Eltrop R, Funk N et al. (2008) The hangover gene negatively regulates bouton addition at the Drosophila neuromuscular junction. Mech Dev 125:700–711

    PubMed  CAS  Google Scholar 

  • Secher T (2008) Soluble NCAM. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9743-4

    Google Scholar 

  • Seki T and Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290

    PubMed  CAS  Google Scholar 

  • Seki T and Rutishauser U (1998) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci 18:3757–3766

    PubMed  CAS  Google Scholar 

  • Senkov O, Sun M, Weinhold B et al. (2006) Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm. J Neurosci 26:10888–109898

    PubMed  CAS  Google Scholar 

  • Sigrist SJ, Reiff DF, Thiel PR et al. (2003) Experience-dependent strengthening of Drosophila neuromuscular junctions. J Neurosci 23:6546–6556

    PubMed  CAS  Google Scholar 

  • Sjostrand D, Carlsson J, Paratcha G et al. (2007) Disruption of the GDNF binding site in NCAM dissociates ligand binding and homophilic cell adhesion. J Biol Chem 282:12734–12740

    PubMed  Google Scholar 

  • Sjostrand D and Ibanez CF (2008) Insights into GFRalpha1 regulation of neural cell adhesion molecule (NCAM) function from structure-function analysis of the NCAM/GFRalpha1 receptor complex. J Biol Chem 283:13792–13798

    PubMed  Google Scholar 

  • Skladchikova G, Ronn LC, Berezin V et al. (1999) Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 57:207–218

    PubMed  CAS  Google Scholar 

  • Small SJ and Akeson R (1990) Expression of the unique NCAM VASE exon is independently regulated in distinct tissues during development. J Cell Biol 111:2089–2096

    PubMed  CAS  Google Scholar 

  • Sorkin BC, Hoffman S, Edelman GM et al. (1984) Sulfation and phosphorylation of the neural cell adhesion molecule, N-CAM. Science 225:1476–1478

    PubMed  CAS  Google Scholar 

  • Soroka V, Kasper C and Poulsen FM (2008) Structural biology of NCAM. Neurochem Res [Epub ahead of print]. DOI: 10.1007/s11064-008-9837-z

    Google Scholar 

  • Soroka V, Kolkova K, Kastrup JS et al. (2003) Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 11:1291–1301

    PubMed  CAS  Google Scholar 

  • Storms SD, Kim AC, Tran BH et al. (1996) NCAM-mediated adhesion of transfected cells to agrin. Cell Adhes Commun 3:497–509

    PubMed  CAS  Google Scholar 

  • Strausberg RL, Feingold EA, Grouse LH et al. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903

    PubMed  Google Scholar 

  • Sullivan PF, Keefe RS, Lange LA et al. (2007) NCAM1 and neurocognition in schizophrenia. Biol Psychiatry 61:902–910

    PubMed  CAS  Google Scholar 

  • Suzuki E, Rose D and Chiba A (2000) The ultrastructural interactions of identified pre- and postsynaptic cells during synaptic target recognition in Drosophila embryos. J Neurobiol 42:448–459

    PubMed  CAS  Google Scholar 

  • Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    PubMed  CAS  Google Scholar 

  • Sytnyk V, Leshchyns’ka I, Nikonenko AG et al. (2006) NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. J Cell Biol 174:1071–1085

    PubMed  CAS  Google Scholar 

  • Tacke R and Goridis C (1991) Alternative splicing in the neural cell adhesion molecule pre-mRNA: regulation of exon 18 skipping depends on the 5′-splice site. Genes Dev 5:1416–1429

    PubMed  CAS  Google Scholar 

  • Tai MH and Zipser B (2002) Sequential steps of carbohydrate signaling mediate sensory afferent differentiation. J Neurocytol 31:743–754

    PubMed  CAS  Google Scholar 

  • Teichmann SA and Chothia C (2000) Immunoglobulin superfamily proteins in Caenorhabditis elegans. J Mol Biol 296:1367–1383

    PubMed  CAS  Google Scholar 

  • Ter Horst JP, Loscher JS, Pickering M et al. (2008) Learning-associated regulation of polysialylated neural cell adhesion molecule expression in the rat prefrontal cortex is region-, cell type- and paradigm-specific. Eur J Neurosci 28:419–427

    PubMed  Google Scholar 

  • Thierry-Mieg D, Thierry-Mieg J, Potdevin M et al. (2008) The AceView genes. www.ncbi.nlm.nih.gov/IEB/Research/Acembly november 7, 2008

  • Thompson J, Dickson G, Moore SE et al. (1989) Alternative splicing of the neural cell adhesion molecule gene generates variant extracellular domain structure in skeletal muscle and brain. Genes Dev 3:348–357

    PubMed  CAS  Google Scholar 

  • Thoulouze MI, Lafage M, Schachner M et al. (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181–7190

    PubMed  CAS  Google Scholar 

  • Tomasiewicz H, Ono K, Yee D et al. (1993) Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11:1163–1174

    PubMed  CAS  Google Scholar 

  • Tonissen KF and Krieg PA (1993) Two neural-cell adhesion molecule (NCAM)-encoding genes in Xenopus laevis are expressed during development and in adult tissues. Gene 127:243–247

    PubMed  CAS  Google Scholar 

  • Vaithianathan T, Matthias K, Bahr B et al. (2004) Neural cell adhesion molecule-associated polysialic acid potentiates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor currents. J Biol Chem 279:47975–47984

    PubMed  CAS  Google Scholar 

  • Volonte C, Amadio S, Cavaliere F et al. (2003) Extracellular ATP and neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:403–412

    PubMed  CAS  Google Scholar 

  • Walmod PS, Kolkova K, Berezin V et al. (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem Res 29:2015–2035

    PubMed  CAS  Google Scholar 

  • Walsh FS, Parekh RB, Moore SE et al. (1989) Tissue specific O-linked glycosylation of the neural cell adhesion molecule (N-CAM). Development 105:803–811

    PubMed  CAS  Google Scholar 

  • Wang LH and Strittmatter SM (1996) A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci 16:6197–6207

    PubMed  CAS  Google Scholar 

  • Weinhold B, Seidenfaden R, Rockle I et al. (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280:42971–42977

    PubMed  CAS  Google Scholar 

  • Williams EJ, Furness J, Walsh FS et al. (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13:583–594

    PubMed  CAS  Google Scholar 

  • Williams EJ, Walsh FS and Doherty P (1994) Tyrosine kinase inhibitors can differentially inhibit integrin-dependent and CAM-stimulated neurite outgrowth. J Cell Biol 124:1029–1037

    PubMed  CAS  Google Scholar 

  • Wright JW and Copenhaver PF (2001) Cell type-specific expression of fasciclin II isoforms reveals neuronal-glial interactions during peripheral nerve growth. Dev Biol 234:24–41

    PubMed  CAS  Google Scholar 

  • Wright JW, Snyder MA, Schwinof KM et al. (1999) A role for fasciclin II in the guidance of neuronal migration. Development 126:3217–3228

    PubMed  CAS  Google Scholar 

  • Wuhrer M, Geyer H, von der Ohe M et al. (2003) Localization of defined carbohydrate epitopes in bovine polysialylated NCAM. Biochimie 85:207–218

    PubMed  CAS  Google Scholar 

  • Yoshihara Y, Kawasaki M, Tamada A et al. (1997) OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17:5830–5842

    PubMed  CAS  Google Scholar 

  • Zhou R, Cheng H and Tiersch TR (2001) Differential genome duplication and fish diversity. Reviews in Fish Biology and Fisheries 11:331–337

    Google Scholar 

  • Zhu H, Wu F and Schacher S (1994) Aplysia cell adhesion molecules and serotonin regulate sensory cell-motor cell interactions during early stages of synapse formation in vitro. J Neurosci 14:6886–6900

    PubMed  CAS  Google Scholar 

  • Zimmermann H (2008) ATP and acetylcholine, equal brethren. Neurochem Int 52:634–648

    PubMed  CAS  Google Scholar 

  • Zito K, Fetter RD, Goodman CS et al. (1997) Synaptic clustering of Fascilin II and Shaker: essential targeting sequences and role of Dlg. Neuron 19:1007–1016

    PubMed  CAS  Google Scholar 

  • Zorn AM and Krieg PA (1992) Developmental regulation of alternative splicing in the mRNA encoding Xenopus laevis neural cell adhesion molecule (NCAM). Dev Biol 149:197–205

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by “Augustinus Fonden,” “Lundbeckfonden” (project R19-A2087), The Danish Medical Research Council (project 271-07-0558), and the European Commission 7th Framework Programme (International Reintegration Grant 231108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Walmod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Owczarek, S., Kristiansen, L.V., Hortsch, M., Walmod, P.S. (2009). Cell Adhesion Molecules of the NCAM Family and Their Roles at Synapses. In: Umemori, H., Hortsch, M. (eds) The Sticky Synapse. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92708-4_13

Download citation

Publish with us

Policies and ethics