Advertisement

Alloys and Intermetallic Anodes

  • R. A. Huggins

Early work on the commercial development of rechargeable lithium batteries to operate at or near ambient temperatures involved the use of elemental lithium as the negative electrode reactant. Binary phases, generally involving a solid solution of lithium in one of the forms of carbon, are currently employed on the negative side of lithium cells.

There is considerable interest in finding alternative materials that might be more attractive than the lithium-carbons. Improvements might involve the ability to operate safely at higher current densities, less first cycle irreversible capacity loss, better cycling behavior, reduced specific volume, and lower cost.

Keywords

Energy System Specific Volume Energy Technology High Current Density Binary Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P Yao, L.A. Heredy and R.C. Saunders, J. Electrochem. Soc. 118 (1971) 1039 .CrossRefGoogle Scholar
  2. 2.
    E.C. Gay, D.R. Vissers, F.J. Martino and K.E. Anderson, J. Electrochem. Soc. 123 (1976) 1591.CrossRefGoogle Scholar
  3. 3.
    S.C. Lai, J. Electrochem. Soc. 123 (1976) 1196.CrossRefGoogle Scholar
  4. 4.
    R.A. Sharma and R.N. Seefurth, J. Electrochem Soc. 123 (1976) 1763.CrossRefGoogle Scholar
  5. 5.
    R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc. 124 (1977) 1207.CrossRefGoogle Scholar
  6. 6.
    H. Ogawa, 2 nd IMLB,(Elsevier Sequoia) (1984), p. 259.Google Scholar
  7. 7.
    R. Yazami and P. Touzain, /. Power Sources 9 (1983) 365.CrossRefGoogle Scholar
  8. 8.
    W. Weppner and R.A. Huggins, Symposium on Electrode Materials and Processes for Energy Conversion and Storage, J.D.E. Mclntyre, S. Srinivasan and F.G. Will, Eds., Electrochem. Soc. (1977), p. 833.Google Scholar
  9. 9.
    W. Weppner and R.A. Huggins, ZPhys. Chem. N.F. 108 (1977) 105.Google Scholar
  10. 10.
    W. Weppner and R.A. Huggins, J. Electrochem. Soc. 125(1978) 7.CrossRefGoogle Scholar
  11. 11.
    C. Wagner, J. Chem. Phys. 21 (1953) 1819.CrossRefGoogle Scholar
  12. 12.
    C.J. Wen and R.A. Huggins, J. Solid State Chem. 37 (1981) 271.CrossRefGoogle Scholar
  13. 13.
    C.J. Wen, Ph.D. Dissertation,Stanford University (1980).Google Scholar
  14. 14.
    C.J. Wen and R.A. Huggins, Mat. Res. Bull. 15 (1980) 1225.CrossRefGoogle Scholar
  15. 15.
    M.L. Saboungi, J.J. Marr, K. Anderson and D.R. Vissers, J. Electrochem. Soc. 126 (1979) 322.Google Scholar
  16. 16.
    C.J. Wen and R.A. Huggins, J. Electrochem. Soc. 128 (1981) 1636.CrossRefGoogle Scholar
  17. 17.
    C.J. Wen and R.A. Huggins, J. Electrochem. Soc. 128 (1981) 1181.CrossRefGoogle Scholar
  18. 18.
    C.J. Wen, B.A. Boukamp and R.A. Huggins, J. Electrochem. Soc. 126 (1979) 2258.CrossRefGoogle Scholar
  19. 19.
    W. Weppner and R.A. Huggins, J. Electrochem. Soc. 125 (1978) 7.CrossRefGoogle Scholar
  20. 20.
    J.P. Doench and R.A. Huggins, J. Electrochem. Soc. 129 (1982) 341C.Google Scholar
  21. 21.
    J. Wang, P. King and R.A. Huggins, Solid State Ionics 20 (1986) 185.CrossRefGoogle Scholar
  22. 22.
    J. Wang, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 133 (1986) 457.CrossRefGoogle Scholar
  23. 23.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, J. Electrochem. Soc. 128 (1981) 725.CrossRefGoogle Scholar
  24. 24.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, inProc Lithium Batteries,H.V. Venkatasetty, Ed., Electrochem. Soc. (1981), p. 467.Google Scholar
  25. 25.
    R.A. Huggins and B.A. Boukamp, US Patent 4,436,796.Google Scholar
  26. 26.
    A. Anani, S. Crouch-Baker and R.A. Huggins, inLithium Batteries, A. N. Dey, Ed.,Electrochem. Soc. (1987), p. 382.Google Scholar
  27. 27.
    A. Anani, S. Crouch-Baker and R.A. Huggins, 7.Electrochem. Soc. 135 (1988) 2103.CrossRefGoogle Scholar
  28. 28.
    C. J. Wen and R. A. Huggins, J. Solid State Chem. 35 (1980) 376.CrossRefGoogle Scholar
  29. 29.
    J. Yang, M. Winter and J. O. Besenhard, Solid State Ionics 90 (1996) 281.CrossRefGoogle Scholar
  30. 30.
    R. A. Huggins and W. D. Nix, Ionics 6 (2000) 57.CrossRefGoogle Scholar
  31. 31.
    Y. Piffard, F. Leroux, D. Guyomard, J.-L. Mansot and M. Tournoux, J. Power Sources 68 (1997) 698.CrossRefGoogle Scholar
  32. 32.
    M. Nishijima, T. Kagohashi, N. Imanishi, Y. Takeda, O. Yamamoto and S. Kondo, Solid State Ionics 83 (1996) 107.CrossRefGoogle Scholar
  33. 33.
    T. Shodai, S. Okada, S-i. Tobishima, and J-i. Yamaki, Solid State Ionics 86–88 (1996) 785.CrossRefGoogle Scholar
  34. 34.
    M. Nishijima, T. Kagohashi, Y. Takeda, N. Imanishi and O. Yamamoto, 8th IMLB (1996), p. 402.Google Scholar
  35. 35.
    T. Shodai, S. Okada, S. Tobishima and J. Yamaki, 8th IMLB (1996), p. 404. 36 P. Limthongkul, Ph.D. Thesis, Mass. Inst, of Tech. (2002).Google Scholar
  36. 36.
    P.Limthongkl. Ph.D. Thesis, Mass. Inst. of Tech. (2002).Google Scholar
  37. 37.
    B. Klausnitzer, Ph.D. Thesis, University of Ulm (2000).Google Scholar
  38. 38.
    A. Netz, Ph.D. Thesis, University of Kiel (2001).Google Scholar
  39. 39.
    A. Netz, R.A. Huggins and W. Weppner, 11 th IMLB (2002), Abstract No. 47.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • R. A. Huggins
    • 1
  1. 1.Faculty of EngineeringUniversity of KielKielGermany

Personalised recommendations